
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 40, No. 2, November 2025, pp. 883∼897
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v40.i2.pp883-897 ❒ 883

Deep-learning-based hand gestures recognition applications
for game controls

Huu-Huy Ngo, Hung Linh Le, Man Ba Tuyen, Vu Dinh Dung, Tran Xuan Thanh
Thai Nguyen University of Information and Communication Technology, Thai Nguyen, Vietnam

Article Info

Article history:

Received Jan 12, 2025
Revised Jul 21, 2025
Accepted Oct 14, 2025

Keywords:

Action recognition
Deep learning
Game controls
Hand gestures recognition
Human–computer interaction

ABSTRACT

Hand gesture recognition is among the emerging technologies of human-
computer interaction, and an intuitive and natural interface is more preferable
for such applications than a total solution. It is also widely used in multimedia
applications. In this paper, a deep learning-based hand gesture recognition sys-
tem for controlling games is presented, showcasing its significant contributions
toward advancing the frontier of natural and intuitive human-computer interac-
tion. It utilizes MediaPipe to get real-time skeletal information of hand land-
marks and translates the gestures of the user into smooth control signals through
an optimized artificial neural network (ANN) that is tailored for reduced com-
putational expenses and quicker inference. The proposed model, which was
trained on a carefully selected dataset of four gesture classes under different
lighting and viewing conditions, shows very good generalization performance
and robustness. It gives a recognition rate of 99.92% with much fewer param-
eters than deeper models such as ResNet50 and VGG16. By achieving high
accuracy, computational speed, and low latency, this work addresses some of
the most important challenges in gesture recognition and opens the way for new
applications in gaming, virtual reality, and other interactive fields.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Hung Linh Le
Thai Nguyen University of Information and Communication Technology
Thai Nguyen, Vietnam
Email: lhlinh@ictu.edu.vn

1. INTRODUCTION
Hand gesture recognition is a fundamental element of contemporary human–computer interaction

(HCI) that offers a more natural, touchless, and intuitive control paradigm than traditional input devices such as
keyboards, touchscreens, or mice. Its application is extensive and covers areas such as virtual and augmented
reality (VR/AR), home automation technologies, assistive technology, robots, and gaming systems [1]-[4]. The
advancement of sensing technology and computer vision algorithms has largely reduced most of the technical
difficulties, e.g., partial occlusion, background clutter, and changes in lighting [5]-[7].

Deep learning, especially of convolutional neural networks (CNNs), has transformed the area of hu-
man gesture recognition with its proven capability of extracting spatial along with temporal features from
images and video frames. VGG16, ResNet50, and DenseNet are some of the models that have been extensively
utilized and modified for gesture recognition tasks with state-of-the-art accuracy on benchmarking datasets
[4], [8], [9]. In particular, Sharma and Singh [4] applied CNNs and preprocessing methods (PCA, ORB, and
histogram gradients) to improve the accuracy of recognition, while Mohammed et al. [8] fused color and depth
data from Kinect sensors with hybrid models. Devineau et al. [10] also addressed temporal dynamics with the

Journal homepage: http://ijeecs.iaescore.com



884 ❒ ISSN: 2502-4752

use of skeletal joint data and parallel convolutions. While being precise, such CNN-based models typically ac-
company millions of parameters, resulting in an expensive computational cost that discourages their real-time
implementation on low-resource devices.

Given these limitations, researchers have explored lightweight architectures. The combination of ar-
tificial neural networks (ANNs) with effective feature extraction offers a beneficial trade-off between accuracy
and operational efficiency. Zhang et al. [11] and Nasri et al. [12] presented real-time gesture recognition
systems using sEMG signals paired with ANN classifiers, demonstrating excellent performance with fast in-
ference times. Similarly, Ozdemir et al. [13] and Cruz et al. [14] used spectral and inertial inputs to classify
gestures. Mujahid et al. [15] used YOLOv3 with DarkNet-53 for real-time detection of static and dynamic
gestures without preprocessing, whereas Aggarwal and Arora [16] used mobile-based HGR in game scenarios.

Meanwhile, recent gesture recognition research has focused on practicality, multimodality, and flex-
ibility. Lee and Bae [17] suggested a deep learning-based glove using soft sensors for dynamic motion.
Sen et al. [18] suggested a hybrid framework that fuses CNNs, ViT, and Kalman filtering for stable real-
time control. Osama et al. [19] and Guo et al. [20] were concerned with the incorporation of gesture control
in presentation and educational systems. Jiang et al. [21] were concerned with novel wearable HGR systems,
whereas Naseer et al. [22] developed UAV control modules using gesture detection. Wen et al. [23] proposed
an innovative mixed reality system aimed at enhancing sign language education through immersive learning
experiences and comprehensive, real-time feedback mechanisms.

Despite such advancements, a major lack of gesture recognition systems that are both computationally
lean and easily deployable in interactive systems such as gaming still exists. Most models either focus on
attaining optimality in performance using heavier models or consider hardware-specific data (such as EMG
or IMU) to be hardware-agnostic in consumer-level configurations. Therefore, this study proposes a novel
hand gesture recognition platform aimed at interactive game control. The approach takes advantage of the
MediaPipe hands framework for real-time landmark detection with efficiency optimization and combines it with
a lightweight ANN model minimizing computational overhead and latency. The performance of the proposed
ANN model is thoroughly tested and compared with state-of-the-art CNN architectures such as ResNet50
and VGG16. The comparative analysis determines the practical strengths and applicability of the ANN-based
model in game applications.

