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 This paper presents an innovative IoT-enabled smart healthcare system that 
combines real-time vital sign monitoring with machine learning-based 

anomaly detection. The system utilizes a MAX30102 photoplethysmography 
sensor interfaced with an ESP-32 microcontroller to collect heart rate and 
blood oxygen saturation (SpO2) data. MQTT protocol ensures efficient data 
transmission to a cloud database. A long short-term memory (LSTM) neural 
network architecture is employed for time-series prediction of vital signs and 
anomaly detection. The system demonstrates high accuracy, with mean 
squared errors of 0.3% in offline testing and over 90% accuracy in real-time 
prediction. This affordable and scalable solution offers continuous 

monitoring capabilities, making it viable for widespread adoption in 
healthcare settings. The integration of IoT and machine learning techniques 
provides a robust framework for early detection of health anomalies, 
potentially improving patient care and outcomes in various medical 
scenarios. 
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1. INTRODUCTION  

The convergence of internet of things (IoT) and machine learning (ML) technologies has created 

transformative opportunities in healthcare monitoring, particularly for vital sign tracking and anomaly 

detection. This integration addresses a critical healthcare need: developing continuous, real-time patient 

monitoring systems that can efficiently collect, transmit, and analyze physiological data, potentially 

revolutionizing healthcare delivery and improving patient outcomes [1]. 
Recent advances in wearable technology have established the foundation for IoT-based healthcare 

systems. Studies by Fajrin et al. [2] and Weenk et al. [3] have demonstrated the efficacy of wearable devices 

for monitoring heart rate and oxygen saturation in intensive care settings, highlighting their accuracy and 

reliability compared to conventional monitoring methods. Building on these findings, Morrell et al. [4] 

explored the application of continuous monitoring technologies in general ward settings, emphasizing their 

potential for early detection of patient deterioration. 

Complementing hardware advancements, significant progress has occurred in applying machine 

learning techniques to healthcare data analysis [5]. Hidayat et al. [6] successfully employed random forest 

algorithms for heart disease prediction, while John et al. [7] implemented cloud-based analytics to predict 

heart failure hospitalization. These studies demonstrate ML's effectiveness in extracting meaningful insights 

from complex vital sign data [8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Despite these advancements, several challenges persist in creating effective healthcare monitoring 

systems. A primary challenge involves seamlessly integrating real-time data collection with sophisticated ML 

techniques to enable immediate anomaly detection [9]. Additionally, developing affordable and scalable 

systems suitable for widespread adoption across diverse healthcare settings remains difficult [10]. 

Furthermore, balancing system complexity with user-friendliness is essential for effective clinical 

implementation [11]. 

Our research addresses these challenges through an innovative IoT-enabled smart healthcare system 
that integrates real-time vital sign monitoring with ML-based anomaly detection [12]. Our contributions 

include: Development of a cost-effective, scalable hardware architecture utilizing a MAX30102 

photoplethysmography sensor and an ESP-32 microcontroller for efficient data collection and transmission [13]. 

Implementation of the MQTT protocol to ensure reliable and secure data transfer to a cloud database, 

enhancing the system's overall robustness [14]. Design of a long short-term memory (LSTM) neural network 

specifically tailored for time-series prediction of vital signs and real-time anomaly detection [15], enabling 

more accurate monitoring and timely interventions [16]. 

The subsequent sections of this paper provide a comprehensive overview of our methodology, 

including system architecture, data collection processes, and ML model development [17]. We present results 

from both offline and real-time testing scenarios, demonstrating the accuracy and clinical applicability of our 

proposed system [18]. Finally, we discuss the broader implications of our findings and suggest potential 

directions for future research in integrating IoT and ML technologies within healthcare monitoring systems [19]. 
Our research aims not only to contribute to the academic discourse but also to provide a practical 

solution implementable in real-world clinical settings [20]. This system could serve as a foundation for 

further innovations in personalized healthcare and continuous monitoring technologies [21], ultimately 

leading to more effective and responsive healthcare systems [22]. 

