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 Authenticating finger photo images captured using a smartphone camera 

provides a good alternative solution in place of the traditional method-based 

sensors. This paper introduces a novel approach to enhancing fingerprint 

authentication by leveraging images captured via a mobile camera. The 

method employs a siamese neural network (SNN) combined with a ridge 

flow attention mechanism and convolutional neural networks (CNN). Our 

approach begins with collecting a dataset consisting of finger images from 

two individuals then we apply multiple preprocessing techniques to extract 

fingerprint images, followed by generating augmented data to improve 

model robustness, scaling, and normalizing them to form images suitable for 

model training. Next, we generate positive and negative pairs for training a 

SNN. We used the SNN with CNN for feature extraction, combined with an 

attention mechanism that focuses on the ridge flow pattern of fingerprints to 

improve feature relevance which significantly contributed to the 

performance enhancement. As for the testing performance, our model has an 

accuracy of 90%, precision of 89%, recall of 83%, F1 score of 86%, area 

under the curve (AUC) 95 %, and 13% of equal error rate (EER) when using 

smartphone-captured images for fingerprint recognition. 
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1. INTRODUCTION 

Biometric authentication has gained significant attention in recent years, with fingerprint recognition 

being one of the most widely adopted methods due to its reliability, uniqueness, and ease of use. Traditional 

fingerprint recognition systems rely on physical contact with dedicated sensors to capture high-resolution 

fingerprint scans for precise feature extraction and matching [1], [2]. However, these systems present several 

challenges, including sensor wear and tear, hygiene concerns, and user inconvenience [3], [4]. With the 

growing prevalence of smartphones, there is increasing interest in developing contactless fingerprint 

recognition systems that utilize mobile cameras, offering a non-invasive and user-friendly alternative [5], [6]. 

Contactless fingerprint recognition leverages high-resolution cameras to capture detailed ridge 

structures without requiring physical contact [7], [8]. While this approach offers several advantages, such as 

https://creativecommons.org/licenses/by-sa/4.0/
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improved hygiene and ease of use, it also introduces significant challenges. Variations in lighting, finger 

pose, and background noise can degrade image quality, making it difficult to extract discriminative features 

such as ridge patterns and minutiae. These issues are further exacerbated in real-world conditions, where 

smartphone-based systems must operate efficiently on resource-constrained devices. 

Recent research has made considerable progress in improving contactless fingerprint recognition. 

Alkhathami et al. [9] introduced a touchless approach using multiple mobile camera images combined with 

the mosaic method to enhance the usable fingerprint area. Sankaran et al. [10] developed a fingerphoto 

matching technique using ScatNet features and created a public database to address environmental and 

background challenges. Genovese et al. [11] explored the use of Level 3 features, such as sweat pores, for 

touchless fingerprint recognition using neural networks. Further advancements include the monogenic-

wavelet algorithm for improved accuracy in smartphone-based systems by Birajadar et al. [12], convolutional 

neural networks (CNN) based classification optimization for low-quality fingerprints by Lăzărescu et al. 

[13], and a siamese neural network (SNN) for fingerphoto verification introduced by Singh et al. [14]. More 

recently, Ramachandra and Li [15] proposed Finger-NestNet, incorporating a nested residual block architecture 

to achieve superior verification accuracy. 

Despite these advancements, challenges remain, particularly in improving robustness to noise, 

ensuring real-time performance on mobile devices, and extracting reliable features under varying conditions. 

Many existing methods struggle with maintaining accuracy in uncontrolled environments where variations in 

lighting and finger positioning significantly impact recognition performance. Additionally, while deep 

learning techniques have shown promise, their computational demands often limit their deployment on 

resource-constrained devices. 

To address these challenges, this paper proposes a novel deep-learning framework that integrates 

SNN architecture with a CNN base network enhanced by a ridge flow attention mechanism. The SNN is 

well-suited for one-shot learning tasks such as fingerprint matching, while the CNN base network, equipped 

with ridge flow attention mechanism, focuses on extracting robust and discriminative features, even from 

low-quality images. A custom dataset of fingerprint images was collected using our smartphones, capturing 

variations in lighting, finger pose, and background conditions to ensure a realistic assessment. The 

framework is optimized for efficiency using model pruning and quantization to enable real-time performance 

on mobile devices. By improving feature extraction, enhancing robustness to environmental variations, and 

optimizing computational efficiency, this research contributes to advancing the accuracy and practicality of 

contactless fingerprint recognition systems for mobile applications. 

