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 In scenarios involving mobile sensors within distributed sensor systems, 

such as those often encountered in wireless sensor networks (WSNs) or the 

internet of things (IoT), the ability to ascertain the origin of sensor data holds 
significant importance. Range-free Monte Carlo Localization methods offer 
an energy-efficient solution that eliminates the need for extra hardware, as 
they solely rely on the radio hardware already present on sensor nodes. But 
there are certain disadvantages when implemented, as it occupies more 
amount of power and some inaccuracies might happen in accessing the data 
from the sensor node. In this paper, we suggest the grasshopper optimization 
algorithm (GOA) strategy, which incorporates the distance-vector hop (DV-

Hop) and three-anchor methods. It displays its usefulness in terms of both 
overall localization accuracy and resistance to hostile attacks or 
malfunctioning nodes. Nonetheless, the incorporation of dead reckoning 
based on motion sensor data significantly enhances the precision of location 
estimates and bolsters the network's robustness against both faulty 
components and malicious agents. 
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1. INTRODUCTION 

A wireless sensor network (WSN) consists of a group of sensors that are strategically placed and 

designed for the purpose of observing and documenting environmental conditions. These sensors gather 

information from their respective surroundings and then transmit this data to a central hub for further 

examination. WSNs possess the ability to measure a wide range of environmental factors, including but not 

limited to temperature, sound levels, pollution levels, humidity, wind speed, wind direction, and atmospheric 

pressure, among other variables [1]. Originally designed for military applications, the use of WSNs has 
expanded to include domains like healthcare, traffic management, and numerous consumer and industrial 

sectors [2]. 

A typical WSN consists of tens, hundreds, or even thousands of sensor nodes. A sensor node is 

typically composed of a minimum of four major components: a radio transceiver with antenna, a 

microcontroller, electrical interfacing circuits, and a power source that, in most cases, is a battery. Notably, 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 1, October 2025: 461-479 

462 

the size of these sensor nodes can vary significantly, ranging from the dimensions of a shoebox to being as 

small as a grain of dust [3]. Consequently, the cost of these sensor nodes also varies widely, ranging from a 

few pennies to hundreds of dollars, depending on factors such as energy efficiency, computational speed, 

bandwidth, and memory capacity, which define the functionality of the sensor [4]. 

Furthermore, the fact that sensor nodes operate in remote and often challenging environmental 

conditions makes replacing batteries an impractical solution. Conversely, many applications of sensor 

networks involve surveillance, necessitating a prolonged operational lifespan. Consequently, a critical 
research challenge revolves around delivering an energy-efficient surveillance service for specific 

geographical areas [5], [6]. Current research efforts predominantly concentrate on achieving complete or 

partial sensing coverage while conserving energy. In this approach, nodes are placed in a dormant state as 

long as neighboring nodes can maintain sensing coverage on their behalf. These solutions typically treat 

sensing coverage in a particular geographic area as a binary concept, either providing coverage or not [7]. 

Nonetheless, we contend that in many scenarios, such as military battlefields, specific geographic 

zones, like the central command center, hold far greater security significance than others [8], [9]. 

Acknowledging that individual sensor nodes are susceptible to unreliability and potential failure, and that 

single sensor readings can be susceptible to interference from background noise, resulting in false alarms, it 

becomes clear that depending on a single sensor to safeguard a critical area is inadequate. In these situations, 

a broader coverage approach is necessary, where multiple sensors concurrently monitor the same location to 

ensure a robust level of confidence in threat detection [10][12]. Conversely, delivering the same extensive 

coverage to less critical areas is not only excessive but also consumes significant energy 
resources. Middleware operates as an intermediary layer positioned between the operating system and the 

application. This intermediary layer is critical for enabling communication as well as data transfer between 

various system components, making it an essential element in optimizing system performance and efficiency. 

Middleware developed for WSN must incorporate mechanisms to embed application-specific 

knowledge into both the infrastructure that supports it and the WSN itself. Data-centric communication 

necessitates a communication methodology that is similar to content-based messaging systems, rather than 

typical remote procedure call (RPC)-style communication approaches [13][15]. Moreover, event-driven 

communication is better suited to the fundamental traits of WSN than traditional request-response 

approaches. In essence, WSN middleware accomplishes a smoother integration of communication and 

application-specific processing of data compared to traditional systems [16], [17]. The guiding principles of 

adaptable fidelity algorithms necessitate the infrastructure to offer appropriate mechanisms for determining 

parameters or even entire algorithms that can efficiently tackle a particular issue while enhancing quality 

within predefined resource limitations. 
This adaptability ensures that the WSN can adjust its behavior and resource utilization based on the 

evolving needs and conditions of the application, contributing to overall efficiency and performance. The 

predominant method for addressing this challenge involves employing the global positioning system (GPS). 

Nevertheless, utilizing GPS comes with a set of drawbacks. GPS sensors tend to be relatively expensive and 

have high power consumption, which can limit their practicality. Furthermore, GPS sensors are dependent on 

receiving satellite signals, which renders them ineffective for indoor operations and can lead to reduced 

precision when used in specific outdoor environments. Addressing the issues related to the expenses and 

energy consumption of GPS sensors can be tackled through various methods. One proposed solution is to 

strategically install GPS sensors on a limited number of nodes [18], [19]. These nodes, equipped with GPS 

sensors, serve as pivotal "seed" or "anchor" nodes, aiding other nodes in determining their positions. An 

alternative widely used approach is to deploy fixed anchor points at predetermined locations, thereby 
obviating the necessity for mobile anchoring nodes that incorporate GPS sensors. 

A commonly employed method for localization involves utilizing received signal strength (RSS) in 

combination with an appropriate propagating model to determine the distance that exists between an 

unidentifiable node and an appropriate reference node. This approach relies on an assumption that RSS 

decreases corresponding to the distance from the transmitter. In particular, time difference of arrival (TDoA)-

based methods require highly accurate clock synchronization among nodes, angle of arrival (AoA)-based 

methods struggle with issues such as multipath interference and non-line-of-sight (NLoS)scenarios, and they 

also have to face challenges concerning array calibration. In the case of RSS-based techniques, factors such 

as radio noise levels, multipath effects, and measurement errors can have an impact on performance [20]. In 

general, range-based methods often necessitate additional specialized hardware, synchronization of clocks, 

and increased power consumption to facilitate the active measurements carried out by unknown nodes. 

Furthermore, the inherent drawbacks associated with all kinds of measurements may affect the preciseness of 
localization under specific circumstances. 

