
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 39, No. 3, September 2025, pp. 1553~1561 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v39.i3.pp1553-1561      1553 

 

Journal homepage: http://ijeecs.iaescore.com 

Extended Kalman filter based unconstrained model predictive 

control of a complex nonlinear system: the quadruple tank process 
 

 

Zohra Zidane 
Research Laboratory in Physics and Engineering, Department of Physic, Faculty of Polydisciplinary,  

University of Sultan Moulay Slimane, Beni-Mellal, Morocco 

 
 

Article Info  ABSTRACT 

Article history: 

Received Jan 15, 2025 
Revised Apr 9, 2025 

Accepted Jul 2, 2025 

 

 This paper proposes the model predictive controller (MPC) based on the 
Kalman filter for a complicated nonlinear system—the quadruple tank 
process (QTP). The control of a multivariable and nonlinear system like a 
QTP is a difficult job. A number of nonlinear design techniques are 
implemented to ameliorate the pursuit performance of the QTP, however, the 
nonlinear techniques make implementation composite and computationally 
unsuitable. In this work, an unconstrained MPC is planed for the QTP 

experiences and it is controlled for both minimum and non-minimum 
sentence configurations in order to follow the wanted track. Its performance 
can be damaged once system is pass from minimum to non-minimum phase 
region and inversely. The unknown states required for model predictive 
control design are rebuilt using an extended Kalman filter. The design of 
model predictive control and extended Kalman filter is based on the QTP 
and the achievement of the proposed controller is checked for the monitoring 
of references. All results of simulation are affected using the MATLAB 

software. The results of the simulation show the capability and power of the 
suggested controller in respect of monitoring the trajectory and state 
estimation. 
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1. INTRODUCTION 

Model predictive control (MPC) is an involved control way in the automatic, also named as 
regressing horizon control, This is the most, indicated to manage the complex systems in industrial 

environments, such as petrochemicals, process engineering and the automotive sector where it has 

demonstrated its evidence. Its ability to jointly process operating specifications and operating constraints in 

the development of the order law made its success in the presence of disturbances and uncertainties [1]-[6], 

and it has a good capability to cope with MIMO systems, non-minimum phase and unstable systems [7]. The 

evolution of computer science is not foreign to its success either, because the powerful developed computers 

allowed automaticians to achieve their objectives with great precision in a record time. All these factors have 

propelled the predictive order to occupy a preponderant place in academic and industrial sector [8]-[13]. 

MPC is a particular case of the optimal control that uses a process model to calculate future 

anticipated outputs. These anticipated outputs are once exploited to count up a classification of control inputs 

that are transmitted to the system to optimize the future comportement of the plant and then optimizing again, 
consistently, which is different from a linear quadratic regulator (LQR). The MPC also has the capability to 
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expect future events and take control effort consistently. PID controllers do not have this predictive power. 

The MPC is in all cases implemented as a numerical control, for all that research is an underway to achieve 

quick response times [14]. The MPC algorithm consists of an objective function, constraints and an anticipate 

model or model of the system [15]. The primary aspiration of this work is to develop a predictive controller 

on the basis of on the estimate of the states which reaches an absolute monitoring for the QTP, both for 

minimum and non-minimum illustration. 

Often in practice not all states of a system are calculable; Consequently, the state estimation is 
considered. The Kalman filter is an essential expedient in control algorithms because of its power to alleviate 

the unwanted outcome of perturbations in the process [16]. The utilisation of the Kalman filter make known 

of the important advantages as the utilisation of its extended version in nonlinear systems. The QTP that 

accompany the law of mass equilibration and equations of energy are a non-linear process. attributable to 

perturbation it is more hard to take the calculations of the water position in the QPT. Here an extended 

Kalman filter based MPC algorithm is introduced to adapt the removal of improved disturbance in the four 

tank tracking system. Consequently, the estimate do the important job in estimating of the states parameters 

in real time. If the states variables are precisely valued, it is very facile to keep the magnitude of the system. 

In this article the state estimation is carried out by extended Kalman filter to make out the vector of state 

variable of the process. By using the valued state parameters the complication of the system is decreased. 

The plan of this article is presented like so. Section 2 details the mathematical model for QTP for 

control design. In section 2, the classic formulation of unconstrained MPC controller algorithm is presented 
and the Kalman filter is then briefly introduced. Section 3 details the mathematical model for QTP for control 

design. In section 4 the result of simulations is shown and discussed. The conclusion is contributed in section 5. 