The integration of cutting-edge IoT and ML technologies into healthcare represents a critical 

advancement, and our work establishes a pathway for future developments in this rapidly evolving field [23]. 

As healthcare continues to embrace digital transformation, IoT and ML will play increasingly important 

roles, making it essential to develop systems that are technologically sophisticated yet user-friendly and 

accessible [24]. Through this research, we contribute to ongoing efforts to make healthcare smarter, more 

efficient, and more inclusive, ultimately improving patient care and outcomes globally [25]. 

 
 

2. METHOD 

Our IoT-enabled smart healthcare system was designed to seamlessly integrate hardware 

components for data collection with software solutions engineered for data transmission, storage, and 

analysis, as shown in Figure 1. The selection of appropriate hardware components was crucial for ensuring 

reliability and accuracy in vital sign monitoring. After evaluating several sensor options, we chose the 

MAX30102 photoplethysmography sensor due to its compact size (5×2.5×1.4 mm), cost-effectiveness 

(approximately INR 2000), and capability to simultaneously monitor both heart rate and blood oxygen 

saturation (SpO2). This non-invasive sensor utilizes red and infrared light to detect blood volume changes in 

the microvascular bed of tissue, which correlates with cardiac cycles and oxygen saturation levels. 

The MAX30102 sensor was interfaced with an ESP-32 microcontroller, selected for its dual-core 
architecture (240 MHz dual-core Tensilica LX6 microprocessor), 520 KB SRAM, integrated Wi-Fi (802.11 

b/g/n) and Bluetooth connectivity, and 34 programmable GPIO pins. These specifications provided sufficient 

processing power and connectivity options for real-time monitoring and data transmission. The electrical 

connections between the sensor and microcontroller were established using the I2C protocol, with the 

sensor's SCL and SDA pins connected to GPIO pins 22 and 21 of the ESP-32, respectively. Additional 

connections included VIN to 3.3V and GND to ground. This configuration ensured stable communication 

between the components while minimizing electromagnetic interference. 

The data collection process began with the acquisition of raw photoplethysmogram (PPG) signals 

from the MAX30102 sensor at a sampling rate of 100 Hz. These signals, however, are susceptible to various 

artifacts including motion, ambient light interference, and baseline wander. To improve signal quality, we 

implemented a series of digital filtering algorithms on the ESP-32. First, a moving average filter with a 

window size of 4 samples was applied to reduce high-frequency noise. This was followed by a fourth-order 
butterworth low pass filter with a cut-off frequency of 5 Hz to eliminate high-frequency components while 

preserving the primary cardiac signal. Finally, a median filter with a window size of 5 samples was 

implemented to remove spike artifacts. These filtering steps were crucial for enhancing the signal-to-noise 

ratio and ensuring accurate vital sign calculations. 

For heart rate calculation, we employed a peak detection algorithm that identified systolic peaks in 

the filtered PPG signal. The time intervals between consecutive peaks were measured, and the heart rate in 
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beats per minute (BPM) was calculated using the formula: 𝐵𝑃𝑀 =  60/(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). 

For SpO2 calculation, we utilized the ratio of absorbance of red light (660 nm) to infrared light (940 nm), 

applying a calibration curve based on empirical data from clinical pulse oximeters. This approach yielded 

SpO2 values with an accuracy of ±2% compared to medical-grade pulse oximeters, as validated in our 

preliminary testing. 
Data transmission was implemented using the message queuing telemetry transport (MQTT) protocol 

version 3.1.1, chosen for its efficiency (low bandwidth overhead of approximately 2 bytes per message) and 

security features (TLS encryption). We configured a quality of service (QoS) level of 1, ensuring that messages 

were delivered at least once to the broker. The ESP-32 was programmed to transmit vital sign data every 5 

seconds to an MQTT broker (Mosquitto 1.6.9) hosted on a cloud server (AWS EC2 t2. micro instance). Each 

MQTT message was structured in JSON format, containing timestamp, patient ID, heart rate, and SpO2 values, 

along with metadata including battery level and signal quality indicators. This structured approach facilitated 

efficient data organization and retrieval for subsequent analysis. 

