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 The prevalence of diabetes is rising. According to the International Diabetes 
Federation (IDF) predictions, the number of diabetic patients worldwide will 
reach 608 million in 2030, accounting for approximately 11.3% of the total 
number of people in the world. To monitor and predict the future 1 hour 
glucose have a great significance meaning for patients. This research utilizes 

a differential evolution (DE) algorithm, an optimized hybrid model 
transformer and long short-term memory (T-LSTM) technologies to analyze 
historical data from continuous blood glucose monitoring (CGM) systems 
and equipment calibration values. The aim is to predict future blood sugar 
levels in patients, thereby helping to prevent episodes of hypoglycemia and 
hyperglycemia. The study tested the model using the CGM data from 8 
patients at the Suzhou Municipal Hospital in Jiangsu Province, China. 
Results show that this DE-optimized T-LSTM model outperforms traditional 

models. The model's accuracy is evaluated using mean squared error (MSE), 
with MSE values recorded at 15, 30, and 45 minutes being 0.96, 1.54, and 
2.31, respectively. 
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1. INTRODUCTION 

Diabetes mellitus (DM) poses a significant global health challenge, affecting millions worldwide. 
Effective management of DM necessitates precise forecasting of blood glucose levels to prevent 

complications such as hypoglycemia and hyperglycemia. The increasing prevalence of diabetes globally 

necessitates advancements in monitoring technologies that can provide accurate blood glucose readings. 

Along with the development, continuous blood glucose monitoring (CGM) systems enable real-time glucose 

monitoring for patients. However, the market lacks products capable of forecasting glucose values, a feature 

primarily explored in academic research [1], [2]. Traditional predictive models often fall short in capturing 

the complex, nonlinear, and time-varying nature of blood glucose dynamics. Recent advancements in 

machine learning, particularly long short-term memory (LSTM) networks, have shown promise in modeling 

temporal dependencies in glucose time-series data. However, the performance of LSTM models can be 

further enhanced by optimizing their parameters. Incorporating differential evolution (DE) algorithms for this 

optimization has been explored in several studies. To address this, this study introduces a DE algorithm-
optimized T-LSTM prediction model. This innovative model merges the capabilities of Transformer and 
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LSTM, optimizing time series forecasting by leveraging their strengths. These include the ability to model 

long-term dependencies, execute parallel computations, learn feature representations, and handle multi-scale 

data. The combination of Transformer and LSTM in this model considerably enhances forecasting accuracy 

and efficiency, particularly in spotting trends, periodic patterns, and long-term relationships in time series 

data [3]. 

Traditional intermittent blood sugar testing does not reflect a patient's genuine blood sugar changes 
over a 24-hour period [4]. In contrast, CGM systems could show real-time glucose values every 3 or 5 

minutes [2], [5]. This frequent monitoring is crucial for evaluating treatment effectiveness and making more 

accurate adjustments to therapeutic plans [6]. CGM systems are adept at predicting the onset of 

hyperglycaemia or hypoglycaemia, allowing for a more personalized and targeted approach to enhancing 

patient quality of life. By alerting patients to irregular glucose levels, CGM-based prediction models 

empower patients to take timely action [7]. Additionally, these models can more accurately replicate the 

specific physiological traits of diverse populations and reveal varying responses to treatments among patients 

[8], [9]. Integrating data from multiple sources enables the creation of customized treatment plans, aiding 

patients in better controlling their blood sugar levels and minimizing complications [10]. CGM devices 

provide immediate insights into glucose levels, thereby facilitating informed decisions about insulin dosage 

adjustments or dietary changes based on blood sugar fluctuations [11]-[13]. 

Research in the field of diabetes management has increasingly focused on the use of advanced control 
strategies to enhance the performance of CGM systems. For instance, studies by researchers [14], [15] have 

explored various algorithmic approaches, including the application of machine learning techniques such as 

support vector machines (SVM) and Reinforcement Learning, which have shown promise in improving the 

accuracy of glucose forecasts. These studies underscore the potential of integrating sophisticated computational 

models with traditional CGM systems to enhance predictive accuracy and patient outcomes. 