To address these challenges, current research efforts are concentrated on range-free solutions 

primarily grounded in network connectivity alone [21]. These strategies do not hinge on active measurements 
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conducted by the unknown nodes, rendering them simpler to implement and more cost-efficient [22]. These 

range-free solutions aim to streamline complexity, reduce hardware requirements, and minimize energy 

consumption while still achieving reliable localization within wireless sensor networks (WSNs). The 

proposed algorithm addresses the challenges and issues encountered in existing methods, offering a suitable 

solution for locating sensor nodes with a small delay and error. WSNs have emerged as a formidable 

mechanism for the surveillance and acquisition of environmental data across multiple domains, 
encompassing military applications, healthcare, and industrial sectors. Nonetheless, numerous challenges 

persist in the optimization of the design, deployment, and management of these networks. These challenges 

encompass energy efficiency, network scalability, data accuracy, and the reliability of sensor nodes. The 

constrained power resources of sensor nodes, which are frequently reliant on batteries, necessitate the 

implementation of energy-efficient algorithms to facilitate prolonged operational longevity. Furthermore, the 

dynamic and often adverse environmental conditions in which these networks are deployed further 

exacerbate the performance and reliability of the system. As the quantity of deployed sensor nodes escalates, 

the assurance of efficient data transmission, the minimization of communication overhead, and the 

maintenance of low latency become increasingly challenging. Additionally, the integration of heterogeneous 

sensor types with varying computational capabilities introduces complexity to the system's overall 

functionality. Consequently, there exists an urgent imperative to address these issues to augment the 

performance, reliability, and scalability of WSNs within practical applications. This research aims to address 
the critical challenges faced by WSNs, focusing on enhancing energy efficiency, improving network 

scalability, and ensuring the reliability and accuracy of environmental data collection. The contributions of 

this research are as follows: 

 Energy-efficient algorithms: development of novel algorithms that optimize energy consumption in 

WSNs, ensuring longer operational lifespans for sensor nodes without compromising data quality. 

 Scalability and network optimization: propose a framework to improve the scalability of WSNs, enabling 

the efficient management of large sensor networks deployed over expansive areas while minimizing 

communication overhead. 

 Data accuracy and sensor fusion: explore methods for sensor data fusion and error correction techniques 

to enhance the accuracy of measurements and mitigate the effects of noise and environmental factors on 

data integrity. 

 Robustness in harsh environments: Investigate strategies for improving the robustness of sensor nodes 

against harsh environmental conditions, ensuring reliable performance even in challenging deployments. 

By addressing these issues, the research aims to provide a comprehensive solution to the 

optimization of WSNs, ensuring that these networks can operate effectively and efficiently across a wide 

range of applications. 

 

 

2. RELATED WORKS 

The centralized connectivity-based DV-Hop (CCDV-Hop) algorithm [23] with the goal of 

enhancing the precision of DV-Hop localization. They formulated a problem of optimization that includes the 

precise connectivity between any two nodes as a limitation. This methodology ensures that the localization 
results are aligned with the actual network connectivity. Subsequently, they introduced a lower-complexity 

algorithm known as the distributed connectivity-based DV-Hop (DCDV-Hop) algorithm. DCDV-Hop is 

capable of providing near-optimal localization efficiency over distributed networks. In contrast to examining 

the connections of all nodes, the limitations in the DCDV-Hop algorithm specifically concentrate on actual 

connectivity within a two-hop range. 

In a paper authored by his team [24], they present a malicious node detection algorithm (MNDC) in 

addition to a modified version referred to as EMDC. These algorithms apply density-based spatial clustering 

to identify unusual clusters within the network. Subsequently, these clusters undergo a sequential probability 

ratio test to detect undesirable nodes that pose a threat to the network's integrity. The outcomes of the 

simulation and subsequent analysis demonstrate that the algorithms being suggested surpass other state-of-

the-art schemes in terms of their detection accuracy and effectiveness. 
In their research, [25] introduced a closed-form solution for source localization. This method 

combines multi-station time-difference-of-arrival (TDOA) and single-station AOA measurements. A unique 

feature of this approach is that only the reference station used for TDOA calculation needs to notice the AOA 

measurements of the origin. This method effectively addresses the challenge of hybrid localization, which 

involves having various amounts of TDOA and AOA measurements available. Theoretical analysis has 

confirmed that this approach can achieve performance levels that are very close to the Cramer-Rao lower 

bound (CRLB) when noise levels are minimal. Furthermore, the study models the connection between the 

positions of each station in regard to the source and the accuracy of localization. By applying the D-



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 1, October 2025: 461-479 

464 

optimality criterion, this research determines the optimal geometric arrangement among multiple stations and 

the source. 

An existing paper provides an algorithm called Sequential DV-Hop that is based on the multihop 

wireless network of sensors. This improves the localization performance step by step by calculating the node 

locations. Variability in the number of accessible anchors within the network is taken into account by the 

method. To formulate the DV-Hop algorithm as a node localization basis, a new and efficient technique for 

computing the average distance between nodes' hops was used. Gui el al. [26] proposed an algorithm of DV-
Hop based on the cyclotomic method and weighted normalization called CMWN-DV-Hop, where 

segmentation and weighting factors are introduced and then normalized. For calculating the coordinates of 

unknown nodes, they adapted the weighted Recursive Least-Squares algorithm, referred to as WRLS. Based 

on the aforementioned requirements, they performed comprehensive testing to benchmark the algorithm's 

performance with respect to varying conditions such as different numbers of nodes, varying ratios of anchor 

nodes, and varying communication radii. Simulations have proven that localization error is significantly 

mitigated by the proposed algorithm. 

Gupta and Singh [27] proved an enhanced DV-Hop localization algorithm which uses a number of 

communication radii. It calculates through the mean hop distance with the use of the cosine theorem while 

correcting the hopping count through maximum predicted distance of unknown nodes. The method applies 

different communication radii for broadcasting positions to minimize the number of hops required between 

beacon nodes and unknown nodes. There, it uses either the maximum likelihood estimates or the trilateration 
method to find the coordinates of the location after estimating the appropriate hop distance with the help of 

the cosine theorem. 

Hosseinzadeh et al. [28] proposed a unique DV-Hop location algorithm centred around the concept 

of half-measure weighted centroid. This novel approach takes into account the two-dimensional in nature 

position distribution and begins by constructing the minimal communication radius, resulting in a logical 

network interconnection framework. The method then fine-tunes the distance between beacon nodes and their 

nearby nodes to improve jump distances, eventually optimizing the shortest path for more precise 

localization. 

