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 This paper delves into binarized neural networks (BNNs) tailored for 

resource-constrained edge devices. BNNs harness binary weights and 

activations to amplify efficiency while upholding accuracy. Across diverse 

network configurations, BNNs consistently outshine traditional neural 

networks (NNs). A pioneering BNN architecture is developed in LARQ, 

achieving an impressive 61% accuracy on the MNIST dataset through binary 

quantization, weight clipping, and pointwise convolutions. Implementation 

on the Xilinx PYNQZ2 FPGA board shows far quicker classification rates, 

with a maximum inference time of 0.00841 milliseconds per image, 

approximately 10,000 images being classified in this length of time. The 

time taken per image represents approximately 0.01% of the total inference 

time. This underscores BNNs' potential to redefine real-time edge computing 

applications. The paper makes significant strides by elucidating BNNs' 

performance superiority, proposing an innovative architecture, and 

validating its prowess through real-world deployment. These findings 

underscore BNNs as agile, high-performance models primed for edge 

computing, fostering a new era of real-time processing innovations. 
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1. INTRODUCTION 

Convolutional neural networks (CNNs) are highly effective for computer vision tasks but come with 

significant computational demands due to their large number of parameters and reliance on floating-point 

operations [1]. This makes them resource-intensive, requiring substantial processing speed and memory, 

which limits their deployment to high-performance computing platforms like central processing unit (CPU) 

or graphics processing unit (GPU) [2]. Field programmable gate arrays (FPGAs) offer a promising alternative 

by providing custom hardware accelerators that enhance computational efficiency and energy savings 

through parallelism and reconfigurability [3]. Traditional computing architectures have limitations when it 

comes to addressing the computational needs and efficiency requirements of contemporary deep learning 

applications [4]. GPUs have extended tensor-based deep learning models by (i) accelerating deep neural 

network training and testing as well; yet GPUs still fall short when it comes to handling very complex DNNs 

due to tight memory needs, long transfer times among memory hierarchy parts, and limited parallelism on 

certain types of convolutional/deep residual networks. A CPUs, which was designed to be general-purpose in 

https://creativecommons.org/licenses/by-sa/4.0/
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nature are not optimized for efficiently responding to the massive parallelism associated with deep learning 

workloads due to this reason their performance lags as compared to specialized hardware. Moreover, these 

architectures are typically constrained by energy efficiency requirements for the training of large models and 

therefore may not be suitable for high-performance deep learning at a scale. As deep-learning models become 

larger and more intricate, however, specialized hardware becomes increasingly necessary-FPGAs or custom 

artificial intelligence (AI) accelerators like Google's TPUs offer an architecture to provide better throughput 

for memory-bound applications, reduce latency, as well as being far faster at matrix-heavy operations that 

can underpin many of these tasks. These are designed specifically for deep learning tasks, but they too have 

challenges in meeting the flexibility, programmability and scalability needs of fast-evolving naïve networks. 

These constraints have been brought to light by the growing demand for AI-based solutions. These 

conventional models frequently suffer from low accuracy and large inference times, making them inefficient 

for neural network classification, especially on resource-constrained edge devices [5]. Binarized neural 

networks (BNNs) address these challenges by using binary weights and activations, drastically reducing 

memory usage and simplifying computations [6]-[10]. This results in faster operations and greater efficiency, 

particularly suited for FPGA implementations [11]. Advanced techniques such as LARQ improve the 

performance of BNNs by optimizing activation quantization, balancing accuracy and efficiency. Practical 

validations have shown that BNNs can outperform traditional neural networks in real-time and edge 

computing scenarios, making them a viable solution for deploying AI in resource-constrained environments.  

In recent state-of-the-art research, many relevant studies have been proposed to achieve a balanced 

trade-off between model accuracy and computational efficiency. The research work carried out by Phipps et al. 

[12] focuses on improving the efficiency of 8 layers of BNNs using the LARQ platform offering both 

accuracy and efficiency. The work carried out by Sakr et al. [13] focuses on developing a BNN framework 

using LARQ and the GCC compiler within STM32CubeIDE, targeting ARM Cortex-M microcontrollers.  