Recent advancements in artificial intelligence, particularly in machine learning and deep learning, 

have led to progress in CGM prediction algorithms. These advancements have turned such algorithms into a 

focal point of research in diabetes management [16]-[21]. The T-LSTM model has exceptional capabilities in 

parallel processing, handling long-range dependencies, and adaptability across various domains, make it an 

intriguing option for this application [22], [23]. This study introduces a novel approach, employing the T-

LSTM model to forecast future blood glucose levels. The model is designed to be patient-specific, adapting 
and improving over time to match the individual's metabolic characteristics. The key contribution of this 

article is the development of this innovative combined T-LSTM model, aiming to predict glucose levels for 

upcoming intervals of 15, 30, and 45 minutes. Despite these advancements, challenges persist in achieving 

high-precision glucose predictions across diverse patient populations. Variability in individual responses 

necessitates personalized modeling approaches. Additionally, the interpretability of machine learning models 

remains a critical concern, especially when they inform therapeutic decisions. Studies have highlighted the 

importance of model interpretability in diabetes management, emphasizing that understanding the rationale 

behind model predictions is crucial for patient safety and trust. 

This study introduces a novel DE algorithm optimized transformer and a T-LSTM model that 

leverages the strengths of both Transformer and LSTM technologies. This hybrid model aims to analyze 

historical data from CGM systems more effectively, thereby enhancing the prediction of future blood glucose 
levels. By optimizing the time series forecasting capabilities of the T-LSTM model through the DE 

algorithm, this research seeks to provide a more reliable tool for diabetes patients to manage their condition 

proactively. The primary objective of this research is to demonstrate that the DE is optimized. The T-LSTM 

model can outperform traditional predictive models used in CGM systems. We hypothesize that the 

integration of Transformer and LSTM models, optimized through a DE algorithm, will provide superior 

accuracy in predicting short-term glucose fluctuations, thus significantly benefiting diabetes management. 

The paper is organized as follows: Section 1 gives the introduction to this thesis; Section 2 details 

the methodology, including the description of the clinical data used, the theoretical framework of the T-

LSTM model, and the optimization process via the DE algorithm. Section 3 presents the results of the model 

testing, including a comparative analysis of the MSE values obtained against traditional models. Section 4 

discusses the implications of these results, potential limitations of the study, and directions for future 

research. Finally, section 5 concludes with a summary of findings and their implications for real-world 
applications. 

 

 

2. METHOD  

2.1.  Clinical data 

Data were collected from continuous glucose monitoring (CGM) devices. A sliding window 

technique was applied to segment the time-series data into input-output pairs suitable for modeling. The 

dataset was then divided into training, validation, and test sets to ensure robust model evaluation. The data 
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has been authorized by the Department of Endocrinology at The Affiliated Suzhou Hospital of Nanjing 

Medical University, located in Suzhou Municipal Hospital, Suzhou, China.  

The 2023 ADC diabetes diagnosis and treatment standards state that for non-pregnant adults without 

significant hypoglycemia, the ideal Glycated hemoglobin (A1C) target should be below 7% (53 mmol/mol) 

[24]-[26]. An A1C level above 7% is considered abnormal. As shown in Table 1, for the purpose of this 

research, 8 patients from the Department of Endocrinology at Suzhou Municipal Hospital in Jiangsu 

Province, China, were selected. These patients, all under 18 years old, had A1C levels exceeding 7.0%, were 
diagnosed with Type 1 Diabetes Mellitus (T1DM) as per ADA guidelines, and were using a CGM system. 

This study aims to demonstrate the effectiveness of the T-LSTM model in comparison to traditional models. 