The proposed localization algorithm is then theoretically analyzed and validated with simulated 

trials. These studies investigate a variety of circumstances, including the usage of the precise same 

communication radius, multiple communication radii, and varied densities of nodes within the same 
communication radius. To evaluate the performance of the newly suggested method, the study compares it to 

the usual DV-Hop localization technique in terms of localization error and accuracy. While the innovative 

strategy that employs the grasshopper optimization algorithm (GOA) to elevate distance vector-hop 

localization (DV-HL) in wireless sensor networks (WSNs) showcases exciting prospects in terms of 

precision, energy conservation, and adaptability, there are several challenges to ponder. Firstly, even though 

GOA has proven its prowess in medium-sized WSNs, its ability to scale up to colossal networks with 

countless nodes poses a significant hurdle, as the computational intricacies may escalate and hinder real-time 

performance. Furthermore, the fidelity of DV-HL localization is heavily reliant on the initial configuration of 

anchor nodes, and in practical contexts, achieving the ideal anchor arrangement can be quite challenging, 

potentially compromising efficiency. The research also presumes perfect conditions for communication and 

distance assessment; however, real-world elements like signal disruption and background noise could result 
in increased localization inaccuracies. Although GOA aims to optimize anchor node positioning to diminish 

energy usage, vast networks may still grapple with energy inefficiencies owing to the algorithm's iterative 

nature. In addition, the real-time execution of the algorithm might encounter latency challenges, particularly 

in time-critical applications such as industrial IoT systems, where delays are simply intolerable. The findings 

of the study are derived from simulations conducted under optimal circumstances, and actual field trials 

would be essential to further authenticate the method, taking into account the varied environmental 

influences and sensor node traits. Lastly, the presumption of uniform sensor nodes with comparable 

capabilities overlooks potential discrepancies in node specifications, which could affect the algorithm's 

efficacy in diverse networks. These constraints illuminate pathways for future exploration, wherein additional 

refinement and customization can amplify the approach’s real-world relevance. 

These research papers serve as motivation for our proposed paper, where we aim to introduce a 

localization approach based on the GOA in conjunction with the DV-Hop algorithm. Our objective is to 
compute the locations of randomly deployed target nodes and evaluate the performance of this approach 

based on a set of predefined parameters. While genetic algorithms and particle swarm optimization are 

powerful metaheuristics with broad applications, Grey Wolf Optimization was chosen for this research due to 

its strong balance of exploration and exploitation, fewer tuning parameters, robustness in convergence, and 

efficiency in high-dimensional optimization tasks. These advantages make GOA particularly well-suited to 

the optimization challenges encountered in WSNs and similar complex real-world applications. In problems 
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involving large datasets or high-dimensional search spaces, GOA tends to outperform both GA and PSO in 

terms of efficiency. The dynamic nature of the grey wolf pack’s leadership hierarchy allows for better 

exploration of high-dimensional spaces and reduces the likelihood of getting trapped in regions that do not 

contribute to optimal solutions. Recent studies have made notable advancements in optimizing localization 

and routing protocols within WSNs. While this research focuses on the integration of the GOA with DV-HL, 

it is crucial to compare these findings with the latest works to highlight the novelty and contribution of this 
study. By comparing with these recent studies, we find that the GOA offers significant improvements over 

traditional algorithms in both localization accuracy and energy efficiency in WSNs. While hybrid and multi-

algorithmic approaches have been successful in specific contexts, GOA proves to be a more efficient, simpler 

alternative that still achieves competitive performance. Moreover, the application of GOA to DV-HL 

localization presents a novel approach that fills the gap in current research by optimizing both network 

configuration and node placement in large-scale environments. 

 

 

3. LOCALIZATION BASED ON DV-HOP ALGORITHM 

One popular range-free localization method in WSN is the distance-vector hop (DV-Hop) algorithm. 

By calculating the number of hops needed to get from one node to the other, this technique determines the 

distance between two nodes. The shortest path first is the method that DV-Hop uses to function. Individual 
nodes in WSNs using DV-Hop determine how far apart they are from other nodes in the network, then 

broadcast this distance information to other nodes [23], [24]. 

This information exchange enables beacon nodes, which typically have known positions, to receive 

data about the distances to other nodes and subsequently determine the minimum hop counts required to 

reach those positions. This way, DV-Hop aids in the localization of nodes within the network, even without 

the need for precise distance-measuring hardware like GPS receivers. The DV-Hop algorithm, thus accounts 

for the change in the anchor nodes of the network. In this process, every one of its anchor nodes sends a data 

packet throughout the network so that upon reception by other anchor nodes, they increment, in the hop count 

field by one unit. With that information, an anchor node then calculates the average number of hops which it 

is away from other anchor nodes of the network. 
 

𝐻𝑜𝑝𝑠𝑖𝑧𝑒𝑖 =
∑ √(𝑝𝑖−𝑝𝑗)2+(𝑞𝑖−𝑞𝑗)2

𝑗≠𝑖

∑ ℎ𝑖𝑗𝑗≠𝑖
 (1) 

 

In the wider context of the DV-Hop algorithm, where (pi, qi) and (pj, qj) indicate the precise 

locations of the two arbitrary anchor nodes, hij is the total quantity of hops between these anchor nodes, and 

Hopsizei is a mean number of hops between the anchor nodes, for every sensor node in the overall network 

computes the average number of hops to anchor nodes. The predicted distance is calculated from the total 

amount of hops (hij) to the anchor node and the average number of hops (Hopsizei) in between the anchor 

nodes. This algorithm enables sensor nodes to determine their distance from anchor nodes, which helps with 

network localization. 
 

ℎ𝑜𝑝𝑝𝑘 ∗ ℎ𝑜𝑝𝑠𝑖𝑧𝑒𝑖 (2) 
 

Figure 1 illustrates the process of sending and receiving hops to estimate distances in the DV-Hop 

algorithm. While DV-Hop offers simplicity, cost-effectiveness (as it doesn't require range information), and 

reduced cognitive complexity, it is known for its insufficient reliability, especially in low-density systems. In 

the realm of the internet of things (IoT), the following mechanism is employed to ascertain distances between 

the objects, whether they are equipped with GPS or not: 

 Objects with GPS: for objects that are equipped with GPS, they compute the distance, between one 

another and subsequently establish the number of hops required to connect with one another. 

 Computation of average hops and distances: within the IoT environment, an average amount of hops and 

distances are computed. Objects lacking GPS capability then calculate the number of hops required based 

on the information obtained from objects with known locations, thereby enabling their own localization. 

 Distance estimation: the number of hops multiplied by the average distance can be used to estimate the 

distances between objects, whether or not they have GPS. 