Lee et al. [14] have introduced a framework designed to optimize fully homomorphic encryption (FHE) for 

private machine learning inference using ternary neural networks. Zhang et al. [15] deployed a BNN on the 

Xilinx ZYNQ board, focusing on achieving high performance in edge applications. In the study model of 

Salauyou [16], presents a novel algorithm aimed at optimizing the area and depth of FPGA designs focusing 

on efficiently mapping logic functions to FPGA resources while minimizing the critical path depth. Another 

study by Zhu et al. [17] presented a technique called BNN-DoReFa, which uses ternary weights and 

activations with dynamic range scaling factors, achieving similar accuracy to traditional neural networks 

while reducing the memory footprint and computation requirements. Luo et al. [18] have introduced the 

concept of BinaryDilatedDenseNet, which is a neural network model designed for efficient human activity 

recognition (HAR) at the network edge using network binarization for memory usage and reducing 

computational complexity. Shi et al. [19] focuses on enhancing the performance of binarized convolutional 

neural networks (BCNNs) through the use of dynamic partial reconfiguration on disaggregated FPGAs with 

significant reduction of inference time and energy consumption compared to traditional fixed 

implementations. A study by Li et al. [20] presented a technique called quantized CNN, which uses binary 

weights and activations with quantized scaling factors, achieving comparable accuracy to traditional neural 

networks while reducing the memory footprint and computation requirements. Guidotti et al. [21] presented 

an approach for verifying BNNs using satisfiability modulo theories (SMT) that involves encoding the 

verification problem into SMT formulas and leveraging the power of SMT solvers to prove properties 

about BNNs. 

From the viewpoint of the identified research problem, it is noted that past research on BNNs has 

laid a solid foundation for implementing efficient neural networks in resource-constrained environments, 

particularly for edge devices. However, the trade-off between accuracy and computational efficiency remains 

an open problem. Despite the promising results, there are still several challenges that need to be addressed in 

the optimization of BNNs for hardware implementation on the PYNQ Z2 board. Therefore, further research 

is needed to develop new approximation techniques that can achieve better accuracy while maintaining the 

benefits of BNNs. In summary, BNNs has been a major research area in recent years. Several approximation 

techniques have been proposed to overcome the loss of accuracy associated with using binary values, and 

various techniques have been proposed to optimize the performance of BNNs on the PYNQ Z2 board.  

The prime aim of the proposed study is to design a novel BNN model towards assisting the task 

pertaining to pattern recognition over a standard FPGA board. This paper aims to analyze the impact of 

various layer architectures and neuron densities on BNN performance, providing crucial insights for 

designing efficient BNNs for resource-constrained edge devices. By balancing efficiency and accuracy, we 

seek to demonstrate the relevance of BNNs for pattern recognition tasks on platforms like the PYNQ Z2 

FPGA Board. The value-added contribution of the study are: i) to perform classification of an image using 

deep learning model over a real-time hardware platform, ii) to develop a simplified and progressive 

sequential modelling towards accomplishing better training stability, and iii) to carry out comprehensive 
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analysis of outcomes towards exhibiting model robustness against existing schemes frequently reported in 

literatures. 

In the suggested system, a BNN suited for resource-constrained edge devices is designed, trained, 

and deployed. By utilizing the LARQ framework, the system incorporates weight clipping, binary 

quantization, and pointwise convolutions to drastically lower memory and processing demands without 

sacrificing accuracy. The model exhibits real-time picture classification skills after being installed on the 

Xilinx PYNQ Z2 FPGA board and trained on the MNIST dataset. Utilizing hardware acceleration, the system 

processes up to 10,000 pictures per second, achieving impressive speed gains that make it an extremely 

effective option for low-latency applications in edge computing environments. 