 

 

2. ALGORITHM 

This section is providing with the theoretical framework of state estimation based unconstrained 

MPC controller and the adapted variable for upgrading Kalman filter assessment. 

 

2.1.  MPC control algorithm  
In this section, The MPC control with integral action is considered to solve the problems of the 

offset [17]. The discrete-time state space model with disturbance is given as follows: 
 

xk+1 = Axk + Buk + ζ
yk = Cxk + ϑ        

 (1) 

 

where A, B and D are matrices of the system, 𝑥𝑘 ∈ 𝑅
𝑛 is a state variables vector, 𝑢𝑘 ∈ 𝑅

𝑟 is input vector, 

𝑦𝑘 ∈ 𝑅
𝑚 output vector. 𝜁 is process perturbation vector and 𝜗 is computation perturbation vector. From the 

equivalence (1), the state space model accords: 

 
∆xk+1 = A∆xk + B∆uk
     yk = yk−1 + C∆xk

 (2) 

 

where, 
 

∆xk+1 = xk+1 − xk (3) 

 

∆xk = xk − xk−1 (4) 

 

∆uk = uk − uk−1 (5) 

 

The augmented form of the model is given as, 

 

[
∆𝑥𝑘+1
𝑦𝑘

]
⏟    
𝑥𝑘+1

= [
𝐴 0
𝐶 𝐼

]
⏟    

𝐴

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟  
𝑥𝑘

+ [
𝐵
0
]

⏟
𝐵̃

∆𝑢𝑘

𝑦𝑘 = [𝐶 𝐼]⏟   
𝐶

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟  
𝑥𝑘

 (6) 

 

A strictly appropriate state model is as: 
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𝑥𝑘+1 = 𝐴̃𝑥𝑘 + 𝐵̃∆𝑢𝑘
𝑦𝑘 = 𝐶̃𝑥𝑘

 (7) 

 

𝐴̃, 𝐵,̃ 𝐶̃: matrices of extended model. 

The anticipated value of the output alongside the range is going to be, 

 

yk+1/L = FL + GLuk/L (8) 
 
where, 

 

FL = OLÃL (9) 

 

GL = [OLB̃ HL
d] (10) 

 

where OL is augmented observability matrix for the (C̃, Ã), and (C̃, Ã, B̃) are matrices where Toeplitz matrix is 

HL
d [18]. 

The objective function for optimization is given by: 
 

J = (yk+1/L − wk+1/L)
T
Q(yk+1/L − wk+1/L) + uk/L

TPuk/L + Duk/L
TRDuk/L (11) 

 

where 𝐰 is the set point, 𝐲 is the output, D𝐮 is the input changes, and 𝐮 is the input. Q, R and P are the weight 

matrices. 𝐋 prediction range.  

The (8) and (11) can be combined and considered as a quadratic criterion according to the standard form 

as, 

 

Jk = ∆uk/L
T HDuk/L + 2fk

T
Duk/L + J0 (12) 

 

where, 

 

H = GL
TQGL + R (13) 

 

fk = GL
TQ(FL − wk+1/L) (14) 

 

𝐽0 = (𝐹𝐿 −𝑤𝑘+1/𝐿)
𝑇𝑄(𝐹𝐿 − 𝑤𝑘+1/𝐿) (15) 

 
The optimal control variation vector is as, 

 

∆uk/L
∗ = −H−1fk (16) 

 

2.2.  Kalman Filter  
It often happens that all states are not measured in this case the obligation to estimate the state 

arises. For a plant model [19], 

 
x(k + 1) = Ax(k) + Bu(k) + v(k)

y(k) = Cx(k) +w(k)        
  (17) 

 

The steps for calculating the state estimation by the Kalman filter algorithm are given as [20], 

a) Calculate the state one-step predicting 

 

𝑥(𝑘/𝑘 − 1) = 𝐴𝑥̂(𝑘 − 1/𝑘 − 1) + 𝐵𝑢(𝑘 − 1) (18) 

 

b) Assess the one step anticipation of approximation error covariance 

 

𝑃(𝑘/𝑘 − 1) = 𝐴𝑃(𝑘 − 1/𝑘 − 1)𝐴𝑇 +𝑄 (19) 

 

c) Calculate Kalman gain 
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𝐾(𝑘) = 𝑃(𝑘/𝑘 − 1)𝐶𝑇(𝐶𝑃(𝑘/𝑘 − 1)𝐶𝑇 + 𝑅−1(𝑘))−1 (20) 

 

d) Compute the filter approximate value 
 

𝑥(𝑘/𝑘) = 𝑥(𝑘/𝑘 − 1) + 𝐾(𝑘)(𝑦(𝑘) − 𝐶𝑥(𝑘/𝑘 − 1)) (21) 
 

e) Renovate estimation error covariance 
 

𝑃(𝑘/𝑘) = (𝐼 − 𝐾(𝑘)𝐶)𝑃(𝑘 − 1/𝑘) (22) 
 

where v is the white system perturnation, w is white frequency perturbation 𝑄(𝑘) and 𝑅(𝑘) are noise 

covariance matrices. 