 

 

2. METHOD 

This section presents the proposed methodology, as illustrated in Figure 1. The framework consists 

of four main stages: dataset collection, fingerprint extraction process, feature extraction utilizing a siamese 

network-based architecture for fingerprint photo verification, and classification followed by evaluation. Each 

stage is elaborated in detail in the following subsections.  

 

 

 
 

Figure 1. The proposed approach 
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2.1.  Dataset collection 

In this section, we describe the data collection and augmentation process for our study. Finger 

images were captured from two individuals using a smartphone camera, with each participant providing ten 

(10) images of the same finger under consistent lighting conditions to ensure clarity and visibility. During the 

capture process, only the section containing the fingerprint was selected, rather than the entire finger. Given 

the limited size of the dataset, we employed ImageDataGenerator to perform data augmentation, applying 

transformations such as rotations, shifts, shears, zooms and flips [16]. For each original image, five 

augmented versions were generated to expand the dataset and enhance the model's performance. Figure 2 

illustrate the data collection and augmentation process. 

 

 

 
 

Figure 2. Data collection and augmentation process for fingerprint 

 

 

2.2.  Extract fingerprint 

The process starts by detecting the finger and masking the background based on contour detection, 

followed by several image enhancement techniques. The contrast and brightness of the image are adjusted 

through histogram equalization for better intensity distribution. The subsequent preprocessing steps include 

the normalization of pixel values, making the image ready for adaptive thresholding. Adaptive thresholding is 

used to binarize the image based on local variations in light intensity, followed by smoothing with a median 

filter and Gaussian blur to reduce noise. Lastly, the image undergoes binary thresholding to create a clean 

image that making the fingerprint features more pronounced for further processing [5], [10]. Figure 3 

illustrates the sequential steps involved in extracting fingerprints from the images captured via a mobile 

camera to improve the features of fingerprints. 

 

 

 
 

Figure 3. Extracting fingerprint steps 

 

 

2.2.1. Contrast and brightness adjustment 

The transformation for adjusting the contrast and brightness of the image can be described by the (1) 

[17], [18]. 

 

𝐼′ = 𝛼 . 𝐼 + 𝛽 (1) 
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Where I is the original pixel intensity (grayscale value) of the image, I′ is the new pixel intensity after 

adjustment, 𝛼 is the contrast factor and 𝛽 is the brightness offset. This linear transformation adjusts the image 

globally by scaling the intensity values and shifting them. 

 

2.2.2. Histogram equalization 

Histogram equalization redistributes the intensities to enhance the global contrast of the image [18]. 

The transformation is based on the cumulative distribution function (CDF) of the image's histogram as 

defined in the (2). 

 

𝐼′ (𝑥, 𝑦) = (𝐶𝐷𝐹(𝐼(𝑥, 𝑦)) − 𝐶𝐷𝐹𝑚𝑖𝑛)/(𝑁 − 1) × 255 (2) 

 

Where 𝐼(𝑥, 𝑦) is the original intensity value at pixel location (x, y), 𝐼′(𝑥, 𝑦) is the new intensity after 

equalization, CDF( I(𝑥, 𝑦) is the cumulative distribution function for intensity 𝐼(𝑥, 𝑦), CDFmin is the 

minimum value of the CDF and N is the total number of pixels. 

 

2.2.3. Normalization 

Normalization scales the pixel intensities to a specific range, typically [0, 255], using the (3) [18], [19]. 

 

𝐼′ =
𝐼−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
× 255 (3) 

 

Where Imin and Imax are the minimum and maximum pixel values in the image I and I’ is the normalized 

pixel intensity. 

 

2.2.4. Adaptive gaussian thresholding 

Adaptive thresholding computes a threshold based on the local mean of pixel intensities in a window 

around each pixel as defined in the (4) [20]. 
 

𝑇(𝑥, 𝑦) = 𝜇(𝑥, 𝑦) − 𝐶 (4) 
 

Where T(x, y) is the threshold at pixel (x, y), μ(x,y) is the weighted sum of pixel intensities within the local 

window around (𝑥, 𝑦), computed using a Gaussian function and C is a constant subtracted from the mean to 

control threshold sensitivity. 