Patient data confidentiality was maintained by excluding personal identifiers like names, ages, and 

hospital stay duration, and excluding data from patients with atypical gestational diabetes or those who 

experienced data transmission loss during the CGM process. Each patient underwent a glucose tolerance test 

upon hospital admission. The patients' A1C levels and islet function loss statuses varied, which was integral 

for model validation. The methodology involves algorithmically dividing patients’ data into training and 

testing sets and setting a threshold to optimize the algorithm model. 

 

 

Table 1. The standards for data choosing 
Research standards 2023 ADC diabetes diagnosis and treatment standards 

A1C Target <7% (53 mmol/mol) for non-pregnant adults 

Patient Selection 

Criteria 

Location: Department of Endocrinology, Suzhou Municipal Hospital, Jiangsu Province, 

China. 

Age Below 18 years. 

A1C Level >7.0%. 

Condition Diagnosed with T1DM as per ADA guidelines. 

Monitoring System Using CGM. 

Data Confidentiality Exclusion of personal identifiers and specific patient conditions. 

Patient Assessment Glucose tolerance test upon admission; varying A1C levels and islet function loss statuses. 

 

 

2.2.  Transformer-LSTM theory and formula 
Figure 1 depicts a composite machine learning architecture, integrating the functionalities of LSTM 

networks to create a hybrid T-LSTM model. This innovative model framework is divided into two subclasses 

derived from the `nn.Module` and `model Base`: the Transformer model subclass and the LSTM model 

subclass. The Transformer model subclass is intricately designed, featuring a series of components including 
encoder, decoder, projection head, and linear layer, which collectively contribute to its robust encoding 

capabilities. Complementing this, the LSTM model subclass extends the functionalities of the Transformer 

model by incorporating an LSTM layer, which enhances the model's ability to handle sequential data 

effectively. Both subclasses are equipped with a forward method, enabling forward propagation through the 

network and for computing outputs. The constructors within these subclasses are parameter-rich, providing 

versatility in model configuration. These parameters, input embedding, positional encoding layers, and 

dropout rates, are critical for tailoring the model to the specific characteristics of the dataset being analyzed.  

Model architecture: The T-LSTM network is designed to capture temporal dependencies in glucose 

time-series data. The architecture consists of multiple LSTM layers with a specified number of memory 

units, optimized to balance model complexity and performance. Previous studies have identified that an 

optimal number of memory units enhances prediction accuracy without leading to overfitting.  
Incorporating Transformer mechanisms allows the model to focus on different time steps in the 

input sequence, capturing global dependencies and improving prediction accuracy. The self-attention 

mechanism enables the model to weigh the importance of various input features dynamically. 

T-LSTM model uniquely integrates the capabilities of both Transformer and LSTM models: the 

Transformer is adept at processing long-term dependencies, while the LSTM excels in managing short-term 

dependencies. This contrasts with other models that typically rely solely on either LSTM or CNN 

architectures. Despite its innovative approach, the T-LSTM algorithm has not been directly compared to 

other models in existing research [27], [28]. The model is designed for immediate, short-term (within 1 hour) 

glucose predictions in Type 1 diabetes patients, while other models are utilized for different tasks or patient 

groups. The choice of a suitable deep learning model for glucose prediction is contingent upon the specific 

task requirements and the available data. The T-LSTM model algorithm is particularly effective for short-

term predictions, whereas other models may be more appropriate for longer-term forecasts or for use with 
different demographic groups. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Predict glucose values with DE algorithm optimized T-LSTM (QingXiang Bian) 

533 

 
 

Figure 1. The architecture of T-LSTM algorithm 

 

 

The underlying concept of the hybrid transformer model is its ability to interpret glucose data as a 

sequence of attributes, like time and glucose levels. The Transformer component is designed to analyze the 
interrelationships among these attributes, while the LSTM focuses on extracting localized features from the 

data. The outputs from both models are then merged to forecast subsequent glucose levels. 

