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 Successful organizing and handling of software projects depends extensively 

on accurate cost estimation. This study explores the effectiveness of machine 

learning models in estimating software project costs using datasets like 

Desharnais, Maxwell, and Kitchenham, aiming to prevent project delays and 

resource misallocation. It shows how model selection has a major impact on 

forecast accuracy through a thorough assessment. An R-squared value (R2) 

of 0.804 indicates that the support vector machine (SVM) model performs 

exceptionally well in the Desharnais dataset. On the Maxwell dataset, linear 

regression (LR) stands out with a minimum mean absolute error (MAE) of 

0.483 and the greatest R2 value of 0.607, while SVM has the lowest root 

mean squared error (RMSE) of 0.537. Similarly, on the Kitchenham dataset, 

LR and SVM are the top performers, with MAE of 0.201 and RMSE of 

0.274, respectively, and R2 values of around 0.929. These findings highlight 

the importance of tailored model selection for accurate cost prediction, as 

LR and SVM continuously demonstrate reliability across varied datasets. 

ML techniques like LR and SVM can enhance software project planning and 

management by providing accurate cost estimation, with future research 

exploring ensemble learning and deep learning methodologies. 
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1. INTRODUCTION 

Software measurement (SM) involves measuring software characteristics typically related to the 

product, method, and resources utilized in software development. These indicators can be utilized in project 

management systems to assist software developers in effectively managing their projects, hence reducing 

issues such as cost overruns and scheduling deficiencies [1]. One of the most challenging aspects of managing 

a project is estimating software. Accurately estimating the time, money, and effort needed to complete an 

endeavor has been a challenge for project managers for a long time. It is challenging to predict these factors 

early in a project's lifecycle when there is a lot of uncertainty about the product's features, and the 

boundaries of each initiative need to be defined [2]. Software project management relies heavily on 

estimation, particularly in the early stages of software development. The first step is to estimate how much 

time, money, and effort are expected to be required to finish the software project [3], [4]. Consequently, 

inefficient resource utilization and lengthy delivery delays may result from software cost overestimation. 

However, inadequate workforce numbers, going over budget, and late delivery time might occur from 

underestimating software expenses [5]. Planning is the most crucial phase in project management because it 

https://creativecommons.org/licenses/by-sa/4.0/
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estimates the time and money needed to finish a project properly [6]. The most well known aspects of software 

evaluation are software cost and effort estimation. The term "cost estimation" refers to the process of 

determining an approximate total cost for a project, program, or product using current data. Accurate cost 

estimation is critical for each project type to avoid unexpectedly excessive expenditures. Accurate estimates 

are essential for decision makers to manage risks, allocate resources, and generate precise project schedules 

[7]. The development of estimation approaches, which have gone from basic statistical models to complex 

ML algorithms, reveals the industry's dedication to managing costs and project success. 

Planning and budgeting for a project requires an accurate assessment of software costs. Efficient, 

high-quality, and precisely estimated data are essential for successful regulation and oversight. Improve the 

precision and efficacy of project planning and budgeting with cutting-edge cost estimation software that relies 

on ML. ML algorithms generate more precise and adaptable forecasts by analyzing past data, project 

attributes, and other variables. ML Models, like random forests, decision trees, SVM, and logistic regression, 

improve project planning and budgeting [8]-[10]. Organizations can optimize resource allocation, make better 

decisions, and confidently and efficiently navigate software development complexity with data-driven 

insights. 

In addition, the uncertain nature of software development, characterized by ever-changing 

requirements and evolving technology, further complicates the estimation process. ML provides a promising 

solution as it enables learning from past projects and the identification of patterns that would help predict 

future project costs more reliably. This research is motivated by the objective of utilizing ML to enhance the 

precision of software project cost estimates, thereby enabling project managers to make informed decisions. 

This study proposes a new approach for estimating software costs using ML techniques. It targets better 

predictions in terms of accuracy and dependability on expenditure during software development procedures so 

as to enable corporate executives to make up correct funding decisions and manage other activities related to 

resourcing appropriately. The goal of this research is to provide a new cost estimation framework for software 

project planning using machine learning (ML) techniques. The main contributions of this study are: 

− Designing an innovative ML framework that supports the efficient and accurate forecasting of costs in 

software development. 

− The use of datasets such as Desharnais, Kitchenham, and Maxwell for empirical validation of the 

proposed approach. 

− Data driven insights for improved project planning and resource management. 