 

 

3. PROCESS DESCRIPTION 
This section will presente a theoretical model for the QTP. The QTP contains four acossiated liquid 

tanks and two devoted pumps [21], [22]. The illustrative sketch of the QTP is given in Figure 1. 
 

 

 
 

Figure 1. Schematic diagram of the QTP 
 

 

The inputs of the process are u1 and u2 and the outputs are 𝑦1 = 𝑘𝑐ℎ1 and 𝑦2 = 𝑘𝑐ℎ2. The 

mathematical model of four tank systems is as follows [23]-[25]: 
 

dh1

dt
= −

a1

A1
√2gh1 +

a3

A1
√2gh3 +

γ1k1

A1
u1  (23) 

 
dh2

dt
= −

a2

A2
√2gh2 +

a4

A2
√2gh4 +

γ2k2

A2
u2 (24) 

 
dh3

dt
= −

a3

A3
√2gh3 +

(1−γ2)k2

A3
u2 (25) 

 
dh4

dt
= −

a4

A4
√2gh4 +

(1−γ1)k1

A4
u1 (26) 

 

where, 

Ai: Surface of cross section of the tank i; 

ai: Surface of cross section of the exit hole i; 

hi: Level of water in the tank i; 

ui: Voltage of the pump i; 

γi: Constant of valve i; 

ki: Constant of pump i; 

g: Acceleration of gravity; 

kc: Pump gain. 
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The nonlinear equations of four-tank process is linearized with the operation point given by the liquid 

height of the tanks ℎ1
0, ℎ2

0, ℎ3
0 and ℎ4

0 and voltage 𝑢1
0 and 𝑢2

0. The previous nonlinear differential equations are 

changed to linearized state space model by way of Jacobian matrix.  

The Jacobian matrix is as follows, 
 

∂f

∂h
=

[
 
 
 
 
 
 
∂f1

∂h1

∂f1

∂h2
∂f2

∂h1

∂f2

∂h2

∂f1

∂h3

∂f1

∂h4
∂f2

∂h3

∂f2

∂h4
∂f3

∂h1

∂f3

∂h2
∂f4

∂h1

∂f4

∂h2

∂f3

∂h3

∂f3

∂h4
∂f4

∂h3

∂f4

∂h4]
 
 
 
 
 
 

  (26) 

 

By means of the (26), the linearized model for QTP is as, 

 
dh

dt
= 𝐴ℎ + 𝐵𝑢

𝑦 = 𝐶ℎ
  (27) 

 

dh

dt
=

[
 
 
 
 
 
 −

1

T1
0

0 −
1

T2

A3

A1T1
0

0
A4

A2T2

0 0
0 0

−
1

T3
0

0 −
1

T4]
 
 
 
 
 
 

h +

[
 
 
 
 
 
 

γ1k1

A1
0

0
γ2k2

A2

0
(1−γ2)k2

A3
(1−γ1)k1

A4
0 ]

 
 
 
 
 
 

u  (28) 

 

y = [
kc 0
0 kc

0 0
0 0

]h (29)  

 

The discrete model of QTP is as: 

 
xk+1 = Axk + Buk

yk = Cxk
 (30) 

 

where, 

 

A = [

0.9984 0
0 0.9989

0.0026 0
0 0.0018

0 0
0 0

0.9974 0
0 0.9982

]; B = [

 0.0048
0
0

0.0056

0
0.0035
 0.0077
0

]; C = [
1 0
0 1

0 0
0 0

] (31) 

 

The plant can be transfered from minimum to non-minimum phase region and inversely directely by switching 

a valve managing the flux fraction 𝛾1  and 𝛾2  between lessen and higher tanks. The minimum-phase structure 

corresponds to 1 < (𝛾1 + 𝛾2) < 2 and the non-minimum phase one to 0 < (𝛾1 + 𝛾2) < 1. 

 

 

4. RESULTS AND DISCUSSIONS 

For many different control algorithms, one of the most encountered problems is that the state 

variables of the controlled systems are not measurable. In reality, the process output is often measurable and 

the state variables are very rarely accessible. In this case, the state estimation process does an important job 
in the implementation of process control. Therefore, the Kalman filter is a needed means in control 

algorithms brcause of its capability to mitigate the unwanted consequences of noise and load perturbations. 