While this approach is more accurate, it increases overhead for networks because it requires sending 

a large number of packets at various network stages. The correctness of this approach hinges on the density 

and uniform distribution of network nodes. Greater node density and a more even distribution typically 

enhance the accuracy of this distance estimation technique. In the discussion section, it is imperative to 

examine the trade-offs inherent in the enhancement of accuracy juxtaposed with the escalation of 

computational complexity. Although the proposed GOA markedly enhances localization precision within 
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WSNs, it concomitantly imposes a greater computational burden attributable to its iterative optimization 

methodology. This augmented complexity may pose significant challenges in real-time applications, 

particularly within expansive IoT networks where computational resources are constrained. The algorithm's 

capacity to sustain performance while concurrently ensuring that the computational expense remains within 

feasible limits is a critical factor for its pragmatic deployment. In this regard, further empirical investigation 

is essential to ascertain the computational thresholds of GOA and to evaluate its efficacy in real-time 

operational contexts. 
Moreover, the algorithm's capacity for adaptability in response to dynamic or mobile sensor nodes 

warrants thorough examination. In the domains of IoT and IIoT applications, sensor nodes are frequently 

subject to mobility, engendering complexities in both localization accuracy and energy management. It 

would be advantageous to investigate the potential for extending the GOA-DV-HL framework to 

accommodate the challenges posed by dynamic node movement. The algorithm may be amenable to 

modifications that optimize trajectory planning for mobile sensor nodes or mobile sinks, thereby ensuring the 

preservation of localization precision as nodes transit through the network. Addressing these dynamic 

circumstances will significantly enhance the robustness and applicability of the algorithm in practical, real-

world situations. 
 
 

 
 

Figure 1. DV-Hop algorithm 
 
 

3.1.  Three-anchor method 

The Figure 2 shows a three-anchor location technique that uses the coordinates of the three anchor 

nodes in order to determine the locations of smart objects. More hops typically indicate longer distances 

between nodes in the context of networked computers. In the context of the IoT, a smart node without GPS 

can calculate its distance from other nodes by measuring the number of hops required to connect. 

Within themethod of three-anchor, a smart node without GPS functionality computes the hop count 

needed to reach nodes equipped with GPS within the IoT network. Leveraging this hop count information, it 

can approximate its distance from the GPS-enabled nodes and subsequently determine its own location using 
the three-anchor method. To effectively implement this approach, it is imperative to possess the coordinates 

of at least three intelligent elements within the network. The problem occurs when these three reference sites 

might not be located within the intelligent elements or the item of interest's radio range. Triangulation and 

other distance estimate methods are therefore required. 
 
 

 
 

Figure 2. Localization of three anchors 
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Let's assume that Si, with unknown coordinates (p, q), represents a smart object without GPS. There 

are at least three GPS-enabled smart objects in the area of Si, identified by the notation A = {A1, A2, A3}, 

and their coordinates are {(p1, q1), (p2, q2), (p3, q3)}. The formula below can be used to determine the 

distances from Si to these GPS-equipped objects, {d1, d2, d3}: 
 

√(𝑝 − 𝑞1)2 + (𝑝 − 𝑞1)2 = 𝑑1 (3) 
 

√(𝑝 − 𝑞2)2 + (𝑝 − 𝑞)2 = 𝑑2 (4) 
 

√(𝑝 − 𝑞3)2 + (𝑝 − 𝑞3)2 = 𝑑3 (5) 
 

By measuring these distances, Si can estimate its own location (x, y) according to the positions of 

the GPS-equipped objects and the three-anchor method. These three equations can be squared and redefined 

as the equation above. The squared term can then be removed by expanding them. This is accomplished by 

simplifying the first and second equations by subtracting the third equation, leaving two equations. 
 

(𝑝 − 𝑝1)2 + (𝑞 − 𝑞)2 = 𝑑1
2
 (6) 

 

(𝑝 − 𝑝2)2 + (𝑞 − 𝑞)2 = 𝑑2
2
 (7) 

 

(𝑝 − 𝑝3)2 + (𝑞 − 𝑞3)2 = 𝑑3
2
 (8) 

 

(𝑝1 − 𝑝)2 − (𝑝3 − 𝑝)2 + (𝑞 − 𝑞)2 − (𝑞3 − 𝑞)2 = 𝑑1
2 − 𝑑3

2
 (9) 

 

(𝑝2 − 𝑝)2 − (𝑝3 − 𝑝)2 + (𝑞2 − 𝑞)2 − (𝑞3 − 𝑞)2 = 𝑑2
2 − 𝑑3

2
 (10) 

 

The exponential factors y and x in this equation can be removed to produce an equation and a 

system of linear equations that are simple to solve 
 

(𝑝3 − 𝑝1). 𝑝 + (𝑞3 − 𝑞1). 𝑞 =
(𝑑1

2−𝑑3
2)−(𝑝1

2−𝑝3
2)−(𝑞1

2−𝑞3
2)

2
 (11) 

 

(𝑝3 − 𝑝2). 𝑝 + (𝑞3 − 𝑞2). 𝑞 =
(𝑑2

2−𝑑3
2)−(𝑝2

2−𝑝2)−(𝑞2
2−𝑞3

2)

2
 (12) 

 

indeed, the new undetermined position (p, q) of a smart object can be determined using the given equations. 

By solving these equations, the smart object can determine its precise location within the IoT network. This 

process is a fundamental concept in localization techniques, especially in scenarios where GPS is not 

available or practical, and it allows smart objects to determine their positions based on the distances to known 

anchor nodes. 

 

3.2.  Grasshopper optimization algorithm (GOA) 
The GOA is based on grasshopper populations' migratory habits in search of food-rich sources, 

representation of GOA is shown in Figure 3. This algorithm is designed to mimic the collective and social 

behaviors seen in mature grasshoppers, which are most pronounced during their mature stage. Grasshoppers 

are directed by a variety of elements when in flight and on their way to food sources, including wind, gravity, 

and a natural desire to fly to areas where other grasshoppers congregate. The equation representing the 

measure of a grasshopper in the GOA algorithm, taking into account the influence of wind, gravity, and the 

search for optimal positions, is as follows: 
 

𝑋𝑖 =  𝑆𝑖 +  𝐺𝑖 +  𝐴𝑖 (13) 
 

In this equation: represents the point vector for the grasshopper (or a solution representing an 

optimal point), Si corresponds to the change in position due to the optimal social position vector, Gi 

represents the effect of gravity on the grasshopper's movement, Ai denotes the influence of wind direction. 