These contributions aim to close the gap between traditional estimation approaches and modern dynamic 

requirements for software projects. 

 

 

2. RELATED WORK 

Accurate software effort estimation is crucial for software project management [11]. Software effort 

estimation refers to the technique of forecasting the effort required to build software products in terms of 

expenses [12]. Project planning and budget allocation are two areas where prior research in SCE has 

demonstrated its fundamental importance. Effective monitoring and regulation of software development 

projects requires precise estimates of cost, precision, and quality. Conventional models, such as the constructive 

cost model II (COCOMO) [13], [14], depend significantly on reliable and accurate data from the past. Olu-

Ajayi [15]. These findings are unique and promising, contributing to effective business planning and risk 

reduction compared to previous research. Draz et al. [16] emphasize the essential role of planning and 

budgeting in software projects. A hybrid approach was proposed in this study by integrating Gray Wolf 

Optimization for software effort estimation. When it came to SCE, another study [17] used a hybrid model 

that used the tabu search (TS) method [18] with the invasive weed optimization (IWO) algorithm [19]. The 

TS algorithm worked better with the IWO algorithm's solutions [20]. Prior to that, in 2023, an analysis was 

conducted to compare the current taxonomies and methodologies employed in the estimation of software 

costs using neural networks [21]. A review found that the mean magnitude of relative error (MMRE), 

percentage relative error deviation (PRED), and root mean squared error (RMSE) are the most commonly 

utilized metrics for evaluating ML-SCE models [22]. Alauthman et al. [23] discussed software development 

cost estimation regression model selection. It emphasized using models that match the software development 

methodology and dataset utilized in estimation. Govinda et al. [24] used ML to calculate software cost for 

project managers using standard input. Akhbardeh et al. [25] examined the processes for computable elements 

that affect software cost and presented research that used ML methodologies to construct a credible estimation 

method. Table 1 describes the estimating approach and the contribution of the recognised papers. We have 

taken accuracy values under the aforementioned system from a variety of datasets and methodologies in 

order to investigate accurate performance analysis. 
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Table 1. Prediction accuracy of primary research on standalone methods 
Study Author(s) Dataset Estimation technique/contribution MMRE PRED 
[26] Malhotra and Jain 499 software 

projects 
Bagging, ANN, DT, SVM, and linear regression (LR) were 

evaluated and contrasted on a software project dataset. 
0.17 52 

[27] Sharma and Singh 4 software 

projects 
Made use of random forests, multilayer perceptrons, and 

support vector machines. 
0.30 72.09 

[28] Pospieszny et al. 11 variable 

software projects 

The ensemble of support vector machines, neural networks, 

and general linear models was averaged. 

0.13 76.91 

[29] Pandey et al. SAMOA Provided a useful method for selecting the best estimate 
technique for app effort estimates from of four well-liked 

methods: GA, MLR, MLP-NN, and nave. 

0.9 94 

[30] Dan et al. COCOMO-I, 
NASA 

Particle swarm optimisation was used to improve a 
COCOMO integrated (PSO) artificial neural network 

(ANN) model. 

0.40 55.10 

 

 

The successful planning and execution of software development projects is dependent on accurate 

software project cost estimation, which also influences resource management, budget allocation, and project 

schedules. Expert judgment, analogous estimation, and parametric models like COCOMO are examples of 

traditional cost estimation techniques that frequently struggle with adaptability, precision, and ability to 

handle complex unpredictable relationships that arise in software development processes. Novel approaches 

have been developed in this field of study, and they require regular comparative assessments. Accurate 

software cost estimation is critical to the success of software projects because it gives information about the 

risks and challenges associated with development. Comparative results show that the proposed model 

outperforms existing techniques across all datasets and evaluation criteria. The findings were quite promising 

for forecasting software cost prediction. The enormous diversity of ML approaches has led to comparisons 

and eventually, the integration of various techniques. Determining the most effective estimating methods has 

become essential for improving the project development process due to their many benefits. When working on 

complex projects or projects with changing requirements, accuracy is sometimes an issue with evolving ML 

techniques. Accurate estimation of costs is essential to executing projects on time and within budget, and 

numerous companies make significant investments in this area in order to ensure rapid growth and satisfied 

customers. Apart from this fact, these challenges are made even more challenging by the dynamic changes that 

can occur in any software project, such as evolving requirements, improved technology, or even shifts in the 

team's skills. The goal of this research is to develop a ML based approach for evaluating planning costs for 

software projects. 