2. METHOD
2.1. System architecture

Figure 1 illustrates an overview of the hand gesture recognition system being considered in this re-
search. The system developed for controlling games consists of different steps that are essential in their own
right to the correct identification and interpretation of the movements of the user. The process starts with video
input, which is the primary source of information for the system. The video input may be from a webcam or
another camera device capable of acquiring real-time visual depictions of the hand motion of the user. The
video is necessary as it offers a continuous flow of visual data that records the dynamics and location of the
hand, which is vital in sensing gestures intended for interaction with a game.

After the video input has been acquired, the process continues with processing of the video by decom-
posing it into frames. The individual frames are processed using the MediaPipe framework by first detecting
the palm to draw a boundary around the hand area. After localizing the hand, MediaPipe applies its specialist
landmark detection model to sample 21 important hand landmarks in real-time. The coordinates of the land-
marks thus obtained are then converted to a systematic feature vector with maintained spatial relationships
between the key points. Later, this vector serves as an input to a neural network responsible for gesture classifi-
cation. Incorporating MediaPipe into the pipeline not only enhances the accuracy of feature extraction but also
significantly reduces computational demands, thereby guaranteeing the viability of the system for real-time
applications.

The hand skeleton input produced by MediaPipe, comprising the skeletal structure of the hand, is
used as input for a CNN model. In this case, LeNet architecture—a traditional model in the field of image
classification—is used to read the image and extract high-level features capturing spatial relationships between
important hand landmarks. This extraction of features is crucial for the distinction between hand gestures
and interpreting them as individual commands for controlling the game. The CNN then outputs a sequence
of predictions that include the detected gesture and a confidence score measure of how certain the model is.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 883–897



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 885

These predictions are passed as inputs to the application or game, thus enabling hands-free interaction without
needing conventional input methods such as keyboards or controllers.

Figure 1. System overview

2.2. MediaPipe hands
MediaPipe hands [24] is an advanced framework utilized for tracking hands in real-time and landmark

detection, which is important for human-computer interaction applications. It is able to localize and detect 21
key points on each hand (Figure 2), including fingertips, joints, and the palm bottom, thus enabling accurate
hand pose estimation. This solution has significant applications in many areas such as gesture recognition, sign
language interpretation, virtual reality (VR), and augmented reality (AR). The strong architecture of MediaPipe
hands allows for seamless processing of the input data without compromising on the high level of accuracy,
making it suitable for integration into real-time applications on numerous platforms.

Figure 2. Hand landmarks

The MediaPipe hands solution works on a two-stage strategy that includes palm detection and hand
landmark detection. In the initial stage, palm detection is applied for identifying regions of hands within the
provided image. The palm detection step provides the base for stable keypoint extraction by defining a clear
region for additional processing. Once the palm has been detected, the system enters the second stage: hand
keypoint detection, where the 21 special keypoints on the cropped hand image are detected. This is essential
in order to map the hand anatomy properly and extract significant details such as the fingers’ tips, intermediate
phalanges, and palm center.

One of the advantages of MediaPipe hands is that it can also track multiple hands at a time, even
in cases where the hands overlap or where the hands change orientation. Multi-hand tracking capability is
crucial for applications that need both hands to be involved or when there are multiple users. High tracking
stability is attained by the system through the utilization of context information from successive frames to

Deep-learning-based hand gestures recognition applications for game controls (Huu-Huy Ngo)



886 ❒ ISSN: 2502-4752

predict keypoint positions even under conditions of rapid hand movement or temporary occlusion. Predictive
style tracking enables smooth and continuous tracking required by applications demanding responsiveness,
such as virtual reality/augmented reality interaction and gesture games.

Based on keypoints’ coordinates identified by MediaPipe hands, it is possible to build a formal input
for an artificial neural network. Namely, one-dimensional input vector can be built where every element corre-
sponds to the Euclidean distance from the WRIST point to the remaining 20 keypoints. This method guarantees
that input data preserves spatial relations among significant landmarks on the hand while minimizing complex-
ity related to direct coordinate representation. The computation of these distances produces a normalized and
invariant set of input features less sensitive to variation in hand size or orientation, therefore improving the ro-
bustness of the neural network model during training and inference phases. This then yields a feature vector as:
X =

{
d1, d2, d3, ..., d20

}
. The Euclidean distance (di) between the WRIST point and the other 20 keypoints is

calculated using (2.2.). In this equation, i = 1, 2, . . . , 20, (x0, y0, z0) are the coordinates of the WRIST point,
and (xi, yi, zi) represent the coordinates of the other keypoints.

di =
√

(xi − x0)2 + (yi − y0)2 + (zi − z0)2 (1)

By representing the input in such a manner, the output vector contains 20 elements which accurately
represent the spatial relation of the anatomy of the hand. This vector is used as a significant feature for the neural
network so that it can analyze and learn patterns of various hand gestures or motion. The Euclidean distance
calculation guarantees that each vector element will be scaled equally, hence contributing to stabilization of
the learning process and enhancement of the model’s performance. As such, this structured representation not
only reduces the complexity of the input data but also retains the critical geometric characteristics required for
precise hand movement recognition. This method illustrates an effective way of converting raw landmark data
into a meaningful format suitable for deep learning algorithms, hence enabling innovation in gesture-based
interactive systems.