This equation illustrates how a grasshopper's position or a solution's state is updated based on these 

three factors: optimal social position, gravity, and wind direction. The GOA each solution as if it were a 
coded grasshopper, with the ability to navigate through the problem domain in search of the optimal food 

source location using the target position. 
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The vectors Si, Gi, and Ai, which represent the optimum societal position vector, gravity vector, 

wind vector, can be mathematically described using the following equations, serving as the foundation for the 

GOA: 
 

Si = ∑ s(dij). diĵ
N
j=1  (14) 

 

 

 
 

Figure 3. Representation of GOA 
 
 

𝐺𝑖 = −𝑔𝑒𝑔̂ (15) 

 

𝐴𝑖 = +𝑢𝑒𝑤̂ (16) 
 

let, "dij" represents the distance that exists between two arbitrary grasshoppers."dcij" denotes the unit vector 

used for a grasshopper's movement,"s(dij)" is the jump control function employed by a grasshopper. 
 

𝑑𝑖𝑗 = |𝑋𝑖 − 𝑋𝑗| (17) 

 

𝑑𝑖𝑗̂ =
𝑋𝑖−𝑋𝑗

𝑑𝑖𝑗
 (18) 

 

𝑆(𝑑𝑖𝑗) = 𝑓𝑒
−𝑟

𝑙 − 𝑒−𝑟  (19) 

 

The provided information explains the mechanics of the GOA and the various forces and factors that 

influence grasshoppers' movement within the problem domain: 

 Jump controller function: the equation mentions the jump controller function s(dij), which controls the 
distance between two grasshoppers (Xi and Xj) at their ith and jth positions. This function regulates the 

jump behavior of grasshoppers in the GOA. 

 PC value: the PC value represents the current operation performed and is encumbered with a set point 

based on jumping directives. It receives additional instructions after executing a specific command. 

 Coefficients of attraction (f) and magnitude (l): the coefficients f and l are linked with a grasshopper's 

attraction to an ideal solution, as well as the size or scale of a grasshopper's jump. These parameters 

determine how strongly a grasshopper is attracted to an optimal point and how far it can jump in the 

solution space. 

 Distance (r): the variable r represents the separation distance between two grasshoppers (i and j) and 

represents plays a role in calculating the forces influencing their movement. 

 Attraction and repulsion forces: grasshoppers exhibit two primary types of reactions when navigating the 
problem domain: attraction forces and repulsion forces. Attraction forces pull grasshoppers toward 

optimal solutions (the target), as indicated by the red vector. Repulsion forces, shown by the blue arrow, 

cause grasshoppers to explore the region surrounding the target. Some grasshoppers conduct a local 

search close to the target, while others explore the global space farther from the target. 
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 GOA evaluation results: according to the evaluation results, the GOA demonstrates superior performance 

in terms of target accuracy compared to other optimization algorithms such as genetic algorithms, Bat, 

firefly, and the optimization of particle swarm algorithms, as well as gravitational search.  

The GOA leverages these forces and behaviors inspired by grasshopper populations to optimize solutions 

within the problem domain, making it a promising approach for various optimization tasks. 

 

3.3.  Localization method 

Localization is a critical aspect of various applications because knowing the precise positions and 

locations of objects and sensors adds significant value to data and information. In scenarios like emergencies, 

disasters, or search and rescue operations, having accurate localization information can be crucial. 

Furthermore, in the context of the IoT, localization is essential for routing algorithms and efficient data 

management. Developing low-cost localization algorithms with minimal error rates is a key research area. 

In this study, a novel and cost-effective localization technique is proposed to accurately identify the 

positions of network devices. This approach utilizes tags attached to objects to determine their positions and 

locations. Here's how it works: 

 Tag-based localization: localization is achieved through the use of object tags, which actively seek out 

three anchor objects equipped with GPS in their proximity. 

 Distance calculation: after locating these three anchor objects, the tags proceed to compute their 

respective distances from them by leveraging GPS data. 

 Position determination: utilizing the GPS-derived positions of the three anchor objects, the tags then 

establish their own locations and positions within the network. 

However, there is an inherent problem with this approach: there may be situations in which fewer 

than three GPS-equipped items are within a tag's radio wave range. To tackle this issue, the research utilizes 

hop-related data. When there are fewer than three smart things equipped with GPS near a site of interest, the 

system can calculate the distance between them and those smart objects by counting the number of hops. This 

hop-dependent estimation of distance is accomplished by employing distance regression methods that rely on 

the hop count data acquired from the DV-Hop algorithm. 

The described approach indeed enhances the robustness of localization, especially in situations 

where GPS-equipped anchor objects are not readily accessible. By leveraging hop information and distance 
regression techniques, the goal of the study is to improve the precision as well as reliability of the 

localization within IoT networks. However, it's important to acknowledge that hop-based algorithms like 

DV-Hop have limitations, primarily related to precision and power usage: 

 Precision limitations: errors can occur when converting hop counts into distance units, which can affect 

the precision of the localization. This is a known challenge with DV-Hop and similar hop-based 

algorithms. 

 High-power usage: each anchor node in DV-Hop must determine the network hop size and communicate 

that estimate to other nodes. This leads to preventable high-power usage, which can be problematic, 

particularly in IoT applications with limited battery life. 

Regression analysis is used to determine the relationship between variables, with the goal of 

creating a model that can predict experimental outcomes based on learning data. This analysis identifies the 
best-fitting line or curve that represents the relationship between variables, enabling the system to make 

predictions. The proposed method uses the DV-Hop algorithm for localization, which is highly reactive to the 

network density and may perform less accurately in situations with different node densities. Additionally, 

when localization is accomplished through distance regression and hop counts, similar challenges related to 

accuracy may arise, akin to those encountered in the DV-Hop algorithm. Therefore, while the approach aims 

to improve localization in IoT networks, it's important to address these precision and power usage concerns 

to ensure the reliability and effectiveness of the localization technique. 

Consequently, there could be a decline in localization accuracy. In order to solve the localization 

error, which is regarded as an issue of optimization, metaheuristic techniques are advised. In an optimization 

problem, the aim is to find the most effective solution, typically the one that minimizes the objective function 

within the range that is feasible. Given the exceptionally high accuracy of swarm intelligence systems across 
various metaheuristic methods, the proposed approach utilizes metaheuristic techniques to mitigate 

localization errors. When it comes to IoT-based localization, a significant challenge arises from the 

impracticality of installing GPS sensors on all objects due to the associated implementation costs. 

Additionally, GPS signals often fail to function correctly indoors, such as in stores and warehouses, leading 

to increased localization errors. 