 

2.2.5. Smoothing (median and gaussian blur) 

Median filtering replaces each pixel's value with the median value of the surrounding pixels in a 

window, as defined in (5) [21]. 
 

𝐼′(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{ 𝐼(𝜇, 𝜗)  | (𝜇, 𝜗)   ∈  𝑊(𝑥, 𝑦)} (5) 
 

Where W(x,y) is a window centered at pixel (𝑥,𝑦). Gaussian blur smooths the image by convolving it with a 

gaussian kernel as defined in (6). 
 

𝐼′(𝑥, 𝑦) = ∑ 𝐺(𝜇, 𝜗) 
𝜇,𝜗 . 𝐼(𝑥 − 𝜇 , 𝑦 − 𝜗) (6) 

 

Where G(u,v) is the Gaussian kernel and I(x,y) is the pixel value at position (x,y). 

 

2.2.6. Binary thresholding 

The binary thresholding operation converts the image into a binary form by applying a global 

threshold as defined in (7) [22]. 
 

𝐼′(𝑥, 𝑦) = {
255      𝑖𝑓 𝐼(𝑥, 𝑦) > 𝑇

0      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (7) 

 

Where T is a predefined threshold value, typically set manually or experimentally. 

 

2.3.  Image preprocessing 

The process prepares fingerprint images for input into the base network of the Siamese network by 

resizing them to a consistent dimension 128×128 pixels and normalizing pixel values to a range of 0 to 1. 

This standardization ensures uniform processing and stable learning. Figure 4 shows an example of a 

processed image. 
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2.4.  Generating pairs for siamese networks 

Making pairs involves creating two distinct sets of inputs that either belong to the same class 

(positive pairs) or different classes (negative pairs), with the network trained to distinguish between them by 

computing a similarity measure. Positive pairs consist of images from the same class, such as two images of 

the same person's finger, while negative pairs consist of images from different classes, such as two images of 

different individuals' fingers. 

 

 

 
 

Figure 4. Preprocessed image 

 

 

2.5.  CNN base network with ridge flow attention mechanism 

The base network of the Siamese model is designed to effectively extract and compare fingerprint 

features. It begins with three convolutional layers (Conv2D) with increasing filter sizes (32, 64, 128), 

allowing the network to capture progressively complex patterns from the input images. Each convolutional 

layer is followed by a MaxPooling2D layer, which reduces spatial dimensions while preserving essential 

fingerprint features. To enhance the network’s ability to focus on fingerprint ridge patterns, a ridge flow 

attention mechanism is incorporated. This mechanism consists of additional Conv2D layers that compute 

attention weights, which are then applied to the input features to emphasize relevant details. The extracted 

features are then flattened and passed through two fully connected layers with 256 and 128 units, enabling 

the model to learn high-level representations. This architecture ensures robust and discriminative feature 

extraction for fingerprint matching. Figure 5 illustrates the structure of the base network within the siamese 

model, highlighting the integration of CNN layers and the ridge flow attention mechanism. 

 

 

 
 

Figure 5. Model architecture of CNN with ridge flow attention mechanism 
 

 

2.6.  Siamese network architecture 

The proposed method employs a siamese network to compare fingerprint image pairs and determine 

if they belong to the same individual. Each input image is processed through a CNN-based base network, 

which integrates a ridge flow attention mechanism to enhance crucial features. The absolute difference 

between the outputs of the base network for the two images is then computed, and a dense layer classifies the 

images based on this difference. Figure 6 illustrates the overall architecture of the siamese network. 

 

 

 
 

Figure 6. Siamese network architecture 
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2.7.  Training and evaluation  

In this section, we describe the training and evaluation process of our model, designed to distinguish 

between fingerprints from different individuals. We generate pairs of fingerprint images, assigning labels 0 

for negative pairs (images from different individuals) and 1 for positive pairs (images from the same 

individual). The dataset is divided into training and test sets, and the model is trained on the generated pairs. 

The evaluation phase assesses the model's performance in accurately classifying fingerprint pairs, ensuring 

robustness and reliability in distinguishing between individuals. To evaluate the performance of the 

classification system, several metrics were employed including accuracy, precision, recall and F1-score.  

Accuracy measures the proportion of correctly classified instances out of the total number of cases [23].  