2.3. Artificial neural network model
After the extraction and vectorization of the 21 keypoints via MediaPipe hands, there is a generation

of a structured feature vector comprising 20 distinct features. Each entry in the vector is the Euclidean distance
between the WRIST keypoint and all the other keypoints and some other derived features. Figure 3 illustrates
an ANN model that has three fully connected layers. There is a first hidden layer with 64 neurons and ReLU
activation, followed by a hidden layer with 32 neurons and ReLU. The output layer has 4 neurons, one for each
gesture class, and applies softmax to generate class probabilities. The ANN model is trained using the Adam
optimizer with a learning rate of 0.001 for 20 epochs to achieve high recognition accuracy and low computation
needs. This lightweight design and efficient training routine render the ANN model particularly amenable to
real-time hand gesture recognition on the move, specifically for interactive game applications.

Figure 3. The structure of ANN model

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 883–897



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 887

2.4. The ResNet-50 model
The deep CNN architecture known as ResNet-50 (Figure 4), also known as ResNet-50, has emerged

as an essential component in the field of contemporary computer vision. He et al. [25] presented ResNet-
50 with the intention of addressing the obstacles that are associated with training very deep networks. In
particular, the degradation problem is a problem that arises when increasing the depth of the network results in
decreased accuracy owing to difficulty in optimizing the network. One of the most important innovations that
ResNet-50 brings to the table is its utilization of residual learning through shortcut connections. This enables
the network to acquire identity mappings and helps to alleviate the problem of disappearing gradients. In order
to demonstrate its adaptability and efficiency, this architecture has been utilized extensively in a variety of
applications, including semantic segmentation, object identification, and picture classification.

Figure 4. The ResNet-50 model architecture

In the ResNet-50 architecture, there are a total of fifty layers, which include convolutional layers,
batch normalization layers, ReLU activation functions, and fully linked layers. The usage of residual blocks, in
which identity connections bypass one or more layers, is one of its distinguishing characteristics. This allows
the network to learn residual functions rather than direct mappings, which is a significant advantage. Each of the
sixteen residual blocks that make up ResNet-50 is composed of three convolutional layers: a 1× 1 convolution
for dimensionality reduction, a 3× 3 convolution for spatial feature extraction, and another 1× 1 convolution
for restoring dimensionality. These blocks are constructed utilizing bottleneck designs. This approach to
bottlenecks decreases the load of computing work while retaining the capacity for representation. Additionally,
the design employs strided convolutions and pooling layers to gradually lower the spatial dimensions, which
guarantees the capture of hierarchical information across a variety of levels.

2.5. The VGG-16 model
Simonyan and Zisserman [26] initially presented the CNN architecture known as VGG-16. The ar-

chitecture places an emphasis on having a basic and modular style. By taking this method, the network is
able to extract intricate hierarchical properties while preserving its computational efficiency. The VGG-16
architecture (Figure 5) consists of 16 weight layers, including 13 convolutional layers and 3 fully connected
layers, interspersed with max-pooling and activation functions. The hallmark of VGG-16 is its use of small
3× 3 convolutions with a stride of 1 and padding to maintain spatial resolution. Stacking these tiny kernels in
sequence allows the network to simulate the receptive field of bigger filters, which in turn enables the network
to collect more detailed spatial data. Max-pooling layers separate five convolutional blocks in a hierarchical
design of the architecture. This allows for the gradual reduction of spatial dimensions while simultaneously
increasing the depth of feature maps. The fully linked layers at the very end of the network are responsible
for aggregating these features in order to arrive at a final categorization. The consistent architecture and depth
of VGG-16 make it an excellent choice for feature extraction and transfer learning, despite the fact that it has
rather high processing requirements.

Deep-learning-based hand gestures recognition applications for game controls (Huu-Huy Ngo)



888 ❒ ISSN: 2502-4752

Im
a

g
e
 I

n
p

u
t

C
o

n
v

-6
4

C
o

n
v

-6
4

M
a

x
p

o
o

l

C
o

n
v

-1
2
8

C
o

n
v

-1
2
8

M
a

x
p

o
o

l

C
o

n
v

-2
5
6

C
o

n
v

-2
5
6

M
a

x
p

o
o

l

C
o

n
v

-5
1
2

C
o

n
v

-5
1
2

C
o

n
v

-5
1
2

M
a

x
p

o
o

l

C
o

n
v

-5
1
2

C
o

n
v

-5
1
2

C
o

n
v

-5
1
2

M
a

x
p

o
o

l

F
C

-4
0
9

6

F
C

-4
0
9

6

F
C

-2
6
2

2

S
o

ft
m

a
x

Figure 5. The VGG-16 model architecture

3. RESULTS AND DISCUSSION
3.1. Game application design

Game description:
Bricks, balls, and boards will be the three components that make up this game. We will arrange the

bricks in rows at the very top of the screen. The bricks will vanish each time the ball makes contact with them.
Any item that the ball comes into contact with will cause it to go in the opposite direction. Users can block the
ball using the left or right board controls. If there are no bricks, the player is considered to have won the game;
if they are unable to stop the ball, they will lose and the game will end.

Game activity diagram:
Figure 6 illustrates the game activity diagram. An initial user interface is presented to players at the

beginning of the game, from which they can select various choices such as “Start” and “Exit.” After selecting
the “Start” option, the software will transition to the game interface and begin the process of initializing all of
the essential components. These components include the board, the ball, and a set of bricks that are organized
in a pattern that has been planned out beforehand. Other variables, including as the score, the velocity of the
ball, and the status of the game, are also initialized in order to guarantee a seamless gameplay experience. It is
the player’s responsibility to manage the board, which is moved horizontally in order to interact with the ball,
which is constantly traveling across the screen.