 

 

3. PROPOSED METHOD 

The proposed method for estimating software development costs involves nine steps framework. 

Figure 1 depicts the proposed method for software development project cost estimation. 

Data collection and pre-processing: 

− Gather the Desharnais, Kitchenham, and Maxwell datasets, which contain historical data on software 

projects, including attributes such as project size, effort, and duration. 

− Preprocess the datasets by handling missing values and outliers and standardizing numerical features.  

Word2Vec feature extraction: 

− Convert textual data (if any), such as project descriptions, and requirements, into numerical vectors 

using Word2Vec. 

− Word2Vec can capture the semantic meaning of words and phrases within the text, providing dense 

vector representations for each word. 

Merge Word2Vec features with numerical features: 

− Combine the Word2Vec features with the existing numerical features from the datasets to form a 

comprehensive feature set. 

Feature selection using recursive feature elimination (RFE): 

− Implement RFE to select the most important features from the combined feature set. 

− RFE recursively removes features, fitting the model multiple times and assessing feature importance 

until the optimal feature subset is identified. 

Data splitting: 

− Split the datasets into training and testing sets, ensuring that each dataset is divided appropriately to 

maintain its integrity. 

Model training: 

− Train different ML models, including LSTM, LR, SVM, FNN, RNN, and DT, using the training dataset. 
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Figure 1. Proposed method 

 

 

Model evaluation: 

− Evaluate the performance of each model using appropriate evaluation metrics such as MAE, MSE and 

R2 error. 

− Compare the performance of each ML model to identify the best performing approach for each dataset. 

Model optimization: 

− Refine the hyperparameters of chosen models using methods such as grid search or random search to 

enhance performance. 

− Ensure that the models are optimized to generalize well on unseen data. 

Final model selection: 

− Select the best performing model for each dataset based on evaluation metrics and optimization results. 

 

 

4. METHOD 

The two primary components that make up this section are software costing techniques and a 

proposed method that introduces a novel and inventive framework with the intention of enhancing the 

software cost estimating process. 

a) Techniques used: The subsequent section explains the techniques employed in the proposed method for 

cost estimation. 

b) Word2Vec: Word2vec is simpler and faster to learn than other methods. Sentence word semantics can be 

detected via Word2vec. The text processing in Word2vec is done by a two-layer neural network. The two 

primary techniques for learning Word2vec are CBOW and Skip Gram. While the CBOW model uses 

surrounding contexts to forecast the word, the Skip Gram uses those same contexts to forecast the word 

itself [31]. It improves feature selection, model training, and evaluation by bridging unstructured text and 
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structured numerical features. The quality of Word2Vec characteristics can considerably affect model 

performance in forecasting software project results. 

c) Recursive feature elimination (RFE): Irrelevant features are common in large datasets [32]. The 

inefficiency of the classification algorithm is impacted by recurring features. Determine which variables 

are crucial for making accurate forecasts using RFE. A method that iteratively searches for a target number 

of attributes is "recursive". Figure 2 is a visual representation of the RFE Workflow. 

Next, the model is retrained with the updated feature set to improve classification accuracy and remove 

less important features. The loop continues as long as there are additional features to be included. RFE is an 

essential part of the suggested method for software development cost estimation since it improves the efficiency 

and accuracy of ML models' predictions. Using RFE, the most relevant features are selected from the set of 

features that includes both the original numerical features and the textual characteristics generated by Word2Vec. 

 

 

 
 

Figure 2. RFE workflow schematic [32] 

 

 

d) Linear regression model: One way to find the relationships between the two sets of variables is to use a 

LR model [33]. Software cost estimation involves creating predictions about the dependent variable, 

which is software cost, using measurements for the independent variables, which are products, projects, 

and procedures. The LR models are utilized in the study to conduct an analysis of the amount of money 

required to develop software. A single independent variable, a single LR, is used to predict the cost 

dependent variable. A straight line is computed to lessen the discrepancy between the actual multiple LR, 

which employs a large number of independent variables, and provides a formula for calculating the 

estimated cost using a linear combination of the metrics [34], [35]. 

 

𝑦𝑖 = 𝑎 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ 𝑏𝑛𝑥𝑛 + ℰ𝑖 (1) 

 

The values of x1 through xn are the independent variables, whereas yi is the dependent variable, 

where i=1…m. The variables b1 through bm stand for the regression coefficients, and the letter a represents the 

intercept (eq.1). Linear models are an excellent starting point but cannot guarantee flawless data linearity. 