 

 

2. METHOD 

The design of the current research is comprehensively explained. The first step of the study involves 

a comprehensive characterization of traditional NNs and BNNs. The objective is to evaluate the impact of 

varying network configurations on performance metrics such as accuracy and loss. The necessity to create 

effective neural network models for resource-constrained environments especially, edge computing scenarios 

where memory and compute resources are scarce-is the main driving force behind the use of BNNs in this 

study. Because they employ high-precision weights and activations, traditional neural networks, despite their 

power, frequently need a significant amount of memory and processing power, making them unsuitable for 

deployment on devices with limited resources, such edge devices. By lowering the accuracy of both weights 

and activations to binary values (-1 or +1), BNNs provide a convincing way around these restrictions while 

also drastically lowering the computational complexity and memory footprint of the model. Because of this, 

BNNs can conduct real-time inference on devices with constrained processing power because they are 

quicker and use less memory than standard neural networks. For the following reasons, we decided against 

using alternative active networks or backpropagation neural networks, which are conventional neural 

networks trained using conventional gradient descent techniques:  

− Computational efficiency: when implemented on edge devices with constrained processing capacity, 

backpropagation-based networks-especially those with full-precision weights-frequently have large 

computational costs. The BNN is a better fit for the intended deployment platform because of its binary 

format, which enables effective training and inference. 

− Memory constraints: because BNNs require less memory, they are more suited for edge devices with 

constrained memory. Full-precision models are less appropriate for deployment on such platforms since 

they frequently need a lot more RAM.  

− Real-time processing: the inference speed becomes crucial as we strive for real-time performance on the 

edge. In comparison to conventional networks, BNNs' hardware acceleration, especially on platforms like 

the PYNQ Z2 FPGA, enables significantly faster inference times. 

The main reason for the adoption of BNNs in this work is their effectiveness in terms of 

computation, memory usage, and inference speed. This makes them especially suitable for real-time 

applications involving resource-constrained edge devices. Even while they are useful, traditional neural 

networks do not provide the same efficiency trade-offs, particularly when aiming for edge devices. 

Building on the insights from the characterization phase, the second phase focuses on designing a 

novel BNN, which involves determining the number of layers, the number of neurons per layer, and the 

activation function in LARQ. The final phase involves demonstrating the practicality and effectiveness of the 

designed BNN model by implementing it in a real-time application on the PYNQZ2 FPGA board for pattern 

recognition using the MNIST dataset. This involves programming the board to perform the operations of the 

BNN. The PYNQZ2 board is a Xilinx board that can be programmed using Python. Binarization is a critical 

preprocessing step in many image analysis and pattern recognition algorithms. For example, in document 

image processing, binarization is used to convert scanned documents into a binary image, which can then be 

processed to extract text and other information from the document. In image segmentation, binarization is 

used to separate an image into distinct regions, such as separating the foreground from the background in a 

scene. In computer vision, binarization is used to convert images to a format that can be processed by 

machine learning algorithms for tasks such as object detection and recognition. The training process starts by 

importing the necessary libraries that are TensorFlow and LARQ as shown in Figure 1. The MNIST dataset 

is next loaded using TensorFlow's built-in function. The dataset is split into training and test sets, allowing 

the model to learn from one set of data and evaluate its performance on another. Before feeding the data into 

the model, it needs to be preprocessed. The images are reshaped to a consistent size and normalized so that 

the pixel values range from -1 to 1. This normalization helps in better convergence during training and 

ensures that the input data is on a similar scale. 
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Figure 1. LARQ training process 

 

 

In this paper, a deep learning model is implemented for image classification using TensorFlow and 

LARQ, a library for quantized neural networks. After all the layers are added to the model, a summary of the 

model is printed using the LARQ function as shown in Table 1. The model is trained and evaluated on the 

MNIST dataset, which consists of grayscale images of handwritten digits from 0 to 9 [22]. The training 

process starts by importing the necessary libraries that are TensorFlow and LARQ. TensorFlow is a popular 

deep learning framework, and LARQ provides tools for quantizing neural network layers, which reduces 

memory and computation requirements. The MNIST dataset is next loaded using TensorFlow's built-in 

function. The dataset is split into training and test sets, allowing the model to learn from one set of data and 

evaluate its performance on another. Before feeding the data into the model, it needs to be preprocessed. The 

images are reshaped to a consistent size and normalized so that the pixel values range from -1 to 1. This 

normalization helps in better convergence during training and ensures that the input data is on a similar scale. 