Main Menu Gameplay Game Over Exit Game

Select “Play Game”

Initialize necessary components

Move the board

Check collision with ball and bricks

Bricks depleted?
Ball hit bottom

of screen?

Display "You win" 

message

Display "You lose" 

message

Update ball 

position

Game not 

finished?

Display "You lose" 

message
Exit the game

No

Yes
Yes

No

Yes

No

Figure 6. Game activity diagram

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 883–897



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 889

The program is responsible for managing the motion of the ball and ensuring that it does not collide
with the board, bricks, or walls while the game is being played. If the ball comes into contact with a brick, the
brick will be demolished, and the score will be adjusted accordingly. In the event that the ball collides with the
board or the walls, it will bounce back, so preserving the flow of the game. The game will continue until either
all of the bricks are demolished, which would result in a victory, or the ball falls past the board, which would
result in a negative outcome. After the finish of the game, a message that reads “You win” or “You lose” is
displayed, depending on the outcome of the game.

Once the game has come to a conclusion, players have the choice to select the “Restart” option, which
will either allow them to restart the game and play it again or stop the game altogether. A smooth game-
play experience is ensured by its straightforward yet captivating framework, which strikes a balance between
interactive features and clear end conditions in order to keep players interested.

3.2. Control signal transmission from hand gesture recognition program to game application
One method to successfully convey control signals from recognition software to a gaming application

is the utilization of sockets. Sockets, a reliable and frequently used technique, accomplish signal transmission
in networking and operating systems. A program can create a socket and establish a connection with a corre-
sponding socket in another program. After establishing a connection, the program that is delivering data can
send data over the socket, while the program that is receiving the data can process the data that is coming in. It
is possible to transmit signals using this technology across both local area networks (LANs) and the internet,
which provides flexibility in deployment.

User datagram protocol (UDP) and transmission control protocol (TCP) are the two principal commu-
nication protocols that sockets are able to implement. The TCP ensures precise and sequential transmission of
data packets. This feature enables applications like file transfers and protocols like HTTP and FTP to utilize it
effectively. In contrast, UDP is unstable and does not require a connection. As a result, it provides lower latency
and higher velocity. It is an excellent choice for applications such as online gaming, streaming multimedia, and
DNS queries.

The UDP is often the protocol of choice for gaming applications that place a high priority on low-
latency signal transfer. Its capacity to provide signals with low latency counterbalances its lack of dependability,
ensuring a smoother and more responsive gaming experience. Therefore, the UDP is utilized in this study for
the purpose of controlling the transmission of signals from the hand gesture detection program to the gaming
application, as shown in Figure 7.

Begin

Receive input data

Perform hand gesture 

recognition

End

Yes

No

Continue recognition?

Create UDP packet

Send UDP packet 

to the game application

Begin

Receive input data

Perform hand gesture 

recognition

End

Yes

No

Continue recognition?

Create UDP packet

Send UDP packet 

to the game application

Figure 7. Diagram of control signal transmission from hand gesture recognition program to game application

Deep-learning-based hand gestures recognition applications for game controls (Huu-Huy Ngo)



890 ❒ ISSN: 2502-4752

3.3. Dataset description
Training dataset: the training dataset comprised 4,000 images that were labeled and categorized into

four broad categories: thumbs-up, thumb-pointing-left, thumb-pointing-right, and a catch-all category for other
gestures of the hand. Each gesture is associated with a distinct control signal within the respective gaming app,
thereby enabling the user to control through gestures. The data has been separated into two segments: 70% for
training and 30% for validation, thereby enabling the model’s efficacy to be thoroughly verified. The training
dataset was compiled from videos captured under varying conditions, including imaging viewpoints, lighting
levels, and background environments, with the aim of increasing the model’s generalization capacity. For
efficient labeling and to reduce ambiguity, the videos were arranged in a way that each frame contained one
clear and distinct hand gesture. The detailed breakdown of the number of images per class of hand gesture is
outlined in Table 1, highlighting the balance and distribution of the dataset. Figure 8 provides representative
images that show the four hand gestures, Figure 8(a) Thumbs up, Figure 8(b) Thumbs pointing left, Figure 8(c)
Thumbs pointing right, and Figure 8(d) Other hand gestures.

Table 1. Description of the training dataset
Hand gestures Control signal in game application Training dataset Testing dataset Total

Thumbs-up Start the game 700 300 1,000
Thumb-pointing-left The board moves to the left 700 300 1,000

Thumb-pointing-right The board moves to the right 700 300 1,000
Other hand gestures None 700 300 1,000

Figure 8. Snapshots of four hand gestures from the dataset, (a) Thumbs up, (b) Thumbs pointing left,
(c) Thumbs pointing right, and (d) Other hand gestures

A few preprocessing procedures were carried out prior to inputting the data into deep learning models
for enhancing data integrity and model strength. For consistency across the dataset, every raw image was
resized to a uniform size of 224×224 pixels. Then, to normalize the input features, the pixel intensity values
were normalized within the range [0, 1]. Throughout the training, we employed a range of data augmentation
techniques, such as random rotation, horizontal flip, changes in brightness, and subtle zoom adjustments. All
these augmentation techniques not only introduce variety into the training data but also counteract overfitting
and thus enhance the model’s capability to generalize to new, unseen data in real-time gesture recognition
applications.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 883–897



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 891

3.4. Model training evaluation
Immediately following the collection of a significant dataset, the deep neural network model was

trained by extracting features from the dataset. This activity is crucial because it has a direct impact on the
overall quality of the system that is being offered. This section presents the results of model training, including
VGG16, ResNet50, and ANN models.