The system integration in Figure 2 shown in the circuit diagram Figure 2(a) illustrates the 

connections and components used in the hardware setup, highlighting the integration of the MAX30102 

sensor with the ESP-32 microcontroller. The physical implementation in Figure 2(b) shows how the system is 

assembled and configured for real-world use, ensuring the setup's functionality in monitoring and 
transmitting vital signs data. 

 

 

 
 

Figure 1. Proposed block diagram for the holistic health anomaly detection system 

 

 

 
 

(a) (b) 

 

Figure 2. System integration showing (a) circuit diagram schematic of hardware and (b) physical 

implementation of the system  
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The cloud database used for data storage was MongoDB (version 4.4), chosen for its flexible 

document model and scalability. We designed a database schema with collections for patient data, vital signs, 

and anomaly events. Indexes were created on timestamp and patient ID fields to optimize query performance. 

Data retention policies were established to manage storage requirements, with raw data being stored for 30 

days and aggregated statistics maintained for one year. This architecture supported both real-time monitoring 

and longitudinal analysis of patient health trends. 

For data analysis and anomaly detection, we implemented a LSTM neural network architecture 
using TensorFlow 2.4.1 and Keras 2.4.3. The LSTM model was specifically designed for time-series 

prediction of vital signs, consisting of an input layer with 128 neurons, a hidden layer with 64 neurons using 

ReLU activation, and an output layer with two neurons employing softmax activation. We selected this 

architecture after comparing performance with alternative models including gated recurrent units (GRUs) and 

convolutional neural networks (CNNs), with the LSTM demonstrating superior performance in our 

preliminary tests with mean squared errors 15% lower than the alternatives. 

The preprocessing of data involved forming structured data frames and normalizing values using 

Min-Max scaling, transforming the range of vital sign data to [0,1] to improve training stability and 

convergence. The LSTM model was configured to predict the next value based on the first 10 readings of a 

25-reading set, incrementing the input window by one with each subsequent prediction. This sliding window 

approach enabled continuous prediction while maintaining context from previous measurements. The model 

was trained using an Adam optimizer with a learning rate of 0.001, batch size of 32, and 100 epochs, 
achieving convergence with a validation loss below 0.01. 

Anomaly detection thresholds were established based on clinical guidelines and statistical analysis 

of normal vital sign variations. Specifically, differences of more than 10 beats per minute for heart rate and 5 

percentage points for SpO2 between predicted and actual values were classified as potential anomalies. To 

reduce false positives, we implemented an error buffer that required three consecutive readings exceeding 

these thresholds before triggering an anomaly alert. This approach balanced sensitivity and specificity, 

achieving a false positive rate of less than 5% in our validation testing. 

System validation was conducted through two distinct experimental tests. The first test (Test 1) 

focused on offline prediction using 1,400 samples collected from 10 healthy volunteers (6 male, 4 female, 

age range 22-45 years) during both rest and light activity conditions. These samples were stored in a CSV file 

and used to evaluate the LSTM model's prediction accuracy. Mean squared error (MSE) was selected as the 
primary performance metric, calculated separately for heart rate and SpO2 predictions and then averaged to 

provide a combined performance indicator. The second test (Test 2) evaluated real-time prediction 

capabilities using 50 continuous samples with data streaming directly from the sensor to the analysis system. 

In this test, MSE values were calculated individually for heart rate and SpO2 to assess the system's 

performance under real-world conditions and network latency constraints. All testing protocols were 

reviewed and approved by the institutional ethics committee, and all participants provided informed consent 

before data collection. 