Error localization, in this context, refers to the process of determining which fields should be 

updated for a record that has rejected an update. Typically, an optimization method is employed to determine 

the minimal set of fields that need modification to ensure that the updated record is accepted. 
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One cost-effective localization method involves leveraging minor object features to determine their 

positions. For example, it is feasible to affix low-priced tags like radio frequency identification (RFID) tags 

to all objects. These tags can contain information about the objects, including product prices, and can be used 

for stationary objects by indicating each object's position. However, in most IoT applications, smart objects 

can move within a defined area, such as a store or warehouse. The proposed method operates on the 

assumption that each object is equipped with an RFID tag that can be activated by localization waves and 

follows these procedures for localization: 

 Initialization: radio waves are used to prompt a non-GPS-enabled object to determine its present location 

and its position coordinates, maybe utilizing IoT infrastructure when required. 

 RFID activation: when an object's RFID tag is active, it sends signals to other surrounding GPS-equipped 

objects. 3Reaction from GPS-Enabled items: When nearby smart objects have GPS, they react to the 

radio waves by sending back response signals to the initial object.  

 In situations where an object lacks knowledge of its coordinates, it computes its travel distance from three 

GPS-equipped smart objects by means of signal transmission and reception. 5. To determine its distances 

from at least three GPS-equipped objects, the item of interest uses the three-anchor approach to compute 

its position and location. 

 

3.4.  Steps involved in the proposed system 
The suggested strategy presents a novel localization technique for objects connected to the IoT that 

combines mathematical and geometric equations with signal hop-based distance estimation. To enhance 

localization accuracy, the GOA is employed. When there are at least three smart objects with GPS capability 

in proximity to a smart object lacking GPS, it can accurately determine its position by calculating distances 

from these three nodes based on signal transmission and reception times. It can determine its own position by 

knowing the locations of a minimum three smart objects and their distances from one another. 

However, in circumstances when there are less than three smart objects having GPS capabilities in 

proximity to the smart objects lacking GPS, the objects are unable to use the same localization mechanism. In 

such cases, it is critical to estimate the travel distance away from smart objects equipped with GPS and tally 

the quantity of signal hops required. Hop count is a critical component of distance estimation, much like the 

DV-Hop algorithm. The IoT localization process includes the following steps: 

 Initialization: using tag readers to start the localization process for a smart object that doesn't have 
position or location data. 

 Local survey: the smart object conducts a survey of its immediate vicinity and calculates its distance from 

nearby smart objects, typically one or two objects in close proximity.  

 Beyond radio range: to measure the distance away from other smart objects with GPS capabilities located 

beyond its radio range, the smart object employs a method similar to the DV-Hop algorithm, involving 

the transmission of hops and subsequent distance estimation. 

 Flooding packets: to calculate its distance from other smart objects, the object of interest sends out a 

series of flooding packets across the network. The calculation is dependent on the number of hops as well 

as the presence of GPS-enabled smart devices. 

 Geometric localization: the geometric three-anchor approach is used to establish an object's position and 

location through determining its distance from three smart objects with GPS and known positions. 
It's crucial to highlight that the calculated location of the smart object may contain notable 

inaccuracies, which can be alleviated through the application of metaheuristic techniques. In this specific 

study, the choice fell on the GOA due to its superior accuracy when compared to other widely recognized 

algorithms such as genetic algorithms, particle swarm optimization, bat algorithms, firefly algorithms, and 

gravitational search algorithms. The GOA is firmly grounded in Newton's law of planetary motion, drawing 

inspiration from real-world processes. In the past decade, researchers have developed various adaptations of 

the centrifugal search method, fine-tuning its parameters to effectively address intricate objective functions. 

The GOA generates fresh positions in close proximity to those obtained through the three-anchor method, 

thus presenting new possibilities for smart object localization with reduced error. 

 

3.5.  Assessing the distance between a non-GPS entity and GPS entities using the suggested approach 
In the proposed approach, when a non-GPS-equipped object demands localization, it relies on 

obtaining information. In the context of localizing objects, specifically those that incorporate GPS 

technology, the process involves determining the precise locations of three GPS-equipped objects and their 

respective distances. However, there are scenarios where obtaining these three distances directly is not 

feasible due to the absence of GPS-equipped objects within the required range. In such instances, the hop and 

distance regression technique can be utilized. Here's a breakdown of how this method operates: 
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 Activating an RFID tag on a non-GPS object detects nearby GPS-equipped devices, and the system 

leverages signal exchange with three such GPS-equipped devices to estimate their distance if they are in 

range. However, the hop and distance regression approach are used if three GPS-equipped items cannot 

be located in close proximity. 

 A GPS-equipped item initiates the transmission of packets that are multicast throughout the network, 

therefore identifying the number of hops between itself and other nodes and objects. 

 The GPS-equipped object subsequently computes its distance from other GPS-equipped objects, using the 

number of hops as a reference for calculating distance, with an enhanced level of accuracy achieved 

through average distance calculations. 

 Objects that lack GPS capabilities but are "smart" determine the number of hops between GPS-equipped 

objects. 

 Calculating the number of hops between non-GPS and GPS-equipped items makes it easier to estimate 

their distance. 

 The three-anchor approach can be used to determine the location and position of a non-GPS object by 

calculating the distance that exists between it and GPS-equipped devices. 

This approach empowers non-GPS objects to ascertain their positions, even when obtaining the 

required distances from GPS-equipped objects directly is not possible. This enhances the robustness and 
versatility of the localization process. 

 

3.5.1. Three-anchor localization 

In the proposed approach, a smart object begins the localization process by trying to find three anchor 

nodes into its radio range. Once these anchor nodes are located, the smart object sends signals through each of 

them and subsequently receives feedback that is delayed signals. By analysing the time delay of these signals, 

the smart object can calculate the length of distance from these three anchor nodes. Knowing the positions of 

these anchor nodes enables the smart object to compute and calculate its own position and location. 

In the context of this localization challenge, let us consider that the smart object's position in the IoT 

can be expressed as (p, q), which are the unknown coordinates that must be found. The smart object in 

question is characterized by its knowledge of the placements of the three anchor nodes (p1, q1), (p2, q2), (p3, 
q3). It may calculate its distances from these nodes as d1, d2, and d3, respectively. 

In order to solve the linear equation system, the sensor node that is located at position (p, q) in a 

wireless sensor network (WSN) determines its Euclidean measurement distance from the three anchor nodes. 

This is achieved by applying the principles of a linear equation represented as Y = mx + b, where 'b' denotes 

the y-intercept of the graphed line, and 'm' represents the line's gradient. The gradient of a line essentially 

signifies its steepness or slope. In this context, the gradient signifies the slope of the wall. 

Euclidean distance is a fundamental concept in arithmetic, signifying the straight-line distance 

between two points. In Cartesian coordinates, the Euclidean distance is determined as the length of the line 

joining the two corresponding points. It is the absolute separation in Euclidean space between two points, 

such as A and B. 