Validating historical efforts helps assess their accuracy. Actionable and explicable cost estimation formulas 

can be constructed from current measures using LR. 

e) Recurrent neural networks (RNN): RNNs have shown promising potential for software cost estimation 

tasks. RNNs operate by processing sequential data, where the output at each time step is influenced by 

the current input and the previous hidden state. RNNs are particularly wellsuited for handling various 
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factors that influence software costs, such as project size, complexity, and team experience. This 

recurrent nature allows RNNs to maintain an internal memory, making them well-suited for problems 

involving sequential information, such as software project data [36]. 

f) Long short-term memory (LSTM): The LSTM network is a type of RNN that was created for 

consecutive data processing in deep learning. The problem of exploding and vanishing gradients was 

successfully addressed by an LSTM, which was designed to depict sequences with long-range 

dependencies [37] accurately. Each gate is taught to end the input value by the system, which does this 

by continuously providing error signals to them [38]. 

g) Decision tree (DT): DT are hierarchical tree-structured models used for cost and effort estimation in 

software [39]. They recursively split the data based on attribute tests represented by internal nodes, with 

branches depicting test outcomes and leaf nodes containing the predicted estimates. This structure 

allows decision trees to model the impact of factors on project cost and effort [40]. 

h) Support vector machine (SVM): The SVM model is a versatile tool in software cost estimation, adept at 

handling both classification and regression tasks. Whether facing linear or nonlinear problems, SVM 

effectively partitions data by constructing a hyperplane that separates classes [41]. 

i) Feed-forward neural network (FFNN): For software cost estimation is the FFNN. As its name implies, 

data flows in only one direction, from input to output. The most basic type of artificial neural network, 

known as FFNN, can only go forward and cannot reverse its direction of operation. FFNN has 3 layers 

(input, hidden, and output layer). FFNN allows the network to discover intricate patterns and relationships 

within the data by incorporating multiple hidden layers. 

j) Feature selection using recursive feature elimination: Implement RFE to select the most important 

features from the combined feature set. Moreover, FFNN may feature direct (linear) connections 

between the input and output layers, facilitating the mapping of input variables to output predictions 

without direct connections between individual input and output units [42]. 

 

 

5. RESULTS AND DISCUSSION  
Results: The outcomes of the systematic research conducted for software project cost estimation are 

presented in this section. It looks at pertinent features that come from selection and extraction as well as the 

outcomes of ML model evaluation for estimation. 
a) Experimental setup: The experiment was conducted on a laptop computer with an Intel Core i7 processor, 

64GB of RAM. The experiment was carried out using a variety of tools. Google Drive was utilized to 

upload data sets for the experiment, which were then uploaded to Google Colab. This study uses Python 

to present, explain, depict, and analyze the data, as well as train and test the algorithm. 

b) Evaluation criteria: In addition to standardized error measurements such as, MAE, MSE, and RMSE, two 

commonly used software estimating criteria mean magnitude relative error, or MMRE, and percentage 

relative error deviation, or PRED were employed to evaluate the produced models. Above all, they 

allow for the comparison of results from multiple prediction models and datasets since they are scale and 

unit independent. Both are based on MRE, which is explained below and measures the disparity between 

actuals and estimates. 

Mean absolute error (MAE): MAE is a widely used statistic that finds the mean squared difference 

between expected and actual values by averaging the squared disparities. It evaluates the overall accuracy of 

the predictive model in (2). 

 

𝑀𝐴𝐸 = (
1

𝑛
) ∗ ∑𝑖 = 1 … . 𝑛 (predictedi − actuali)^2 (2) 

 

where n is the total number of observations, y is the actual value of sample i, and y^ is the prediction made by the 

model for sample i. 

RMSE: To compute the value of it, you will require the actual values and their expected values, 

shown in (3). Where n is the total number of data points, ^2 is the square of the difference, and is the sum of 

square differences in the datasets. 

 
𝑅𝑆𝑀𝐸 = ∑(predictedi − actuali)^2 /𝑛 (3) 

 

Magnitude of relative error (MRE): Determine the Magnitude of Relative Error (4) for each data 

point in order to assess the degree of estimating error in a single estimate. 

 

𝑀𝑅𝐸 = |(predictedi − actuali|/actual (4) 
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Mean magnitude of the relative error (MMRE): The mean magnitude of the relative error (5) is the 

average proportion of the absolute values of the relative errors across the complete data set. 