 

 

3. RESULTS AND DISCUSSION  

Our IoT-enabled healthcare monitoring system was evaluated through two distinct testing protocols that 
yielded promising results with significant implications for real-world healthcare applications. This section 

presents these findings, interprets their significance, compares them with related research, and discusses their 

broader implications for healthcare monitoring. 

Test 1 examined the system's prediction accuracy using 1,400 samples in an offline setting. The LSTM 

model demonstrated remarkable precision with a combined mean squared error (MSE) of only 0.3%. As 

illustrated in Figure 3, the correlation between actual and predicted values was particularly strong for SpO2 

readings, while heart rate predictions showed slightly more variability. This high level of accuracy surpasses 

similar predictive models reported in previous studies. For instance, Kaieski et al. [15] reported error rates of 

approximately 2-3% for vital sign prediction using traditional neural networks, highlighting the superior 

performance of our LSTM architecture for time-series health data. As illustrated in Figure 3, the graphs 

compare the actual BPM and SpO2 values recorded by the sensor system with the predictions made by the 

LSTM model. It is evident that both graphs are relatively accurate, though BPM shows more deviations 
compared to SpO2. The combined MSE error term, measuring 0.003 or 0.3%, indicates highly accurate 

predictions. These limitations point to several promising directions for future research. Integration of additional 

sensors to monitor a broader range of vital signs would enhance the system's clinical utility. As suggested by 

Huang et al. [19], incorporating electrocardiogram (ECG) data alongside photoplethysmography could improve 

the accuracy of cardiovascular assessment. The adoption of more sophisticated sensors, such as the MIKROE-
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3273 or AD8232 as alternatives to the MAX30102, could potentially enhance measurement precision, though at 

increased cost. 

Another promising avenue involves transitioning from photoplethysmography to 

electroplethysmography, which, despite being somewhat more restrictive in terms of patient mobility, could 

provide more stable readings in clinical settings. This approach is widely used in standard ECG systems and 

could offer enhanced signal quality for critical care applications. 
 

 

 
 

Figure 3. Graphs obtained for actual vs predicted values of heart rate and SpO2 readings in Test 1 

 

 

Furthermore, implementing on-chip machine learning processing through digital signal processors 

could significantly reduce computation time and enhance system efficiency. As noted by Junaid et al. [20], 
edge computing approaches that minimize dependency on cloud infrastructure could improve response times 

for critical alerts while reducing bandwidth requirements. 

Perhaps most significantly, future work should explore the integration of our system with electronic 

health records and clinical decision support systems. Such integration would contextualize vital sign data 

within patient’s broader health profiles, potentially enabling more personalized and proactive care 

interventions. This aligns with the vision articulated by Sabry et al. [13] for next-generation healthcare 

wearables that not only detect anomalies but also suggest appropriate clinical responses. 

Long-term studies are also needed to evaluate the system's impact on clinical outcomes, including 

its potential to reduce hospital readmissions, decrease the incidence of adverse events, and improve quality of 

life for patients with chronic conditions. Such studies would provide crucial evidence regarding the system's 

cost-effectiveness and broader healthcare value. In Test 2, which evaluated real-time prediction capability 

with 50 continuous samples, the system maintained over 90% accuracy despite the challenges of real-time 
processing and network latency. The differential MSE values between heart rate (83.9) and SpO2 (0.26) 

reflect the inherent variability of these physiological parameters rather than limitations in the prediction 

model. Heart rate naturally fluctuates more widely in response to physical and emotional stimuli, whereas 

SpO2 typically remains within a narrower range in healthy individuals. This finding aligns with observations 

by Ludikhuize et al. [5], who noted similar patterns of variability in their study of vital sign monitoring in 

general ward patients. 