Figures 9, 10, and 11 illustrate the training and validation accuracy (left) and the training and vali-
dation loss (right) during the training process of three models. The training results of the VGG16 model are
shown in Figure 9. In the accuracy graph, both training and validation accuracy grow at a quick rate in the early
epochs. After fifteen epochs, the accuracy stabilizes at high values that are near to 1.0, which indicates that
learning is taking place effectively. The accuracy of the training varies slightly, but it converges in a consistent
manner with the accuracy of the validation. At the end of twenty epochs, the levels of accuracy for training
and validation were 0.9996 and 0.9994, respectively. On the loss graph, the training loss decreases sharply
within the first few epochs and then stabilizes near zero. On the other hand, the validation loss follows a similar
pattern with minor spikes, which demonstrates that the model generalizes well on the validation set.

Figure 10 shows the outcomes of the training process for the ResNet50 model. According to the
accuracy graph, the levels of accuracy achieved by the model during training and validation are increasing with
each epoch. After fifteen epochs, these accuracy levels remained continuously high and reached a saturation
level. At the end of twenty epochs, the level of accuracy achieved throughout training and validation is equal
to 1.0. During the first few epochs, the loss graph demonstrates a significant decrease in training and validation
loss, which is then followed by a stability that is somewhat close to zero.

Figure 11 illustrates the training results of the ANN model. In the accuracy plot, both training and
validation accuracy improve rapidly in the early epochs, reaching near-perfect values close to 1.0. The valida-
tion accuracy closely tracks the training accuracy, indicating effective learning. At the end of twenty epochs,
the levels of accuracy for training and validation were 0.9992 and 0.9991, respectively. During the first few
epochs, the training loss experienced a substantial decrease, and it eventually stabilized close to zero in the loss
plot. A similar pattern may be seen in the validation loss. This set of findings demonstrates that the model is
capable of generalizing well and maintaining steady performance throughout the training phase.

Although training and validation accuracy is high, as desired, in all three models, the limitations
and potential failure causes in real-world applications need to be stated. During testing, the ANN model
occasionally misclassified gestures when hands were partially occluded or under low lighting conditions, which
affected the quality of the MediaPipe landmark detection. Moreover, gestures with similar shapes, such as a
loosely held fist or a half-extended thumb, sometimes confused with the “thumbs-up” class. These challenges
suggest the need for more robustness tests in different and uncontrolled environments.

Figure 9. Accuracy and loss of the VGG16 model during training

Deep-learning-based hand gestures recognition applications for game controls (Huu-Huy Ngo)



892 ❒ ISSN: 2502-4752

Figure 10. Accuracy and loss of the ResNet50 model during training

Figure 11. Accuracy and loss of the ANN model during training

3.5. Compare three models
Figure 12 presents an overall comparison of the three models (ANN, VGG16, and ResNet50) against

key performance metrics such as recognition accuracy, number of parameters, and complexity of the model.
The ANN model achieved 99.92% with only 3,556 parameters, whereas VGG16 and ResNet50 achieved
99.96% and 100% accuracy with 27,692,612 and 75,100,804 parameters, respectively. These results clearly
show that, despite having a simpler structure, the ANN model performs as well as more complex models. To
help explore these differences, we’ve added a bar chart comparing the accuracy and number of parameters for
each model, illustrating the applicability of the ANN model where computational efficiency is most critical.

The ANN model, while being simple, was quite effective and compared to more complex models was
equally accurate but with much less parameters and computational power. These qualities make it a highly
viable candidate for use in edge devices or embedded systems where there is limited computational capability.
Such a trade-off in terms of performance and efficiency enables the proposed solution to be realistic and usable
in real-time gesture control systems, especially in mobile gaming or assistive technology.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 883–897



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 893

Figure 12. Results comparison of parameters and accuracy of three models

3.6. Integrating hand gesture recognition into game applications
Through the use of standard protocols or communication interfaces, the gesture recognition software

that is written in Python may be easily included into applications that were created using other programming
languages. Network communication standards like TCP/IP or HTTP, as well as software-specific protocols like
RPC, might be included in this category of protocols. Integration of this kind makes it possible for systems to
communicate with one another and makes it easier for them to share data.

In order to integrate Python-based gesture detection software into gaming applications, an application
programming interface (API) may be written in Python. This API will enable data transmission and reception
over conventional protocols. It is possible for the gaming application to communicate with the API by utilizing
the libraries or tools that are associated with the programming language. This will make the processing of
gesture recognition data easier, allowing for seamless integration.

Figures 13, 14, and 15 illustrate the control of the game application using hand gesture recognition.
The initiation of the game is triggered by the player performing a thumbs-up gesture, as illustrated in Figure 13.
During gameplay, the player interacts with the system to control the board’s movement. To catch the ball on
the left side, the player performs a thumb-pointing-left gesture, prompting the board to move left, as depicted
in Figure 14. Similarly, catching the ball on the right side requires the player to execute a thumb-pointing-
right gesture, which directs the board to the right, as shown in Figure 15. These gestures enable intuitive and
responsive control within the game environment.