The mathematical formulation for the T-LSTM model is presented as (1): 

 
𝑓𝑡 = 𝜎(𝑤𝑓 [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑓  ) (1) 

 

The components of the equation are defined as follows: 

𝑓𝑡  represents the forget gate, 

ℎ𝑡−1 denotes the output status of the previous node, 

𝑥𝑡  is the input at the current moment, 

𝜎 is the sigmoid activation function,  

𝑤𝑓 and 𝑏𝑓 is the learn rate parameters. 

 
𝑖𝑡 = 𝜎(𝑤𝑖 [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖  ) (2) 

 
𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑐  ) (3) 

 

The architecture features an input gate that determines the relevance of the current glucose input 

within the broader context. When the input gate is activated, it enables the model to disregard the current 

glucose input, thereby preventing the transmission of this input information to subsequent nodes or time 

steps. The input gate is composed of two segments, each activated by distinct activation functions: the 
sigmoid function and the tanh function, respectively. 
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𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (4) 

 
The 𝐶𝑡 variable in the model serves a crucial role in retaining both previous and current related 

information, preserving it over extended sequences. This capability effectively addresses the challenge of 

long-distance dependencies within the data. Once 𝐶𝑡 is updated, the information is subsequently propagated 

to the next node or time step.  

 
𝑜𝑡 = 𝜎(𝑤𝑜 [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑜  ) (5) 

 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)  (6) 

 
The function of the output gate, as delineated by formulas 5 and 6, is to deliver the final content of 

the model. This output is derived from variables 𝐶𝑡, ℎ𝑡−1 and 𝑥𝑡. Additionally, formula (6) incorporates a 

filtering mechanism 𝑜𝑡 ; this mechanism evaluates the utility of the information contained in 𝐶𝑡 , allowing the 

gate to selectively output information deemed useful while discarding what is considered non-essential. 

 
y = f (x, 𝑊𝑇 ∗ 𝑂𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟, 𝑊𝐿 ∗ 𝑂𝐿𝑆𝑇𝑀) (7) 

 
In the specified model, y represents the forecasting glucose values, while x denotes the input 

glucose sets. Furthermore, W𝑇  is identified as the weight matrix for the Transformer model, and W𝐿 , which 

serves as the weight matrix for the LSTM model.  

By utilizing past data, glucose prediction attempts to forecast future glucose levels. The T-LSTM 

model emerges as a potent solution for this task, synthesizing the strengths of both architectural frameworks. 

The Transformer model excels in capturing long-range dependencies due to its self-attention mechanisms, 

which allows it to examine different time stages within the input sequence. This ability is helpful in 

identifying intricate relationships and patterns found in glucose data. On the other hand, the LSTM is an 

architecture of RNN that is well-known for its effectiveness at modelling sequential data. The memory cell 

that allows for the storage and retrieval of information across extended sequences. This feature is especially 

useful for capturing the temporal relationships typical of glucose time series. 

 
2.3.  DE algorithm optimizes T-LSTM  
A. Optimization with DE algorithm 

The DE algorithm is employed to optimize the hyperparameters of the T-LSTM network, including 

the number of memory units, learning rate, and batch size. DE's population-based search strategy effectively 

explores the hyperparameter space, aiming to find the optimal configuration that minimizes prediction error. 

This optimization process enhances the model's ability to generalize across diverse patient data. 

B. Model training and evaluation 
The optimized T-LSTM model is trained using the Adam optimizer with a mean squared error 

(MSE) loss function. Performance is evaluated using metrics such as root mean square error (RMSE) and 

mean absolute percentage error (MAPE). Cross-validation techniques are employed to assess the model's 

robustness and prevent overfitting. 

C. Comparison with existing models 

The proposed hybrid model's performance is compared with traditional models like autoregressive 

integrated moving average (ARIMA) and other machine learning models, including support vector regression 

(SVR) and recurrent neural networks (RNNs). Studies have demonstrated that integrating DE with LSTM 

networks improves prediction accuracy over standard modeling approaches. 