The model is then created as a Sequential model, which allows for a linear stack of layers. The first 

layer added to the model is a QuantConv2D layer. This layer performs convolutional operations, which help 

in detecting different patterns and features in the images. The layer has 32 filters, each using a 3x3 kernel to 

scan through the images. The weight quantization applied to this layer reduces the precision of the weights, 

making the model more efficient and faster to compute. After the QuantConv2D layer, a MaxPooling2D 

layer is added. This layer performs downsampling by selecting the maximum value within a specific region 

of the feature map. Max pooling helps in reducing the spatial dimensions and capturing the most important 

information from the previous layer. To improve the model's training stability and convergence speed, a 

BatchNormalization layer is added. This layer normalizes the outputs of the previous layer and maintains a 

running mean and variance during training, helping in faster and more stable convergence. The model is then 

expanded with another QuantConv2D layer, followed by a MaxPooling2D layer and another 

BatchNormalization layer. This pattern is repeated to create a deeper and more powerful model, allowing it to 

learn more complex patterns and features from the data. 

 

 

Table 1. Model summary 
Sequential summary 

Total params 93.6 k 

Trainable params 93.1 k 
Non-trainable params 468 

Model size 13.19 KiB 

Model size (8-bit FP weights) 11.82 KiB 
Float – 32 equivalent 365.45 KiB 

Compression ratio of memory 0.04  

Number of MACs 2.79 M 
Ratio of MACs that are binarized 0.9303 

 

 

The quantization options for the quantized layers are defined, which include the number of bits used 

for quantizing weights and activations. This helps in controlling the trade-off between model accuracy and 

efficiency. Higher quantization bit-depth can retain more accuracy but requires more memory and 

computation, while lower bit-depth sacrifices some accuracy for efficiency gains. The next layers added to 

the model are QuantDense layers, which are fully connected layers with weight quantization applied. The 

first QuantDense layer has 64 units, and the second one has 10 units, representing the number of classes in 
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the MNIST dataset (0 to 9 digits). The final QuantDense layer outputs the predicted probabilities for each 

class, and the output with the highest probability is considered the predicted class. 

 

 

3. RESULTS  

The experimental setup using PYNQZ2 FPGA board is as shown in Figure 2. Python and the Xilinx 

PYNQ framework, which allows users to create and implement FPGA applications, were used to program the 

PYNQ Z2 FPGA board in our experiments. The following actions were part of the deployment process: i) 

using the specified URL and password to connect to the FPGA board, ii) starting a Jupyter notebook on the 

PYNQ Z2 board, which made it possible to communicate with the software and hardware elements, iii) using 

the MNIST dataset, the BNN model is trained using the LARQ framework and then used for real-time image 

classification, and iv) tracking the model's performance during deployment, including classification rates and 

inference speeds, which were noted and documented in the study. The software package deployed are as 

follows: 

− TensorFlow: the BNN model is developed and trained using TensorFlow, an open-source deep learning 

platform. Here, the BNN was implemented and trained on the MNIST dataset using this versatile 

framework for neural network design and training. 

− LARQ: this library is specifically designed for quantized and BNNs. It is perfect for the BNNs utilized in 

this study since it offers effective implementations for binary weights and activations. LARQ was linked 

with TensorFlow to define and train the model, and it played a key role in enabling the binary 

quantization process. 

− PYNQ framework: we used the python for Zynq (PYNQ) framework, which enables Python-based 

development for FPGA platforms based on Xilinx Zynq, for FPGA-based deployment. The trained BNN 

model was deployed to the PYNQ Z2 FPGA board using this framework, which offers an intuitive 

interface for interfacing with the FPGA hardware. 