The system's ability to maintain high prediction accuracy in both offline and real-time scenarios 

demonstrates its robustness and reliability for clinical applications. Particularly noteworthy is the system's 

performance despite using affordable consumer-grade components, suggesting that high-quality healthcare 

monitoring need not be prohibitively expensive. This finding addresses one of the primary challenges 

identified by Motwani et al. [12] regarding the development of affordable yet accurate healthcare monitoring 
systems. 
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Our system offers several advantages over traditional monitoring approaches used in clinical 

settings. Conventional hospital monitoring typically relies on threshold-based alarms that often generate 

numerous false positives due to their inability to account for individual patient variations. As noted by 

Cardona-Morrell et al. [4], these false alarms contribute significantly to alarm fatigue among healthcare staff. 

In contrast, our LSTM-based approach learns patient-specific patterns over time, potentially reducing false 

alarms while increasing sensitivity to genuine anomalies. 

The combination of affordable hardware and sophisticated machine learning enables continuous 
monitoring in settings where it was previously impractical. This represents a significant advancement 

compared to similar systems described by Cuevas-Chávez et al. [18], which either required more expensive 

components or offered less predictive capability. Furthermore, our system's use of the MQTT protocol for 

data transmission addresses the connectivity and reliability challenges highlighted by Sneha and Varshney [21] in 

their framework for mobile health monitoring. 

One unexpected finding was the system's resilience to motion artifacts, which typically plague 

photoplethysmography-based measurements. Our implementation of digital filtering algorithms effectively 

mitigated these artifacts, achieving better signal quality than anticipated. This resilience is particularly 

valuable for ambulatory monitoring, where patient movement is inevitable.  

Despite the promising results, several limitations warrant acknowledgment. First, our current 

implementation focuses solely on heart rate and SpO2 monitoring, whereas comprehensive patient 

assessment would benefit from additional parameters such as blood pressure, respiratory rate, and 
temperature. Second, while our testing included both rest and light activity conditions, the system's 

performance under more strenuous physical activities remains to be evaluated. Third, the current sample size, 

though sufficient for demonstrating technical feasibility, would need to be expanded for more robust clinical 

validation. 

As shown in Figure 4, the BPM readings exhibited some deviations, while the SpO2 readings 

demonstrated lesser deviations a trend that was also observed in Test 1. The performance metrics revealed 

that the MSE for BPM was 83.9, whereas the MSE for SpO2 was just 0.26. This significant difference in 

MSE values may be attributed to the fact that BPM values generally have a wider range compared to oxygen 

saturation, which typically varies between 90% and 100% in normal scenarios. Despite the considerable 

difference in MSE values between the two vitals, both models demonstrated over 90% accuracy, making 

them more than suitable for use in professional healthcare settings, such as hospitals. 
 

 

 
 

Figure 4. Comparison of actual vs predicted values for BPM and SpO2 in test 2 

 

 

4. CONCLUSION 

Our research presents an IoT-enabled healthcare monitoring system that integrates hardware and 

machine learning for real-time vital sign tracking and anomaly detection. Using an ESP-32 microcontroller, 
MAX30102 sensor, MQTT protocol, and LSTM neural network, we address key challenges in modern 

healthcare. With over 90% prediction accuracy, our system demonstrates that cost-effective technology can 

reliably detect health anomalies before they escalate. This is especially valuable for preventive care in 

resource-limited settings where continuous professional monitoring is impractical. Our work advances 
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personalized healthcare by leveraging IoT and machine learning to develop patient-specific monitoring 

systems. The LSTM model’s ability to learn individual vital sign patterns suggests a shift from generic 

thresholds to tailored health monitoring. The system’s affordability and scalability make it suitable for home 

care, assisting elderly or chronically ill patients, reducing hospital readmissions, and supporting proactive 

care. In hospitals, it could enhance patient monitoring in general wards. Future research should expand 

capabilities to include more vital signs, integrate with electronic health records, and support clinical decision-
making. As healthcare systems face growing pressures, our findings highlight how intelligent monitoring can 

enable early intervention, improving patient outcomes and reducing costs while democratizing access to 

continuous health monitoring. 
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