Figure 13. Start the game with the thumb-up gesture

Deep-learning-based hand gestures recognition applications for game controls (Huu-Huy Ngo)



894 ❒ ISSN: 2502-4752

Figure 14. The board moves to the left with the thumb-pointing-left gesture

Figure 15. The board moves to the right with the thumb-pointing-right gesture

Overall, a straightforward training network model is used in the ANN model, which results in a high
level of accuracy. It has achieved minimal reaction latency and quick recognition speed in order to be able to
integrate into real-time control applications. This was accomplished by integrating the hand gesture recognition
software into the gaming application where it was used.

Future integration plans can delve into expanding the gestural repertoire from the present four static
gestures to composite or dynamic gestures. Furthermore, the system can be enhanced by adding multi-modal
inputs, i.e., verbal speech or facial recognition, thereby enhancing the flexibility and usability of interactions.
These innovations can enable greater immersion in various applications, including virtual reality, home au-
tomation control, and human-robot interactions.

3.7. The evaluation of processing times
Processing time significantly impacts system performance; hence, it is paramount for a system to

achieve a good balance between accuracy and responsiveness. The comparative analysis of processing times of
the three models—ANN, VGG16, and ResNet50—when deployed in a gaming application reveals that ANN
is the most suitable option for real-time applications. In Figure 16, with a very low processing time of 0.26
milliseconds per frame, ANN is best placed to enable smooth gameplay and instantaneous responsiveness.
In contrast, VGG16 and ResNet50 with their processing speeds of 0.71 milliseconds per frame and 3.7 mil-
liseconds per frame, respectively, may introduce increased latency, affecting overall game performance. The
simplicity of the ANN model also ensures that computational complexity is low, and thus deployment in low-
resource gaming setups becomes extremely convenient. These results show that ANN is the most suitable
model for developing games with a good mix of efficiency, real-time response, and ease of use.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 883–897



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 895

Figure 16. Compare results of the system’s processing time

3.8. Discussion
The experimental results show that the suggested hand gesture recognition system, which consists of

MediaPipe and a light-weight ANN model, achieves a good balance between computation cost and recognition
accuracy. Even more complicated models such as ResNet50 and VGG16 have been found to have a bit better
recognition accuracy compared to ANN, but this is incremental at a great computational cost. The ANN with
merely 3,556 parameters achieves a high accuracy of 99.92% and a low processing time of 0.26 milliseconds
per frame, making it well-suited for real-time applications like gaming. Our method is superior to other similar
research that uses larger designs or technology, offering a real-world, low-latency solution that can be run on
mid-range devices. The fact that the system can be easily integrated into game programs using UDP makes the
system more desirable for interactive systems. Nevertheless, the present model is capable of identifying only
four distinct gestures, which may limit the use of the system for more sophisticated interaction. Increase in the
dataset and addition of other gesture types can render the system more versatile. Also, testing the system with
a larger user sample would enable better determination of its robustness to different hand geometries and skin
tones. In general, the results are in favor of the viability of employing light weight deep learning models in
enabling real-time, gesture-based interaction that is natural in interactive systems.

4. CONCLUSION
This paper presents a real-time deep learning-based optimized hand gesture recognition system. By

leveraging MediaPipe for efficient hand landmark extraction and a lightweight ANN for classification, our
system achieves high recognition accuracy (99.92%) at significantly reduced computational complexity. In
comparison to more complex architectures such as VGG16 and ResNet50, the ANN model has comparable
performance with many fewer parameters and a lower processing time of 0.26 milliseconds per frame. Hence,
the design is particularly well-suited for use in low-resource settings, for example, mobile phones, embedded
systems, or assistive technology. The system discussed was integrated into a basic interactive game with
seamless and natural gesture control using no physical input devices. These results point out the applicability
of this research to real-time human-computer interaction applications, particularly for those applications where
fast, natural, and touchless input is crucial.

In future work, we aim to enhance the present system in a number of ways. First, the database will be
expanded to include a larger set of both static and dynamic hand gestures, captured in a wide range of real-world
settings such as low illumination, noisy backgrounds, and various hand shapes. This should enhance the ro-
bustness and generalizability of the model. Second, we aim to fuse multi-modal inputs, e.g., speech commands
and head pose, to allow for more flexible and richer user experiences. Further, large-scale experiments with
varied users and environments will be carried out in order to compare performance under realistic conditions.
Lastly, failure cases seen during testing—e.g., occlusion-based misclassifications or ambiguous gestures—will
be tackled by increasing data variability and tuning the neural network structure. These future developments
aim to push the frontier of real-time gesture recognition systems to more generalized use in gaming, virtual
reality, robotics, and home automation.

Deep-learning-based hand gestures recognition applications for game controls (Huu-Huy Ngo)



896 ❒ ISSN: 2502-4752

ACKNOWLEDGEMENTS
This work was supported by the Science and Technology Development Fund of Thai Nguyen province,

Vietnam (Grant Number: DT/KTCN/18/2023).

FUNDING INFORMATION
Authors state no funding involved.

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
Data availability is not applicable to this paper as no new data were created or analyzed in this study.