− Jupyter Notebook: the model was developed, trained, and assessed interactively using the Jupyter 

Notebook environment. For hardware deployment, this environment also enables smooth integration with 

the PYNQ Z2 board. 

Implementing object identification using BNNs on the PYNQ Z2 FPGA board is a detailed process 

that begins with connecting to the board using a designated URL and password. Launching a Jupyter 

notebook on the board allows users to transition from planning to practical model development and 

experimentation. The core of the process involves training a dataset using the LARQ BNN framework within 

the Jupyter notebook environment, leveraging the capabilities of the FPGA board for efficient computation 

as. Monitoring power consumption accurately is crucial, necessitating the use of an external device for 

measurement. The implementation journey for a novel BNN tailored for edge devices initiated with BNN 

developed in LARQ as shown in Figure 2. Binarization techniques reduce computational complexity by 

converting weights and activations into binary values (-1 or +1). Adapting convolutional layers and 

addressing challenges posed by batch normalization are vital steps in the design process. Fine-tuning the 

architecture through techniques like quantization-aware training enhances model accuracy. The input layer 

processes images followed by Layer 1 with sequence of operations like quant_conv2d, maxpooling2D, batch 

normalization to stabilize the learning process. Thorough testing, validation, and continuous monitoring 

ensure optimal performance in real-world conditions. 

 

 

 
 

Figure 2. Experimental setup using PYNQZ2 board 
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The graphical analysis has been done using above data and the following graphs were obtained as 

shown in Figure 3 from which we can infer that BNN gave better accuracy than NN for same 490 neurons in 

Layer 4 using MNIST dataset. The point corresponding to the highest value of the slope gives the optimal 

solution as dy/dx(constant)=0. The Table 2 presents a comparison of the performance of NN and BNN on 

two benchmark datasets: MNIST in Table 2(a) and CIFAR-10 in Table 2(b). The performance metrics 

considered are test loss, test accuracy, and time taken for training. For both NN and BNN, increasing the 

number of hidden layers generally improves test accuracy and reduces test loss. BNN consistently 

outperform NN in terms of test accuracy and time taken. 

 

 

 
 

Figure 3. Graphical analysis of neurons versus accuracy for NN and BNN 

 

 

Table 2. Comparison of layers, neurons test accuracy and test loss for (a) MNIST and (b) CIFAR-10 dataset 

(a)  (b) 
MNIST  CIFAR-10 

Number 
of hidden 

layer 

Number 
of 

neurons 

Test loss 
Test 

accuracy 

Time 

(ms) 
 

Number 
of hidden 

layer 

Number 
of 

neurons 

Test loss 
Test 

accuracy 

Time 

(ms) 

1(NN) 42 0.13464 
(13.46%) 

0.95969 
(95.96%) 

13  1(NN) 42 0.5002 
(50.02%) 

0.86750 
(86.75%) 

15 

1(BNN) 0.12050 

(12.05%) 

0.96219 

(96.21%) 

18  1(BNN)  0.5364 

(53.64%) 

0.8967 

(89.67%) 

19 

2(NN) 106 0.11840 

(11.84%) 

0.96350 

(96.35%) 

15  2(NN) 106 0.6034 

(60.34%) 

0.8711 

(87.11%) 

17 

2(BNN) 0.10879 

(10.87%) 

0.96649 

(96.64%) 

23  2(BNN)  0.5789 

(57.89%) 

0.9229 

(92.29%) 

25 

3(NN) 234 0.12039 

(12.03%) 

0.96600 

(96.60%) 

15  3(NN) 234 0.5705 

(57.05%) 

0.9494 

(94.94%) 

17 

3(BNN) 0.10853 

(10.85%) 

0.96890 

(96.89%) 

24  3(BNN)  0.5664 

(56.64%) 

0.9757 

(97.57%) 

26 

4(NN) 490 0.11025 
(11.02%) 

0.96719 
(96.71%) 

16  4(NN) 490 0.4715 
(47.15%) 

0.9642 
(96.42%) 

18 

4(BNN) 0.09223 

(9.22%) 