The DE algorithm generates population individuals by encoding with floating point vectors. In the 

process of DE algorithm optimization, first, select two individuals from the parent individuals and perform 
vector difference to generate a difference vector; secondly, select another individual and sum the difference 

vector to generate an experimental individual; then, compare the parent individuals with the corresponding 

experimental individuals undergo a crossover operation to generate new offspring individuals; finally, a 

selection operation is performed between parent individuals and offspring individuals, and individuals that 

meet the requirements are saved to the next generation group. The formulation can be expressed as: 

 

Min (𝑥1, 𝑥2, ..., 𝑥𝑑) (8) 

 

s.t  𝑋𝑗
𝐿≤𝑥𝑗≤𝑋𝑗

𝑈, j = 1,2, …, D (9) 
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Where, D represents the dimension of the solution space, 𝑋𝑗
𝐿 and 𝑋𝑗

𝑈 respectively represent the Upper and 

Lower limitations on the value range of the j-th component 𝑥𝑗 . 

As shown in Figure 2, the flowchart illustrates the optimization process of a T-LSTM model for 
glucose prediction using the DE algorithm, beginning with Initialization where a diverse population of 1 to 

50 solutions is generated, each defined by specific hyperparameters such as a learning rate ranging from 

0.001 to 0.01, 1 to 3 LSTM layers, hidden layer sizes between 50 and 200 units, a dropout rate of 0.2 to 0.5, 

and a batch size from 32 to 128. In the Mutation step, mutant vectors are created by adjusting these 

hyperparameters using a scaling factor between 0.5 and 0.8, applied to differences between randomly 

selected solution pairs, introducing variability. The Crossover phase mixes these mutants with original 

vectors at a crossover rate of 0.7 to 0.9, effectively blending traits to potentially enhance solution efficacy. 

Selection evaluates these new configurations via the MSE fitness function, choosing those with lower MSE 

for progression, thereby optimizing predictive accuracy. If the Check Convergence criteria of a maximum of 

100 to 200 generations or an MSE threshold are not met, the process cycles again from mutation, else it 

concludes with Finalize Model, where the T-LSTM’s hyperparameters are fine-tuned and ready for 

deployment, ensuring the model’s capability to provide precise glucose level forecasts essential for effective 
diabetes management. The flowchart details the optimization of proposed T-LSTM model using the DE 

algorithm for glucose prediction. It starts by initializing a population with specific hyperparameters, which 

are then refined through mutation and crossover steps based on performance measured by MSE. This 

iterative process continues until convergence criteria are met, resulting in a finely tuned model optimized for 

accurate glucose forecasting, enhancing diabetes management. 

 

 

 
 

Figure 2. DE optimization diagram 
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3. RESULTS AND DISCUSSION 

3.1.  Results of MSE comparison 

To evaluate the efficacy of the T-LSTM prediction model, refer to Table 1, which compares six 

models utilized in this study based on their MSE. The formula for calculating the MSE is provided below: 

 

𝑀𝑆𝐸 =
1

𝑁
 ∑  𝑁

𝑙=1 ( 
𝛬
𝑦

(𝑡|𝑡 − 𝑃𝐻) −  𝑦(𝑡))2 (30) 

 

In the equation, 
Λ
𝑦

(𝑡|𝑡 − 𝑃𝐻) represents the forecasted glucose level at time t,  𝑦(𝑡) denotes the real time 

measured value of glucose at the corresponding time t. 

The RNN maintains memory via hidden states within each node. These hidden states function as 

memory units and are updated with each new input, integrating information from the current input as well as 

the prior hidden state. This mechanism allows the RNN to preserve information from previous sequence 

steps. In this context, the MSE value over 15 minutes is recorded at 1.41. Additionally, there are advanced 

versions of RNNs, such as GRU and LSTM networks, which enhance the foundational model. These versions 

solve concerns such as the vanishing gradient problem, which can inhibit learning over long sequences. For 

these advanced networks, the MSE values over 15 minutes are 1.50 and 1.75, respectively. The stacked 

LSTM represents a further development of the standard LSTM model. This method stacks multiple LSTM 

layers atop each other, resulting in a 15-minute MSE value of 1.69. The bidirectional LSTM (Bi-LSTM) uses 

context from both the past and the future by processing the input sequence forwards and backwards at the 
same time. It comprises two distinct LSTM units: one processes the sequence from start to finish, while the 

other does so from finish to start. This allows the Bi-LSTM to detect dependencies in both directions, which 

is useful for applications like named entity recognition and sentiment analysis. However, when applied to 

lengthy time series data, this model achieves an MSE value of 1.72, indicating suboptimal performance. 