REFERENCES
[1] M. J. Cheok, Z. Omar, and M. H. Jaward, “A review of hand gesture and sign language recognition techniques,” International Journal

of Machine Learning and Cybernetics, vol. 10, no. 1, pp. 131–153, Jan. 2019, doi: 10.1007/s13042-017-0705-5.
[2] O. K. Oyedotun and A. Khashman, “Deep learning in vision-based static hand gesture recognition,” Neural Computing and Applica-

tions, vol. 28, no. 12, pp. 3941–3951, Dec. 2017, doi: 10.1007/s00521-016-2294-8.
[3] J. Singha, A. Roy, and R. H. Laskar, “Dynamic hand gesture recognition using vision-based approach for human–computer interac-

tion,” Neural Computing and Applications, vol. 29, no. 4, pp. 1129–1141, Feb. 2018, doi: 10.1007/s00521-016-2525-z.
[4] S. Sharma and S. Singh, “Vision-based hand gesture recognition using deep learning for the interpretation of sign language,” Expert

Systems with Applications, vol. 182, pp. 1–12, Jul. 2021, doi: 10.1016/j.eswa.2021.115657.
[5] S. Franceschini, M. Ambrosanio, S. Vitale, F. Baselice, A. Gifuni, G. Grassini, and V. Pascazio, “Hand gesture recognition via radar

sensors and convolutional neural networks,” in IEEE Radar Conference (RadarConf20), Florence, Italy, Sep. 2020, pp. 1–5, doi:
10.1109/RadarConf2043947.2020.9266565.

[6] S. Ahmed, K. D. Kallu, S. Ahmed, and S. H. Cho, “Hand gestures recognition using radar sensors for human-computer-interaction:
a review,” Remote Sensing, vol. 13, no. 3, pp. 1–24, Feb. 2021, doi: 10.3390/rs13030527.

[7] J.-H. Kim, G.-S. Hong, B.-G. Kim, and D. P. Dogra, “Deepgesture: deep learning-based gesture recognition scheme using motion
sensors,” Displays, vol. 55, pp. 38–45, Dec. 2018, doi: 10.1016/j.displa.2018.08.001.

[8] A. A. Q. Mohammed, J. Lv, and M. S. Islam, “A deep learning-based end-to-end composite system for hand detection and gesture
recognition,” Sensors, vol. 19, no. 23, pp. 1–23, Nov. 2019, doi: 10.3390/s19235282.

[9] G. Li, H. Tang, Y. Sun, J. Kong, G. Jiang, D. Jiang, B. Tao, S. Xu, and H. Liu, “Hand gesture recognition based on convolution neural
network,” Cluster Computing, vol. 22, no. 2, pp. 2719–2729, Mar. 2019, doi: 10.1007/s10586-017-1435-x.

[10] G. Devineau, F. Moutarde, W. Xi, and J. Yang, “Deep learning for hand gesture recognition on skeletal data,” in 13th IEEE
International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, May 2018, pp. 106–113, doi:
10.1109/FG.2018.00025.

[11] Z. Zhang, K. Yang, J. Qian, and L. Zhang, “Real-time surface EMG pattern recognition for hand gestures based on an artificial neural
network,” Sensors, vol. 19, no. 14, pp. 1–15, Jul. 2019, doi: 10.3390/s19143170.

[12] N. Nasri, S. Orts-Escolano, and M. Cazorla, “An sEMG-Controlled 3D game for rehabilitation therapies: real-time time hand gesture
recognition using deep learning techniques,” Sensors, vol. 20, no. 22, pp. 1–12, Nov. 2020, doi: 10.3390/s20226451.

[13] M. A. Ozdemir, D. H. Kisa, O. Guren, A. Onan, and A. Akan, “EMG based hand gesture recognition using deep learning,” in Medical
Technologies Congress (TIPTEKNO), Antalya, T¨urkiye, Nov. 2020, pp. 1–4, doi: 10.1109/TIPTEKNO50054.2020.9299264.

[14] P. J. Cruz, J. P. Vasconez, R. Romero, A. Chico, M. E. Benalcazar, R. Alvarez, L. I. B. Lopez, and A. L. V. Caraguay, “A Deep
Q-network based hand gesture recognition system for control of robotic platforms,” Scientific Reports, vol. 13, no. 1, pp. 1–18, May
2023, doi: 10.1038/s41598-023-34540-x.

[15] A. Mujahid, M. J. Awan, A. Yasin, M. A. Mohammed, R. Damaevicius, R. Maskeliunas, and K. H. Abdulkareem, “Real-time
hand gesture recognition based on deep learning YOLOv3 model,” Applied Sciences, vol. 11, no. 9, pp. 1–15, May 2021, doi:
10.3390/app11094164.

[16] K. Aggarwal and A. Arora, “Hand gesture recognition for real-time game play using background elimination and deep convolution
neural network,” in Virtual and Augmented Reality for Automobile Industry: Innovation Vision and Applications. Cham, Switzer-
land: Springer International Publishing, Feb. 2022, pp. 145–160, doi: 10.1007/978-3-030-94102-4 8.

[17] M. Lee and J. Bae, “Deep learning based real-time recognition of dynamic finger gestures using a data glove,” IEEE Access, vol. 8,
pp. 219 923–219 933, Nov. 2020, doi: 10.1109/ACCESS.2020.3039401.

[18] A. Sen, T. K. Mishra, and R. Dash, “Deep learning-based hand gesture recognition system and design of a human–machine interface,”
Neural Processing Letters, vol. 55, no. 9, pp. 12 569–12 596, Dec. 2023, doi: 10.1007/s11063-023-11433-8.

[19] N. Osama, Y. Ahmed, H. Mohamed, S. E. Hesham, Y. Ahmed, E. K. Elsayed, and D. Ezzat, “Virtual control system for presentations
by real-time hand gesture recognition based on machine learning,” in 9th International Conference on Advanced Intelligent Systems
and Informatics, Cairo, Egypt, Sep. 2023, pp. 327–335, doi: 10.1007/978-3-031-43247-7 29.