0.97070 

(97.07%) 

28  4(BNN)  0.4565 

(45.65%) 

0.9820 

(98.20%) 

30 

5(NN) 1002 0.15613 

(15.61%) 

0.95850 

(95.85%) 

26  5(NN) 1002 0.6098 

(60.98%) 

0.7348 

(73.48%) 

28 

5(BNN) 0.11560 
(11.56%) 

0.96799 
(96.79%) 

46  5(BNN)  0.6141 
(61.48%) 

0.7885 
(78.85%) 

48 

6(NN) 2026 0.16659 

(16.65%) 

0.95590 

(95.59%) 

70  6(NN) 2026 0.6095 

(60.95%) 

0.7444 

(74.44%) 

72 

6(BNN) 0.12319 

(12.13%) 

0.96740 

(96.74%) 

113  6(BNN)  0.5941 

(59.41%) 

0.8955 

(89.55%) 

118 
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Table 2 presents a comparative analysis of layers, neurons, test accuracy, and test loss for the 

MNIST and CIFAR-10 datasets. The results highlight the relationship between network complexity and 

performance, demonstrating that increasing layers and neurons generally improves accuracy, albeit with 

diminishing returns. Notably, the CIFAR-10 dataset exhibits a more pronounced trade-off between accuracy 

and test loss compared to MNIST, reflecting its higher complexity. The best performance is achieved by the 

four-layer BNN, which achieves a test accuracy of 97.07% with a test loss of 0.09223. The trend for both NN 

and BNN is similar to MNIST, with increasing hidden layers leading to improved performance. However, the 

difference between NN and BNN is less pronounced on CIFAR-10. The four-layer BNN again achieves the 

best performance, with a test accuracy of 98.20% and a test loss of 0.4565. The study demonstrates this 

advantage with an impressive 97.61% accuracy rate achieved on the MNIST dataset, showcasing BNNs' 

capability for both rapid processing and high classification accuracy.  

Table 3 showcases the outcome accomplished by implementing specific dataset and its score of 

improvization in contrast to [23]-[26]. Table 4 showcases reduction of time from hardware platform 

perspective for both NN and BNN use-cases. With a classification time of 0.00841 milliseconds per image, 

approximately 10,000 images were classified during the inference time. The time taken per image represents 

approximately 0.01% of the total inference time. When comparing the classification rates of different 

inference configurations, with W1A1 as the baseline at 100%, the first run of W1A2 shows a significant drop 

in performance, achieving only 20.80% of W1A1's speed (2.59 images per second compared to 12.45 images 

per second for W1A1). However, in a subsequent run, W1A2 exhibited a massive increase in speed, 

processing at an astonishing rate of 955,194.78% faster than W1A1 as. In conclusion, this research paves the 

way for a transformative approach to image classification. By leveraging BNNs on hardware platforms, we 

can achieve significant improvements in processing speed, accuracy, and overall computational effectiveness, 

particularly in scenarios where these factors are critical. The findings demonstrate a dramatic disparity in 

processing speed between software and hardware. Software processing struggles at a rate of roughly 12 

images per second, whereas hardware like the PYNQ Z2 FPGA board achieves a processing rate of a 

staggering 41,667 images per second. The time taken for processing a single image on the PYNQ platform 

highlights its efficiency in handling computational workloads. This metric is crucial for evaluating the 

platform's suitability for real-time applications. 

 

 

Table 3. Comparison between neural network and BNN on PYNQZ2 FPGA board 
Platform Dataset ACC (%) Topology No of layers Paper 

2023-LARQ MNIST 96.11 BNN 8 [23] 

LARQ MNIST 97.61 BNN 4  

  Increased by 1.01 Increased by 2   
2024-LARQ CIFAR-10 77.42 BNN 8 [24] 

LARQ CIFAR-10 97.03 BNN 4  

  Increased by 19.6 Increased by 2   
2021-LARQ MNIST 90 BNN 10 [25] 