To compute the Euclidean distance between two locations, such as point (p, q) and an anchor node, 

you can use mathematical functions like the numpy method "linalg.norm." In (19) is applied to calculate the 
coordinates of the smart object (p, q) in the IoT, leveraging the known distances to anchor nodes and their 

positions as critical components in the localization process 
 

[
𝑝
𝑞] =

1

2
. [

(𝑑1
2 − 𝑑3

2) − (𝑝1
2 − 𝑝2) − (𝑞2 − 𝑞3

2)

(𝑑2
2 − 𝑑3

2) − (𝑝2
2 − 𝑝3

2) − (𝑞2
2 − 𝑞3

2)
] . [

𝑝3 − 𝑝1 𝑞3 − 𝑞1

𝑝3 − 𝑝2 𝑞 − 𝑞2
]

−1

 (20) 

 

this equation uses anchor node positions and observed distances inside the IoT to calculate the position of an 

unnamed smart object. 

 

3.5.2. Minimizing error in three-anchor localization 
The three-anchor approach can be combined with the distance and hop measurement methodology 

to provide a partial compute of the position and location coordinates of the smart device within the IoT. 

However, it is critical to understand that this method may be prone to considerable inaccuracies, owing to the 

intrinsic constraints of the DV-Hop model, which is not known for its high accuracy. In fact, the network's 

node density has a significant impact on the DV-Hop model's accuracy. The following equation can be used 

to determine a set of coordinates within a specified radius (R) surrounding a smart object if its current 

estimated location within the IoT is represented using the three-anchor approach as (x, y): 
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[
𝑝′

𝑞′] = [
𝑝 + (𝑝 ± 𝑅 × 𝑟𝑎𝑛𝑑(0,1)
𝑞 + (𝑞 ± 𝑅) × 𝑟𝑎𝑛𝑑(0,1)

] (21) 

 

the set {(p1, q1), (p2, q2), (pN, qN)} represents the new coordinates produced near (p, q) that are utilized as a 

member of the population in the GOA. In (22) can be used to evaluate each of these solutions: 
 

𝐽 = √∆𝑥2 + ∆𝑦2 − 𝑣. ∆𝑡 (22) 
 

The distance that exists between a member of the GOA and a GPS anchor node is represented by 

p=∆x2 + ∆y2, whereas v.∆t represents the distance that lies between a solution or position of the anchor node 
based on the time it takes for a signal to depart the smart object, meet the anchor node, and return. Prior to 

implementing the GOA, the proposed method considers a population of solutions. This population of 

solutions forms the foundation for the GOA to search for an optimal solution, consequently diminishing 

localization errors. Within this framework, there exists a predefined range referred to as the "agreeable 

range," denoted as "d = 2.079." This range signifies the distances between two grasshoppers at which they 

either experience attraction or repulsion. More precisely, when the distance between two grasshoppers is less 

than "d = 2.079," they repel each other, whereas interaction takes place when the distance exceeds "d = 

2.079." 

To initiate the GOA, a set of coordinates is produced in 2D space, resulting in a population of 

grasshoppers. Each grasshopper in this population is then subjected to the localization function that is 

objective for evaluation to determine optimal positions. In the proposed approach, the GOA is employed to 
improve and fine-tune the localization of a smart item without GPS capability. The GPS is a satellite-based 

system for navigation that synchronizes time, speed, and location information for global usage. It is widely 

used and integrated into various items such as watches, cell phones, and automobiles. A GPS receiver 

estimates its own position by measuring the time it takes for signals from at least four satellites to reach it. 

In the IoT environment, both GPS-equipped and non-GPS-equipped smart objects are initially 

distributed. Smart objects with GPS capabilities use multicasting to determine their hop count from other 

GPS-enabled things and send their whereabouts to all other objects. The average hop count is then 

determined using the DV-Hop algorithm. Non-GPS-equipped devices calculate hop counts from the 

minimum of three GPS-equipped objects by transmitting packets across the network. Objects having GPS 

capabilities use their hop counts from other GPS-equipped objects, the average hop count, and distance 

information to calculate their distance from those objects. 

Non-GPS-equipped objects rely on their calculated distances from three GPS-equipped smart 
objects and the known positions of these GPS-equipped objects to estimate their own positions. However, 

this technique is prone to error. As a result, a few alternate positions are generated close to the projected 

position. These alternative positions are used as the initial population for the GOA, facilitating the 

optimization process to improve the accuracy of smart object localization. 
 

𝑃𝑜𝑝 = {(𝑝1, 𝑞1), (𝑝2, 𝑞2), … … (𝑝𝑁 , 𝑞𝑁)} (23) 
 

where (pi, qi) is a GOA population member analysed by the evaluation function J for fitness. This 

position is utilized to update and eliminate localization mistakes using the following equation 
 

𝐽(𝑝𝑖 , 𝑞𝑖) = 𝑐. [∑ 𝑐.
𝑢𝑏𝑑−𝑙𝑏𝑑

2
𝑠(|(𝑝𝑖 , 𝑞𝑖) − (𝑝𝑗 , 𝑞𝑗)|).

(𝑝𝑖,𝑞)−(𝑝𝑗,𝑞𝑗)

𝑑𝑗

𝑁
𝑗=1 ] + (𝑝∗, 𝑞∗) (24) 

 

In this equation, (p∗, q∗) denotes the ideal grasshopper's position or coordinates within the 

population. Furthermore, ubd and lbd are the upper and lower boundaries of the objective function's 

dimension 'd', respectively, and 'c' is the rate of convergence coefficient utilized in the Global Optimization 

Algorithm (GOA). In mathematics, convergence is a property of some sequences and processes in which 

values approach a maximum or minimum as a variable within a function changes or the number of variables 

in a sequence grows. The following equation defines convergence as a decreasing function of iteration: 
 

𝑐 = 𝑐𝑚𝑎𝑥 − 𝑙
𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛

𝐿
 (25) 

 

In the provided equation, 'l' denotes the GOAiteration that is currently in progress, and 'L' is the 

maximum iteration limit. Additionally, the values of 'c_max' and 'c_min' are set to one and 0.0001, 

respectively. In order to minimize location error, the GOA is carried out iteratively, and with each iteration, 

the average localization error falls. The average localization accuracy for individual objects is around 0.43 
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meters when the wireless communication distance is 50 meters, the RSS Indicator (RSSI) variance is 8 dBm, 

and the percentage of base stations is 1.25%. It's important to note that globalization can be influenced by 

various factors, including climatic, economic, educational, historical, sociological, geopolitical, legal, and 

technological factors, among others. In the final iteration of the GOA, the position of the ideal grasshopper is 

chosen as the definitive and optimal position for the non-GPS-equipped object, boosting localization 

accuracy. 
 