Based on the analysis presented in Table 2, it is evident that the six models' prediction algorithms exhibited 

varying behaviors when applied to the glucose data of the same patient. Notably, the Transformer-LSTM 

model, optimized using a Genetic algorithm, demonstrated superior performance on average. This was 

evident when comparing the MSEs calculated for each patient individually, consistently outperforming the 

traditional models. Consequently, the DE optimised T-LSTM model is more capable of forecasting glucose 

values which suggesting its enhanced suitability for applications in this domain. 

When benchmarked against traditional models such as ARIMA and SVR, as well as other machine 
learning models like convolutional recurrent neural networks (CRNN), the proposed hybrid model 

demonstrated superior performance. For instance, studies have reported that CNN-LSTM architectures can 

achieve up to 94.71% accuracy in predicting glucose levels at a 90-minute horizon [29]. Similarly, models 

integrating Transformer components have shown improved prediction accuracy by effectively capturing 

global dependencies in time-series data [30]. 

Figure 3 displays a 15-minute forecast result of glucose. The black dashed line represents the actual 

changes in glucose levels, while the red dashed line indicates the forecasted glucose values. The 

Transformer-LSTM algorithm, as demonstrated here, can predict future glucose changes with considerable 

accuracy, closely aligning with the real glucose fluctuations. 

The T-LSTM model's predictions for the patient's blood glucose in 45 minutes, based on the CGM 

data of sample 1, are illustrated in Figures 3-5. The red dashed line depicts the expected values, whereas the 

black dashed line represents the actual glucose levels. When the three numbers are compared, the forecasts' 
accuracy decreases as the prediction interval is larger. In other words, the association between accuracy and 

forecast period duration has decreased significantly. 

Figure 6 illustrates the process of K-Fold cross-validation, a method used to assess a model's 

performance on a dataset by dividing it into multiple folds, as implemented in the provided code. Cross-

validation ensures that each data point has an opportunity to be part of the training and testing phases, 

providing a robust measure of model accuracy and reliability across different subsets of data. 

 

 

Table 2. MSE values 
 115min 330min 445min 

RNN 11.41 22.34 22.71 

GRU 11.50 22.16 22.51 

LSTM 11.75 22.43 22.75 

Stacked LSTM 11.69 22.49 22.74 

Bidirectional LSTM 11.72 22.50 22.90 

DE- T- LSTM 00.96 11.54 22.31 
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Figure 3. 15 minutes forecast 

 
 

 
 

Figure 4. 30 minutes forecast 

 
 

In this process, the dataset is first shuffled and split into two primary sets: training and test. The 

training set is then further divided into K folds (here, 14 folds in the code), which allows the model to be 

trained on (K-1) folds and validated on the remaining one. This rotation continues until each fold has served 

as the validation set once, and the model's performance is averaged across all folds to obtain a final score. 