LARQ MNIST 97.61 BNN 4  

  Increased by 7.61 Increased by 2.5   
2021-LARQ CIFAR-10 88.5 BNN 9 [26] 

LARQ CIFAR-10 97.03 BNN 4  

  Increased by 8.53 Increased by 2.25   

 

 

Table 4. Time taken for single image on PYNQ 
Type of network Software Hardware 

NN 29.151 ms 2.2259 ms 

BNN 80.296 ms 0.00841 ms 

 

 

An analysis has been carried out table that contrasts the proposed approach with other current 

research on BNNs, particularly with regard to performance measures like hardware platform, inference time, 

and test accuracy. Table 5 will provide us a clear picture of how our findings compare to those of other 

studies of a similar nature. In the perspective of accuracy comparison, the proposed approach outperforms a 

number of previous studies that record lower accuracy levels, achieving 97.61% accuracy on the MNIST 

dataset and 97.03% accuracy on the CIFAR-10 dataset. For instance, the [2024-LARQ] study recorded just 

77.42% on CIFAR-10, while the [2023-LARQ] study achieved 96.11% on MNIST. Because of the network 

architecture's innovative elements and efficient design, our model's accuracy is noticeably higher, suggesting 

improved generalization capabilities. In the perspective of inference time, compared to the published 

numbers from other studies, our suggested system's inference time is noticeably shorter. While the FPGA 
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implementation used in the [2023-LARQ] study took 2.2259 ms per image, our model processes an image in 

0.00841 ms. This illustrates how hardware acceleration, binary quantization, and model optimizations can 

significantly increase processing speed for edge devices. In perspective of hardware platform, the Xilinx 

PYNQ Z2 FPGA is used in all of the aforementioned investigations, guaranteeing an equitable comparison of 

hardware performance. Our results show that the model outperforms more sophisticated models in terms of 

accuracy and inference time with fewer layers and neurons (4 layers and fewer parameters). 

 

 

Table 5. Comparison table of related works and the proposed model 
Models Dataset Model type Number of layers Test accuracy (%) Inference time (ms/image) 

[2023-LARQ] MNIST BNN 8 96.11 2.2259 
[2024-LARQ] CIFAR-10 BNN 8 77.42 2.4167 
[2021-LARQ] MNIST BNN 10 90 4.57 
[2021-LARQ] CIFAR-10 BNN 9 88.5 5.2 

Proposed MNIST BNN 4 97.61 0.00841 
Proposed CIFAR-10 BNN 4 97.03 0.00841 

 

 

The learning outcome of extended analysis as shown in Figure 4 is following: our BNN model 

effectively achieves high accuracy levels with fewer parameters than typical NNs, which frequently need 

more layers and neurons to attain higher accuracy. The suggested model's hardware acceleration and binary 

quantization strategies enable faster processing rates without sacrificing or even exceeding the accuracy of 

more intricate networks. Our system's real-time performance (inference times of 0.00841 ms/image) makes it 

ideal for edge computing applications where low latency and computational efficiency are crucial, such 

autonomous systems and internet of things (IoT) sensors. The suggested approach is scalable and adaptable 

to increasingly complicated datasets or real-world applications that require high-throughput processing with 

constrained resources, as seen by the notable improvement in accuracy and performance over earlier efforts. 

In this work, we used the Xilinx PYNQ Z2 FPGA to introduce a BNN designed especially for deployment on 

resource-constrained edge devices. The following is a summary of the main conclusions drawn from our 

experiments:  

i) BNNs provide reduced complexity and competitive accuracy: our tests showed that the suggested BNN 

design outperformed conventional NNs with similar or greater complexity, achieving 97.61% accuracy on 

the MNIST dataset with only four layers. This result demonstrates how effectively binary quantization 

can preserve excellent accuracy while significantly lowering the memory and processing demands of the 

model. 

ii) Real-time inference with hardware acceleration: 10,000 photos could be processed in almost the same 

amount of time as processing a single image using a software-based method thanks to the PYNQ Z2 

FPGA implementation, which produced an incredible classification time of 0.00841 ms per image. The 

potential of hardware acceleration to enable real-time edge computing applications is shown by this 

significant speedup.  