 

4. SIMULATION RESULT 
The two specific examples are representative of a medium-sized network comprising 30 nodes. The 

primary parameters for this medium-sized network are outlined in Table 1. A node density of one node per 

400 square meters is achieved by evenly and randomly distributing the nodes throughout a 60 m × 60 m 

space. 

For the experimental analysis, thirty nodes are considered in the simulation environment of network 

simulator-2 (NS-2) as show in Figure 4 and the data transfer is shown in Figure 5. Network latency is simply 

the time it takes to go from one end point to another over a distance of N hops. So, you have N segments 

(hops) with N-1 intermediate nodes. Each node has a delay (the cumulative effect of several things on that 

node, like queue delay, processing delays, etc), and each segment has a transit delay. Overall, that's 2N - 1 
independent variables. So, it's seg1 +node1 +seg2 ... +node(N-1) +segN. The Figure 6 shows the Latency Vs 

Number of nodes. 

 

 

 
 

Figure 4. Simulation results of number of nodes 

 

 

 
 

Figure 5. Simulation results of data transmission 
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Table 1. Simulation setup 
Sl.no Parameter Value 

1 Number of anchor nodes 3 

2 Network Area 60m 60m 

3 Node density 1 per 400 m2 

4 Total number of sensor nodes 30 

5 Communication range in ideal channel 20m 

 

 

 
 

Figure 6. Latency vs number of nodes 

 

 

4.1.  Delay 

The accuracy of sensor node localization can impact the delay in a wireless sensor network; 

however, there is no universally applicable formula that directly relates the delay to the number of nodes 

based solely on localization. The delay is influenced by various factors, including the communication 

protocol, network topology, data transmission rate, and processing capabilities of the sensor nodes. When 
sensor nodes are precisely localized as per the proposed algorithm, they can effectively communicate and 

route data, leading to reduced data packet losses and misdirection. This can result in lower packet 

retransmissions and improved overall network performance, leading to lower delays. Figure 7 represents the 

delay with respect to the number of nodes. Average it is less. When the number of nodes is doubled it keeps 

on increasing. 
 
 

 
 

Figure 7. Delay vs number of nodes 
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4.2.  Throughput 

The location of sensor nodes' throughput is determined by the network's transmission characteristics 

and efficiency. In general, throughput is proportional to the transmission rate and the probability of 

successful transmission at the sensor node. It can be stated with the following formula: 
 

Throughput = Transmission rate * Successful transmission probability. 
 

Figure 8 demonstrates the throughput analysis with respect to the transmission rate. The localization 

process of sensor nodes impacts the transmission rate, which is determined by the frequency of data 

exchange among nodes during localization. When the localization algorithm necessitates frequent updates or 

location information exchanges among nodes, it can potentially affect the available bandwidth for other data 

transmission tasks. Consequently, the localization process may impose limitations on the transmission rate in 

such scenarios. The accuracy of localization can influence the successful transmission probability. When 

sensor nodes are precisely localized, they can establish improved communication links with each other, 

resulting in higher probabilities of successful transmission. 

 
 

 
 

Figure 8. Throughput vs transmission rate 
 

 

4.3.  Error 

The relationship between localization error and distance in sensor node localization can be 

expressed using various formulas, depending on the specific localization technique and the characteristics of 

the sensor network. The "error propagation model," which assumes that errors increase proportionally with 

the distance between the real and predicted locations of the sensor node, is a typical formula for modelling 

the error-distance relationship. 

The error propagation model can be represented as: 
 

Error = k * Distance + Bias 
 

where: 

 Error: The location error, representing the discrepancy between the estimated and true positions of the 

sensor node. 

 Distance: The distance between the sensor node's real (true) position and its predicted position. 

 k: A constant that represents the error propagation rate, indicating how fast the error increases with 

distance.  

 Bias: A constant term that accounts for any systematic errors or inaccuracies in the localization process, 
which are not directly related to the distance. 

Figure 9 illustrates the average localization errors for the algorithm in typical scenarios. Anchor 

nodes have a constant ratio of 10% to all other nodes. As the distance of location of sensor node increases, a 

noticeable trend emerges where the location errors of all relevant algorithms decrease consistently. Range-

free localization methods, such as centroid-based or DV-hop localization as in Figure 10, based on how the 

distances are estimated or calculated in the network shows dominant error than GOA method because of the 

sensitivity of the bias. 
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Figure 9. Error vs distance 

 

 

 
 

Figure 10. Comparison of error vs distance 

 

 

5. CONCLUSIONS 

Localization is a critical technique when things without GPS capabilities seek to identify their exact 

positions and coordinates, as well as those of other GPS-equipped objects, within the context of the IoT. IoT 

localization encounters unique challenges, and it's imperative for objects to achieve high levels of accuracy in 

determining their positions and locations. In most IoT applications, devices' ability to properly determine 
their positions and locations is critical because this information is required to convey vital data to the base 

station. The data's significance is frequently dependent on knowing the precise positions and locations of 

things within the IoT. Simultaneously, the efficacy of many routing methods is dependent on having precise 

knowledge of the objects' positions and locations. According to the test and implementation results, the GOA 

minimized the localization error of objects without GPS capability when compared to the DV-Hop and three-

anchor approaches. Furthermore, the testing revealed that the number of GOA rounds correlates closely with 

an overall decrease in localization error. The obtained outcomes indicate that the proposed methodology 

effectively resolves and straightens out the three-anchor method's localization mistake, improving the degree 

of precision of item localization in the IoT. 
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The forthcoming pathways of this investigation encompass numerous pivotal realms for 

enhancement. To begin, practical experimentation and verification are essential to evaluate the efficacy of the 

GOA-DV-HL technique within genuine IoT and WSN settings. Modifying the algorithm to accommodate 

diverse networks, where sensor nodes possess varying capabilities, stands as another crucial focal point. 

Moreover, broadening the method to optimize mobile sensor nodes along with mobile sinks for adaptable 

route planning would greatly amplify its relevance in mobile networks. Integrating energy harvesting 
strategies to empower sensor nodes autonomously and weaving in multi-objective optimization to navigate 

through assorted conflicting aims could also elevate performance. Prospective studies might meld machine 

learning algorithms with GOA to further bolster the system’s flexibility and efficacy. Enhancing the 

algorithm’s scalability for extensive IoT networks and tackling security and privacy issues will be vital for 

instantaneous applications. Ultimately, delving into cross-layer optimization to boost energy efficiency, 

throughput, and network longevity will guarantee the algorithm can satisfy the demands of upcoming IoT and 

IIoT applications. 
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