The code applies this cross-validation technique to compare the performance of two models: 

Transformer-LSTM and ARIMA. For each fold, a new instance of the Transformer-LSTM model is 
initialized, trained on the training subset, and validated on the test subset within the fold. The mean loss for 

each fold is recorded in Figure 7, and results are visualized across folds to understand the models' 

performance consistency and accuracy. By using K-fold cross-validation, the code ensures that the model is 

tested on all data points, providing a comprehensive assessment of its generalizability and highlighting any 

data-dependent performance variations. This image complements the code by visually summarizing the K-

fold process, from initial dataset shuffling to sequential fold evaluation, highlighting how this approach 

provides a reliable measure of model accuracy and generalization across various subsets of data. 
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Figure 5. 45 minutes forecast 

 
 

 
 

Figure 6. K-folder cross validation 

 

 

The boxplot and line plot in Figure 7(a) indicate that the Transformer-LSTM model may provide 
slightly more reliable and consistent predictions of blood glucose levels due to its lower median loss and 

smaller IQR. However, the fold-specific variations in Figure 7(b) observed in the line plot suggest that 
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ARIMA can occasionally achieve lower losses depending on the data subset, though it is less consistent 

overall. This comparative analysis highlights that Transformer-LSTM may be a better choice for general 

applications in blood glucose prediction due to its balance of accuracy and stability. 

 

 

 
(a) 

 

 
(b) 

 

Figure 7. Comparison of model losses using two visualization methods; (a) Boxplot showing the distribution 

of loss values for T-LSTM and ARIMA models (b) Line plot illustrating the loss values across 14 validation 

folds for both models 

 

 

Figure 8 displays a line graph representing the change in fitness across 30 iterations. The x-axis 

labelled "Iteration," ranges from 1 to 30, indicating the sequence of iterations. The y-axis, labelled "Fitness," 

is scaled from 0.96 to 1.10, which measures the fitness value. The line graph shows a pronounced initial 

decrease in fitness from iteration 1 to iteration 8, after which the reduction in fitness value becomes less steep 
and more gradual from iteration 9 onwards, eventually plateauing near iteration 22 through 30. The visual 

presentation suggests a quick initial optimization followed by a slower, more incremental improvement or 

stabilization in the fitness value as iterations progress. This pattern could indicate this T-LSTM algorithm 

approaching an optimal solution or a limitation in further improvement after significant initial gains. 

As shown in Table 3, the improvement after 30 generations of optimization, all the results had been 

optimized. On average, there's a significant reduction with 28% improvement in MSE across all patients” 

post-optimization, indicating a strong overall efficacy of the optimization process. When a patient's (Patient 

6) blood glucose levels stabilize and remain within a relatively normal range over a long period, using the DE 

optimized model yields better optimization results. This indicates that the DE optimization is more effective 
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in stable blood glucose scenarios, because the model can more accurately predict and adapt to the consistent 

patterns observed in glucose levels when they are within normal ranges.  

 

 

 
 

Figure 8. Iteration-fitness curve 

 
 

Table 3. DE algorithm optimization results  
Patient ID MSE before optimization MSE after optimization Improvement (%) Comments 

Patient 1 1.244 0.987 21% Notable improvement 

Patient 2 0.646 0.477 26% Notable improvement 

Patient 3 0.657 0.585 11% Improvement observed 

Patient 4 0.635 0.432 32% Responds well to changes 

Patient 5 1.355 1.242 8% Minor improvement 

Patient 6 1.177 0.521 56% Significant improvement 

Patient 7 0.858 0.507 41% Good improvement 

Patient 8 0.927 0.674 27% Notable improvement 

Average 0.849 0.613 28% NA 

 

 

In conclusion, the results for Patient 1 using the DE optimized T-LSTM model, with predictions at 

15, 30, and 45 minutes, shows a high consistency with the actual glucose values. The MSE results for T-

LSTM about patient are 0.96, 1.54, and 2.31, outperforming those of the standard Transformer model.  

The DE optimized T-LSTM model demonstrates superior predictive performance in estimating blood glucose 

levels. These cases indicate that the T-LSTM model's performance varies significantly with changes in 

patient lifestyle and health status, underscoring the need for personalized diabetes management tools.  
The model’s superior handling of temporal data points, facilitated by the LSTM component, makes it adept at 

adapting to patient-specific fluctuations in glucose levels.  
The high accuracy rates observed have significant meaning for Clinical Implications, particularly 

within the clinically acceptable zones, underscore the potential of the proposed model for real-world diabetes 

management. Accurate prediction of blood glucose levels can significantly aid in timely insulin 

administration and dietary planning, thereby reducing the risks of hypo- and hyperglycemia. However, it is 

essential to acknowledge that individual variability exists, and personalized adjustments may be necessary to 

optimize the model's performance for different patients. 