 

𝑀𝑀𝑅𝐸 =  (100/N)  ∗ ∑/| predictedi −  actuali| /actuali  (5) 

 

where, N = total number of estimate 

PRED(n) Prediction Accuracy: To determine the accuracy rate PRED(n), divide the total number of 

data points with an MRE of 0.25 or less (represented by k) by the total number of data points in the set 

(represented by n). 

 
𝑃𝑅𝐸𝐷(x)=(100/N) *Σ i……N 1 if MREi <=n/100, 0 otherwise (6) 

 

with n = 0.25, the in (6) is PRED (n) = k/n) [43], [44]. 

c) Extracting features for estimating software costs: The Word2Vec approach is used in this study to extract 

pertinent features from the Desharnais, Kitchenham, and Maxwell datasets. After they have been 

extracted, these features are added to the cost calculation procedure. Table 2, which presents the 

characteristics extracted from three datasets. 

 

 
Table 2. List of features extracted using Word2Vec 

Dataset Extracted features 

Desharnais Project, Points NonAdjust, ManagerExp, Adjustment, Year-End, 

Length Transactions, PointsAjust, Effort, TeamExp 
Maxwell Effort, Har, Year, Duration, App, T14, Source, Nlan, T06, T05, T15, T09, Size, Time 

Kitchenham Adjfp, Estimate method, Client code, Estimate, Projecttype, Duration, Effort 

 

 

d) Selecting features for estimating software costs: To ensure that the predictive models are trained on the 

most useful variables while reducing the danger of overfitting, this study used the RFE approach to 

identify the most important features from the three datasets. Regression analysis makes extensive use of 

RFE for regularization and variable selection. It functions by repeatedly removing aspects that, 

according to a preset criterion, are judged unnecessary or redundant. This iterative procedure yields a 

more comprehensible model until just a selection of features with the highest predictive potential is left. 

Table 3 displays the chosen characteristics that were gathered from three distinct datasets using the RFE 

technique [40]. 

 

 
Table 3. List of features using RFE 

Dataset Selected features 

Desharnais Project, Transactions, Effort, TeamExp, PointsA-just, PointsNonAdjust 

Maxwell App, Effort, Har, Source, Nlan, T05, T09, T15, Year, Duration, Time, Size 
Kitchenham Effort, Project type, Client code, Duration, Estimate, Adjfp 

 

 

Performance evaluation outcomes: This section discusses the performance metrics of various ML 

models on all three datasets. It describes different kinds of errors calculated for each model [45]. 

a) On Desharnais dataset: Different ML models, including LR, FNN, LSTM, RNN, DT, and SVM, were 

evaluated on the Desharnais dataset using various performance metrics, as shown in Table 4. The SVM 

model demonstrated the highest R2 of 0.804, indicating the best performance based on this metric. In 

terms of RMSE, FNN achieved the lowest RMSE value of 0.293, while LR had the lowest MAE of 

0.263, suggesting their effectiveness in minimizing prediction errors for this dataset. 
 

 

Table 4. Error metrix obtained on desharnais dataset 
S. No. Error metrix MAE R2 RMSE 

1 LR 0.263 0.778 0.353 
2 FNN 0.384 0.737 0.293 

3 LSTM 0.541 0.571 0.397 

4 RNN 0.429 0.672 0.331 
5 DT 0.432 0.532 0.372 

6 SVM 0.331 0.804 0.331 
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Figure 3, illustrates a comparison of different ML models based on error metrics across the 

Desharnais dataset. It further emphasizes the performance variations among the models, highlighting their 

strengths and weaknesses in predicting software project costs. 

b) On Maxwell dataset: Error metrics for various ML models applied to the Maxwell dataset are summarized 

in Table 5. Among the models evaluated, LR demonstrates the lowest MAE of 0.483, indicating the 

smallest absolute difference between predicted and actual costs. LR also exhibits the highest R2 value of 

0.607, suggesting a good fit to the data. Conversely, the LSTM model yields the highest MAE of 0.933, 

implying larger deviations between predicted and actual costs. Furthermore, SVM stands out with the 

lowest RMSE of 0.537, indicating overall accuracy in predictions. These results indicate that LR and SVM 

perform relatively better in terms of both MAE and RMSE on the Maxwell.  