 

 

 
 

Figure 4. Extended comparative analysis 
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Better efficiency in edge devices: in terms of memory and computational efficiency, the suggested 

BNN performed better than existing BNN implementations as well as conventional NNs. The system's use of 

binary weights and pointwise convolutions allowed it to achieve great performance with lower hardware and 

memory needs, which makes it perfect for deployment in situations with limited resources, such as embedded 

systems and IoT devices. 

The contextualizing with previous studies is as follows: it is clear from comparing our findings with 

those of other studies that the suggested BNN architecture performs better than many of the preceding 

models in terms of accuracy and inference speed. Prior research on BNNs showed gains in accuracy on 

simpler datasets, such as MNIST, but did not perform similarly on more complicated datasets, such as 

CIFAR-10, or apply models in a real-time hardware environment, like FPGA. Therefore, our work fills a gap 

by showcasing the scalability and practical application of BNNs in edge computing, in addition to exhibiting 

higher performance across multiple datasets. 

The take-away statement of proposed study is as follow: to sum up, this study demonstrates the 

amazing potential of BNNs for real-time edge computing, providing a potent solution that blends memory 

efficiency, high accuracy, and quick inference speeds. BNNs' capacity to meet the urgent needs of 

computationally limited contexts is demonstrated by their successful deployment on the PYNQ Z2 FPGA, 

opening the door for their potential use in autonomous systems, medical devices, and the IoT. BNNs are 

expected to be crucial to the development of the next generation of edge computing technologies since they 

offer effective processing capabilities with low resource usage. 

 

 

4. CONCLUSION 

In this work, we introduced a BNN that is specifically designed and implemented on the Xilinx 

PYNQ Z2 FPGA board, and is optimized for edge devices. The suggested BNN architecture outperformed 

earlier BNN implementations that employed more levels in terms of test accuracy, even though it only used 

four layers (8–10). In particular, our model obtained a test accuracy of 97.61% for the MNIST dataset and 

97.03% for CIFAR-10. These findings imply that great performance can be attained with fewer layers and 

optimal designs, increasing the computational efficiency of the model. Our method's significant inference 

time reduction is one of its main benefits. Compared to software-based methods that took significantly longer 

(2.2259 ms each image), the hardware implementation on the PYNQ Z2 FPGA showed a classification time 

of only 0.00841 ms per image. Our technology is well suited for real-time edge computing applications 

where low-latency inference is crucial due to this speed boost. The suggested method showed better memory 

economy by utilizing binary quantization and improvements like weight clipping and pointwise convolutions. 

These improvements lower the memory and parameter requirements, which is essential for deployment in 

situations with limited resources, including embedded systems and IoT devices. With its streamlined design, 

the suggested BNN model demonstrated resilience when handling complicated datasets like CIFAR-10 in 

addition to outperforming earlier studies in terms of accuracy and inference time. This illustrates how the 

model can grow to increasingly difficult jobs without needing unnecessarily big hardware or network 

resources. The findings demonstrate the usefulness of implementing BNNs in real-time applications, 

including smart IoT devices, autonomous systems, and medical diagnostics. The system can meet the 

performance requirements of edge computing scenarios where energy and compute resources are constrained 

by increasing efficiency, decreasing inference time, and improving accuracy. 

Future research can concentrate on expanding the BNN architecture to more complicated datasets 

and applications, even though the suggested system shown remarkable results. To provide resilience against 

such vulnerabilities, it would also be essential to investigate security and privacy issues when implementing 

BNNs in real-time applications. To increase the system's flexibility and scalability, more research on 

adaptive BNNs—which can dynamically adapt to various edge devices with diverse processing capacities—

will be crucial. In summary, the accuracy and efficiency of the suggested BNN system on the PYNQ Z2 

FPGA have significantly improved. The outcomes highlight BNNs' promise for edge computing applications, 

where high accuracy, quick inference speeds, and low power consumption are critical. 
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