The primary attention of this work is to implimente a state estimation based unconstrained model predictive 

controller (MPC) for tank liquid level control for four interconnected tanks in both operating status i.e. 

minimum and non-minimum phase cases.  

The chosen operating status correspond respectively to, (ℎ1
0 = 12.3; ℎ2

0 = 12.8; ℎ3
0 = 1.63; ℎ4

0 =
1.41; ) and (ℎ1

0 = 12.4; ℎ2
0 = 13.2; ℎ3

0 = 4.73; ℎ4
0 = 4.99; ). The constant weight matrices Q and R are 

selected in terms to obtain the better results accurately, Q = [
150 0
0 150

], and R = [
0.1 0
0 0.1

]. The 

prediction horizon of 10 is used. 
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The set point is selected as a square wave. The simulation results are developed with newly created 

MATLAB script files for numerical simulation of the four-tank process. 

 

4.1.  Performance of state estimation based unconstrained MPC controller for QTP in minimum phase  

        region 

In this section, the implementation of state estimation based unconstrained MPC controller for four-

tank process in minimum phase region is executed by substituting the set point. The simulations results are 
illustrated in Figure 2 and are discussed. 

The Kalman filter based MPC controller is performed to approximate the siyuations of the QTP. The 

levels are estimated and measured in tanks 1, 2, 3 and 4. It could be observed out of the Figure 2 that there is 

a small contrast in estimated and calculated levels in tanks 1 and 2, however there is a big difference in levels 

for tanks 3 and 4. The tracking performance of estimated levels is achieved successfully in all tanks which is 

different from a PID controllers do not have this ability to estimate the states variables and it was noticed that 

the MPC control is more robust and quick than the classical controller. It was proven that the MPC is a 

powerful method to control the MIMO system. It can be seen also the measured levels give an undershoots 

and overshoots especially in reservoirs 1, 3, and 4. 

 

 

 

 
 

Figure 2. The simulation result of QTP in minimum phase region under state estimation based unconstrained 

MPC control 
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4.2.  Performance of state estimation based unconstrained MPC controller for QTP in non-minimum  

         phase region 

In this section, the Kalman filter based unconstrained MPC controller is implemented to estimate the 

states of the QTP in non-minimum phase region. The levels are estimated and measured in tanks 1, 2, 3 and 

4. It can be seen from the Figure 3 that there is a minor variation in estimated and measured levels in tanks 2, 

on the other hand there is a big gap in levels for tanks 1, 3 and 4. The tracking performance of estimated 
levels is achieved successfully in all tanks which is different from a PID controllers do not have this ability to 

estimate the states variables and to suporte multivariable non-linear system, however the measured levels 

give an undershoots and overshoots in all tanks. 

 

 

 

 
 

Figure 3. The simulation result of QTP in non-minimum phase region under state estimation based 

unconstrained MPC control 

 

 

5. CONCLUSION 

Liquid postion reservoirs are used in large number of manufactured, and environmental fields. Their 

level be obliged to maintained at a well-defined reference point. Liquid level regulation in tank systems is a 

fundamental problem in manufactory sector. The aim of the current study was to propose a state estimation 

based unconstrained MPC controller to control the liquid levels in nonlinear QTP in minimum and non-
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minimum phase configuration. The implementation of the proposed controller was designed and simulated in 

MATLAB environment with appropriate tuning parameters. Out of the results of simulation, it could be 

deduced that, the Kalman filter based unconstrained MPC controller allows to solve the problem of unknown 

states variables because in practice, often the state variables are very rarely accessible and it was exhibited 

better performance in the estimated levels than the measured levels. It was also shown that the suggested 

optimal controller performed superbly under both operating conditions and responded optimally to desired 

values. 
The work could be extended to provide a constrained form for the MPC controller because the 

consideration of constraints is amongst the most demanded methods in the theory of control systems, often 

all industrial applications impose constraints. How to handle them in the configuration of the control system 

is a crucial question. The crucial power of MPC control is its capability to manage strict constraints on 

commands, outputs and states. Imposing constraints or ignoring them on the control signal cause 

performance degradation or even instability, especially for unstable systems. Give consideration of the 

constraints in the construction phase impose the solution of the advance problem under constraints. We hope 

also implemente the purported controller in other standard processes such as chemical reactors, three-phase 

separator and distillation columns. 
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