 

3.2.  Discussion 

The results of this study highlight the effectiveness of the DE algorithm-optimized T-LSTM model 

in predicting glucose levels with improved accuracy. Compared to traditional methods such as RNN, GRU, 
and standard LSTM models, the proposed model achieved lower MSE values across 15, 30, and 45-minute 

prediction intervals. The integration of Transformer components enabled the model to capture global 

dependencies in glucose fluctuations, while the LSTM layers preserved short-term temporal patterns. This 

combination resulted in a more robust and adaptive model capable of providing reliable short-term glucose 
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forecasts. The findings confirm that optimizing the T-LSTM architecture with the DE algorithm significantly 

enhances predictive performance, making it a promising tool for real-time diabetes management. 

When compared with existing literature, the proposed model demonstrates notable improvements in 

predictive accuracy. Previous studies have explored CNN-LSTM and ARIMA models for glucose 

forecasting, yet these approaches often struggled with delayed responses to rapid changes in glucose levels. 

Our findings suggest that DE-optimized T-LSTM outperforms these models by dynamically adjusting 
weights and learning rates to optimize prediction accuracy. However, the study also revealed certain 

limitations, such as reduced accuracy in longer prediction horizons and increased variability among different 

patients. Unexpected results were observed in some cases where glucose fluctuations were heavily influenced 

by external factors like meal intake, physical activity, and insulin response—variables that were not explicitly 

included in this model. This suggests that incorporating additional physiological and behavioral parameters 

could further enhance prediction reliability. 

Future research should focus on refining the model by integrating real-time patient data, including 

dietary intake, insulin dosage, and physical activity levels. Additionally, implementing adaptive learning 

mechanisms that allow the model to self-adjust based on incoming data could improve long-term forecasting 

capabilities. Expanding the dataset to include a larger and more diverse patient population will be critical in 

validating the model’s generalizability. Ultimately, this study paves the way for the integration of AI-driven 

glucose prediction models into clinical practice, enabling personalized diabetes management solutions that 
can enhance patient outcomes and reduce the risks associated with glucose level fluctuations. 

 

 

4. CONCLUSION  

This study successfully demonstrated the efficacy of a DE algorithm-optimized T-LSTM model for 

predicting future glucose levels using data from CGM systems. The model consistently outperformed 

traditional predictive models in terms of MSE across multiple time intervals, highlighting its superior 

accuracy and reliability in real-time glucose forecasting. The findings from this research provide compelling 

evidence for the potential integration of advanced machine learning techniques like the T-LSTM model into 

CGM systems. Such integration can significantly enhance the predictive accuracy of these systems, thereby 

allowing for better management of diabetes through timely interventions. This can lead to a substantial 
improvement in patient quality of life by minimizing the risk of episodes of hypo- and hyperglycemia. 

While the results are promising, the study was conducted on a relatively small dataset and over short 

predictive intervals. Future research should focus on validating the model over larger and more diverse 

populations, as well as extending the predictive horizon to assess the long-term effectiveness of the model. 

Additionally, integrating more personalized patient data, such as dietary habits, physical activity, and other 

health metrics, could further refine the model’s accuracy and applicability. Looking forward, we plan to 

expand our research to include multi-modal data integration, where factors such as insulin doses, meal intake, 

and physical activity are considered in conjunction with CGM data to enhance the model's predictive 

capability. We also aim to develop a real-time adaptive system that can update its predictions based on live 

data feeds, thereby providing even more precise glucose level forecasts. Collaborations with biomedical 

companies and clinical trials will be sought to facilitate the practical application and commercialization of the 
improved CGM systems. 
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