[20] L. Guo, Z. Lu, and L. Yao, “Human-machine interaction sensing technology based on hand gesture recognition: a review,” IEEE
Transactions on Human-Machine Systems, vol. 51, no. 4, pp. 300–309, Jun. 2021, doi: 10.1109/THMS.2021.3086003.

[21] S. Jiang, P. Kang, X. Song, B. P. Lo, and P. B. Shull, “Emerging wearable interfaces and algorithms for hand gesture recognition: a
survey,” IEEE Reviews in Biomedical Engineering, vol. 15, pp. 85–102, May 2021, doi: 10.1109/RBME.2021.3078190.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 883–897



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 897

[22] F. Naseer, G. Ullah, M. A. Siddiqui, M. Jawad Khan, K.-S. Hong, and N. Naseer, “Deep learning-based unmanned aerial vehicle
control with hand gesture and computer vision,” in 13th Asian Control Conference (ASCC), Jeju, Korea, May 2022, pp. 1–6, doi:
10.23919/ASCC56756.2022.9828347.

[23] H. Wen, Y. Xu, L. Li, X. Ru, X. Wang, and Z. Wu, “Enhancing sign language teaching: a mixed reality approach for immersive
learning and multi-dimensional feedback,” arXiv:2404.10490, pp. 1–6, May 2024, doi: 10.48550/arXiv.2404.10490.

[24] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L. Chang, and M. Grundmann, “MediaPipe hands: on-device
real-time hand tracking,” in CVPR Workshop on Computer Vision for Augmented and Virtual Reality, Seattle, WA, USA, Jun. 2020,
pp. 1–5, doi: 10.48550/arXiv.2006.10214.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Computer Vision and Pattern Recognition
(CVPR), Las Vegas, Jun. 2016, pp. 770–778, doi: 10.1109/cvpr.2016.90.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference
on Learning Representations (ICLR 2015), California, USA, May 2015, pp. 1–14, doi: 10.48550/arXiv.1409.1556.

BIOGRAPHIES OF AUTHORS
Huu-Huy Ngo received his B.S. and M.S. degrees from Thai Nguyen University of Infor-
mation and Communication Technology, Vietnam, in 2010 and 2012, respectively, and Ph.D. degrees
in Information Engineering and Computer Science from Feng Chia University, Taiwan, in 2021.
Currently, he is a lecturer at the Thai Nguyen University of Information and Communication Tech-
nology, Vietnam. His research interests include computer vision, deep learning, embedded system,
neural networks, and object detection. He can be contacted at email: nhhuy@ictu.edu.vn.

Hung Linh Le received his B.S. and M.S. degrees from VNU University of Engineering
and Technology, Vietnam, in 2003 and 2007, respectively, and Ph.D. degrees in Control Engineering
and Automation from Vietnam Academy of Science and Technology, Vietnam, in 2016. Currently, he
is a lecturer at the Thai Nguyen University of Information and Communication Technology, Vietnam.
His research interests include measurement system design, control system, embedded system, neural
networks, and multimedia applications. He can be contacted at email: lhlinh@ictu.edu.vn.

Man Ba Tuyen is an undergraduate student in the Faculty of Information Technology
at Thai Nguyen University of Information and Communication Technology, Vietnam. His research
interests include computer vision, deep learning, human activity recognition, neural networks, and
object detection. He can be contacted at email: dtc2054802010571@ictu.edu.vn.

Vu Dinh Dung received his B.S. from Thai Nguyen University of Information and Com-
munication Technology, Vietnam, in 2024. His research interests include computer vision, deep
learning, machine translation, natural language processing and object detection. He can be contacted
at email: dtc1954801010001@ictu.edu.vn.

Tran Xuan Thanh received his B.S. from Thai Nguyen University of Information and
Communication Technology, Vietnam, in 2024. His research interests include computer vision, deep
learning, machine translation, natural language processing and object detection. He can be contacted
at email: dtc1954801010007@ictu.edu.vn.

Deep-learning-based hand gestures recognition applications for game controls (Huu-Huy Ngo)

https://orcid.org/0000-0001-8276-0270
https://scholar.google.com.vn/citations?user=B9M0Rs8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57210434401
https://www.webofscience.com/wos/author/record/AAX-1132-2020
https://orcid.org/0000-0001-7169-9232
https://scholar.google.com.vn/citations?user=bqGWtUYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56548128100
https://www.webofscience.com/wos/author/record/MVY-7064-2025
https://orcid.org/0009-0001-5178-7216
https://scholar.google.com.vn/citations?user=tgvATRkAAAAJ&hl=en
https://www.scopus.com/
https://www.webofscience.com/wos/author/record/MAH-5348-2025
https://orcid.org/0009-0001-3254-7719
https://scholar.google.com.vn/citations?user=fGoBOUIAAAAJ&hl=en
https://www.scopus.com/
https://www.webofscience.com/wos/author/record/MAH-5434-2025
https://orcid.org/0009-0003-4156-0389
https://scholar.google.com.vn/citations?user=CliLakcAAAAJ&hl=en
https://www.scopus.com/
https://www.webofscience.com/wos/author/record/MAH-9588-2025

	INTRODUCTION
	METHOD
	System architecture
	MediaPipe hands
	Artificial neural network model
	The ResNet-50 model
	The VGG-16 model

	RESULTS AND DISCUSSION
	Game application design
	Control signal transmission from hand gesture recognition program to game application
	Dataset description
	Model training evaluation
	Compare three models
	Integrating hand gesture recognition into game applications
	The evaluation of processing times
	Discussion

	CONCLUSION