It is calculated by the (8). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8) 

 

Precision which quantifies the accuracy of positive predictions, indicating how many of the predicted 

positive cases are actually true positives [23]. It is computed by the (9). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (9) 

 

Recall also known as sensitivity, it measures the proportion of actual positive cases that are correctly 

identified by the model [23]. It is calculated by the (10). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

 

F1-score is the harmonic mean of precision and recall, providing a balanced measure between the two 

metrics. It is particularly useful when dealing with imbalanced datasets [23]. The formula for F1-score is 

illustrated in the (11). 

 

F1 − Score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

 

In addition to these metrics, the receiver operating characteristic (ROC) curve is a graphical 

representation of a binary classifier's performance across various threshold settings. It plots the true positive 

rate (TPR) against the false positive rate (FPR) to illustrate the trade-off between sensitivity and specificity. 

The area under the ROC curve (AUC) is a scalar value ranging from 0 to 1, where a higher AUC indicates 

better discriminative ability of the model. A perfect classifier has an AUC of 1, while a random classifier has 

an AUC of 0.5 [24].  

Another important metric for biometric systems is the equal error rate (EER). The EER is the point 

where the false acceptance rate (FAR) and false rejection rate (FRR) are equal. It is a critical metric for 

biometric systems, as it represents the error rate at which the system achieves an optimal balance between 

FAR and FRR. A lower EER indicates better system performance [25]. 

 

 

3. RESULTS AND DISCUSSION  

Our proposed approach, which combines fingerprint extraction from images taken with a mobile 

camera and trains a SNN using Keras and TensorFlow, achieved promising results in fingerprint recognition. 

The performance metrics reported 90% accuracy, 83% recall, 86% F1 score, and 89% precision indicating 

the model's effective ability to identify and match fingerprints, demonstrating good capacity for fingerprint 

recognition tasks. Table 1 presents a classification report summarizing these metrics for each class. 
 

 

Table 1. Classification report  
Precision Recall F1-score 

0 0.91 0.94 0.92 

1 0.89 0.83 0.86 

 

 

Figure 7 illustrates the performance metrics of the Siamese network used for fingerprint image 

classification, highlighting trends in accuracy and loss during training. Both training and test dataset accuracy 

increase progressively with the number of epochs, demonstrating the network's ability to effectively learn and 
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distinguish between fingerprint pairs. Concurrently, the loss for both datasets decreases, indicating a 

reduction in prediction errors and improved model performance. These results emphasize the Siamese network's 

capability to extract and compare meaningful features from fingerprint images, enabling accurate classification. 

Figure 8 presents the ROC curve of our model, along with the calculated AUC and EER values. The 

model achieves an AUC of approximately 95%, demonstrating its effectiveness in minimizing false positives 

and maximizing true positives across various thresholds. Additionally, it attains an EER of 13%, reflecting a 

balanced trade-off between false acceptances and false rejections. These results underscore the model's strong 

classification performance. 

To test the model's generalization, new fingerprint images from person one and person two were 

processed using a pre-trained siamese network. A similarity threshold of 0.5 was used to determine if the 

images belonged to the same person. Figure 9 shows three cases: (1) two images of the same finger from 

person 1 scored 0.67, (2) two images of the same finger from person 2 scored 0.81, and (3) images from 

different individuals scored 0.12. These results confirm the model's ability to accurately distinguish between 

fingerprints of the same and different individuals. 

 

 

 
 

Figure 7. Graph accuracy and loss 

 

 

 
 

Figure 8. ROC curve 

 

 

 
 

Figure 9. Evaluation of similarity scores for fingerprint classification 
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As a simple comparison with similar works mentioned in the introduction to this research, our 

approach demonstrates competitive performance in fingerprint recognition using smartphone-captured 

images. The study in [13], which utilized a CNN, reported 70.2% and 75.6% test accuracy. In contrast, our 

approach achieved an accuracy of 90%, substantially outperforming the results reported in [13]. However, 

our EER of 13% is higher than the 1.15% reported in [15], which employed a ResNet-based model for 

fingerphoto verification, indicating that [15] achieves superior performance in terms of error rate. On the 

other hand, our EER is lower than the 8.9% to 34.7% range reported in [14], which used a siamese network 

for comparing inputs, suggesting that our model performs better than theirs regarding error rate.  