 

 

 
 

 Figure 3. Performance metrics comparison on the desharnais 

 

 

Figure 4 depicts the error metrics of several ML models applied to the Maxwell dataset. The graph 

provides a comparative analysis of the performance of each model, shedding light on their effectiveness in 

software cost estimation on the Maxwell Dataset. 
c) On Kitchenham dataset: Table 6 depicts the performance of various ML models evaluated on the 

Kitchenham dataset using different error metrics. The LR and SVM models demonstrated the best 

performance, with LR having the lowest MAE of 0.201 and SVM having the lowest RMSE of 0.274. 

Both LR and SVM also achieved a high R2 of around 0.929, indicating a good fit to the data. 

 

 

 
 

Figure 4. Performance metrics comparison on the Maxwell 
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Table 5. Error metrix obtained on maxwell dataset 
S. No. Error metrix MAE R2 RMSE 

1 LR 0.483 0.607 0.588 
2 FNN 0.818 0.239 0.669 

3 LSTM 0.933 0.021 0.689 

4 RNN 0.927 0.024 0.686 
5 DT 0.929 0.017 0.706 

6 SVM 0.331 0.804 0.331 

 

 

The FNN and RNN exhibited relatively higher MAE of 0.249 and 0.307, respectively, and lower R2 

values. Notably, the LSTM and DT models showed relatively poorer performance and exhibited considerably 

low R-squared values of 0.841 and 0.761, respectively, suggesting a poor fit to the Kitchenham dataset. 

Figure 5 displays the error metrics of multiple ML models when applied to the Kitchenham dataset. The 

graph provides a comparative analysis of the performance of each model, demonstrating their effectiveness in 

software cost estimation on the Kitchenham dataset. 

 

 

Table 6. Error metrix obtained on kitchenham dataset 
S. No. Error metrix MAE R2 RMSE 

1 LR 0.201 0.929 0.275 

2 FNN 0.249 0.910 0.309 
3 LSTM 0.431 0.841 0.389 

4 RNN 0.307 0.858 0.387 

5 DT 0.326 0.761 0.406 
6 SVM 0.202 0.929 0.274 

 

 

 
 

Figure 5. Performance metrics comparison on the Kitchenham Dataset 

 

 

Discussion: Performance evaluation outcomes showed that different ML models performed better on 

the Desharnais dataset, with the SVM model showing the highest R2 value of 0.804, indicating the best 

performance based on this metric. On the Maxwell dataset, LR demonstrated the lowest MAE of 0.483, 

indicating the smallest absolute difference between predicted and actual costs. LSTM model yielded the 

highest MAE of 0.933, implying larger deviations between predicted and actual costs. SVM stood out with 

the lowest RMSE of 0.537, indicating overall accuracy in predictions. On the Kitchenham dataset, the LR 

and SVM models demonstrated the best performance, with LR having the lowest MAE of 0.201 and SVM 

having the lowest RMSE of 0.274. FNN and RNN exhibited relatively higher MAE and lower R2 values, 

while LSTM and DT models showed poorer performance and low R-squared values. However, further 

research could explore ensemble learning techniques and deep learning architectures to enhance the accuracy 

and robustness of software cost estimation models [46], [47]. 
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6. CONCLUSION  

The comparison study results demonstrate significantly higher accuracy only in three stages of 

evaluation in the presence of numerous learning methodologies. Based on the Performance Metrics 

Comparison of Kitchenham dataset results obtained from the evaluation of various ML models on the 

Desharnais, Maxwell, and Kitchenham datasets, it is evident that the choice of model significantly impacts 

the accuracy and effectiveness of software cost estimation. In the Desharnais dataset, the SVM model 

outperformed others with the highest R2 value of 0.804, indicating superior predictive capability. Conversely, 

the Maxwell dataset showcased LR and SVM as the top performers, with LR demonstrating the lowest MAE 

of 0.483 and the highest R2 value of 0.929 and SVM exhibiting the lowest RMSE of 0.537. On the other hand, 

the Kitchenham dataset illustrated LR and SVM as the most reliable models, displaying the lowest MAE and 

RMSE values and high R2 values of 0.201, 0.275, 0.929, and 0.202, 0.274, and 0.929 respectively. These 

findings emphasize the importance of selecting appropriate ML models tailored to specific datasets for 

accurate software cost estimation. Additionally, LR and SVM consistently emerged as strong performers 

across all datasets, suggesting their reliability and effectiveness in this domain. Thus, leveraging ML 

techniques, particularly LR and SVM, holds promise for enhancing the planning and management of software 

projects through more precise cost estimation methodologies.  
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