Overall, our study demonstrates the potential of smartphone-based fingerprint recognition and lays 

the foundation for more robust and scalable biometric authentication systems, contributing to the field's 

advancement and practical applications. Table 2 provides a comparison of our research with existing works, 

detailing the datasets used, the methodologies applied, the models employed, and the evaluation metrics 

achieved. This comparison helps to contextualize our results within the broader landscape of related research. 

 

 

Table 2. Comparison between state-of-the-art finger photo recognition methods with our work 
Reference Methodology  Device capturing Dataset Techniques Metrics 

[9] This approach captures multiple 

views of the fingerprint and stitches 
these images together into a single 

mosaic that represents the entire 

fingerprint. The stitching process 
involves aligning and combining 

images from different angles to 

create a coherent and detailed 
fingerprint image. 

Mobile camera 

without flash  

Custom dataset Minutia 

SIFT 

Minutia 

accuracy 
97% 

SIFT 

accuracy 
97.5% 

[10]  This paper uses traditional image 

processing techniques and texture 
analysis to extract features from 

fingerphotos 

Mobile camera,  

optical sensor 
without flash 

Custom dataset Neural network 

and random 
decision forest 

(RDF) 

EER = 3.56% 

[11]  The system captures high-resolution 
touchless images and focuses on 

extracting detailed pore-level 

features from fingerprints, which are 
processed using neural networks for 

classification and matching. 

Digital camera  Custom dataset KNN-1 
KNN-3 

Naive Bayes 

FFNN-30 

76.0% 
79.2% 

71.9% 

83.4% 

[12]  The system captures high-resolution 
images of fingerprints from different 

angles and uses feature extraction 

techniques to compare these with 
stored fingerprint data 

Smartphone 
With flash 

fingerprint 
dataset prepared 

by Indian 

Institute of 
Technology 

Bombay, 

Mumbai, India 

monogenic-
wavelet algorithm 

 
 

 

/ 

[13]  hybrid approach combining 

traditional edge detection with deep 
learning (CNNs) for fingerprint 

matching 

DB1: optical 

sensor "V300" by 
CrossMatch 

DB2: optical 

sensor "U.are.U 
4000" by Digital 

Persona 

DB3: thermal 
sweeping sensor 

"FingerChip 

FCD4B14CB" by 
Atmel 

DB4: synthetic 

fingerprint 
generation 

FVC2004, DB1, 

DB2, DB3, and 
DB4 datasets 

CNN Accuracy 

(67.6% to 
98.7%) for 

the validation 

set, and 
(70.2% to 

75.6%) for 

the test set 

[14]  They used Siamese network for 

comparing two inputs to determine 
their similarity 

Smartphone Public dataset Siamese network 

CNN 

EER ranging 

from 8.9% to 
34.7% 

[15]  developing a deep learning-based 

model (possibly a version of 
ResNet) that can verify fingerphotos 

The rear camera 

of the iPhone6 
Smartphone 

Finger photo 

dataset 

ResNet EER = 

1.15%. 

Our work  Extract finger pring from finerphoto 

then using  

Mobile camera 

with flash 

Custom dataset Siamese network 

CNN and ridge 
flow attention 

mechanism  

Accuracy: 

90% 
EER = 13%. 
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4. CONCLUSION 

In recent years, touchless fingerprint recognition using smartphone-captured images has gained 

significant attention due to its convenience and hygiene advantages. This study introduced a novel approach 

to fingerprint authentication by leveraging a Siamese network integrated with a CNN and a ridge flow 

attention mechanism. Our method focuses on extracting and enhancing fingerprint features from 

fingerphotos, achieving an accuracy of 90% and an EER of 13%. These results demonstrate the effectiveness 

of our approach, outperforming other machine learning techniques and highlighting its potential for practical 

use in biometric authentication systems. By enabling the model to focus on critical ridge patterns, the 

attention mechanism significantly improves feature relevance and interpretability, making the system more 

robust and reliable. 

Our study has limitations, including a small dataset, computational complexity, and a precision-

recall trade-off, which need addressing to improve robustness and scalability. Future work should focus on 

expanding the dataset, optimizing for real-time use, exploring hybrid models, and enhancing interpretability. 

These improvements will refine our approach, making it more practical for real-world applications. This 

work advances mobile-based biometric authentication, offering a secure and convenient solution with 

significant potential to enhance security and convenience in everyday applications. 
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