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 This paper explores multimodal sentiment analysis using the CMU-MOSI 
dataset to enhance emotion detection through a unified approach called 
UniMSE. Traditional sentiment analysis, often reliant on single modalities 

such as text, faces limitations in capturing complex emotional nuances. 
UniMSE overcomes these challenges by integrating text, audio, and visual 
cues, significantly improving sentiment classification accuracy. The study 
reviews key datasets and compares leading models, showcasing the strengths 
of multimodal approaches. UniMSE leverages task formalization, pre-
trained modality fusion, and multimodal contrastive learning, achieving 
superior performance on widely used benchmarks like MOSI and MOSEI. 
Additionally, the paper addresses the difficulties in effectively fusing diverse 

modalities and interpreting non-verbal signals, including sarcasm and tone. 
Future research directions are proposed to further advance multimodal 
sentiment analysis, with potential applications in areas like social media 
monitoring and mental health assessment. This work highlights UniMSE's 
contribution to developing more empathetic artificial intelligence (AI) 
systems capable of understanding complex emotional expressions. 
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1. INTRODUCTION 

Sentiment analysis, also known as opinion mining, is a fundamental task in natural language 

processing (NLP) that aims to identify and classify subjective information such as opinions, emotions, and 

attitudes within text or speech [1]. Traditional sentiment analysis methods have largely relied on unimodal 

data, primarily textual input, using lexical features or deep learning-based approaches. While these 

techniques have proven effective in many applications, they often fail to capture the non-verbal cues that are 

critical to understanding the full spectrum of human emotion [2]-[4]. 
In real-world communication, people express emotions not just through words, but also through 

intonation, facial expressions, and gestures. These complementary signals provide essential context that can 

either reinforce or contradict spoken language [5]. To address this gap, multimodal sentiment analysis (MSA) 

has emerged as a research direction that integrates multiple modalities typically text, audio, and visual to 

better capture the emotional intent behind human expressions [6]. This has significant implications for areas 

such as emotion-aware virtual assistants, social robotics, and mental health analysis. 

https://creativecommons.org/licenses/by-sa/4.0/
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However, MSA comes with several challenges. First, the heterogeneous nature of modalities 

introduces difficulties in temporal alignment, feature integration, and signal imbalance [7]. Second, datasets 

often vary in labeling granularity and sentiment definitions, making it difficult to develop models that 

generalize well across tasks [8]. Third, ambiguous or conflicting emotional signals, such as sarcasm or subtle 

expressions, can reduce model reliability [9]. Although recent models have made progress using attention 

mechanisms, transformers, and memory networks, many remain task-specific and struggle with 
generalization and robustness [10]. 

To overcome these issues, this paper proposes UniMSE, a unified framework for multimodal 

sentiment analysis. UniMSE introduces task formalization to harmonize diverse label schemes, enabling 

consistent cross-dataset training [11]. It leverages modality-specific encoders for feature extraction and 

applies a hybrid fusion strategy that combines early and late fusion for flexible integration. Furthermore, an 

inter-modal contrastive learning objective is introduced to align modality representations and enhance 

performance under ambiguous or noisy input conditions [12], [13]. 

The key contributions of this paper are threefold: 

 First, we propose a unified deep learning-based architecture that systematically integrates three modalities. 

 Second, we develop a contrastive learning mechanism that reinforces modality alignment while 

improving generalizability. 

 Third, we validate the model across four benchmark datasets CMU-MOSI, CMU-MOSEI, MELD, and 

IEMOCAP demonstrating superior performance in both accuracy and F1-score compared to state-of-

the-art models. 

This research directly addresses the challenges outlined above and shows how the proposed 

framework leads to measurable improvements, as demonstrated in the results. In addition to its empirical 

success, UniMSE presents opportunities for future application in emotion-aware systems, cross-lingual 

sentiment tasks, and human-computer interaction domains. Figure 1 illustrates the conceptual framework of 

UniMSE, highlighting the integration of text, audio, and visual modalities to provide a comprehensive 

understanding of sentiment through multimodal data fusion. The rest of the paper is structured as follows: 

section 2 reviews related work, section 3 presents the methodology, section 4 discusses results and analysis, 

and section 5 concludes the paper with key insights and future directions. 

 
 

 
 

Figure 1. The image represents a conceptual framework for sentiment analysis using multimodal data, 

incorporating text, audio, and visual information to comprehensively assess sentiment 

 

 

2. RELATED WORK 

MSA has become increasingly important due to its ability to integrate verbal and non-verbal cues 

for better emotion recognition. Traditional sentiment analysis techniques were primarily text-based [14], and 

while effective for extracting lexical sentiment, they often overlooked critical paralinguistic elements such as 

vocal tone, facial expression, and gesture. These shortcomings motivated researchers to explore multimodal 
approaches that fuse text, audio, and visual data for improved sentiment classification. 

To this end, several models have emerged with varying fusion strategies and architecture designs. 

Liu et al. [15] introduced the aspect-based attention and fusion network (ABAFN), employing attention 

mechanisms to highlight salient contextual and visual features for improved classification. Yu et al. [16] 
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proposed the image-target matching (ITM) network, which aligns image and text features through a coarse-

to-fine mechanism and utilizes transformer layers for deep multimodal fusion. 

Other studies have explored memory networks and graph-based methods. The multi-interactive 

memory network (MIMN) by Xu et al. [17] utilizes dual memory modules to model intra-modal and cross-

modal interactions. Zhao and Yang [18] developed the fusion with GCN and SE-ResNeXt (FGSN) 

framework, leveraging graph convolutional networks alongside attention mechanisms to fuse textual and 

visual representations. Similarly, Wang et al. [19] proposed the AMCGC model, which incorporates aspect-
level co-attention and gated mechanisms for fine-grained sentiment detection. 

Transformer-based models have also gained popularity. The hierarchical interactive multimodal 

transformer (HIMT) [20] and the hierarchical cross-modal transformer (HCT) [21] adopt self-attention and 

aspect-aware layers to capture intricate interdependencies across modalities. While these models demonstrate 

improved accuracy, they typically require extensive computational resources and often lack robustness in 

noisy or ambiguous data environments. 

Despite these advancements, several limitations remain. Most existing models are designed with 

dataset-specific assumptions and struggle to generalize across diverse datasets due to inconsistent labeling 

schemes. Additionally, aligning information from heterogeneous modalities remains a challenge, particularly 

when conflicting signals arise, such as a positive utterance delivered with a sarcastic tone. Furthermore, many 

of these models rely on static or unimodal-focused fusion mechanisms that are inadequate for handling 

emotion ambiguity and subtle non-verbal cues [22], [23]. 
In response to these challenges, the proposed UniMSE framework introduces a unified and flexible 

approach to multimodal sentiment analysis. It incorporates task formalization to standardize label 

representations across datasets, enabling consistent training and evaluation. The model employs a hybrid 

fusion strategy that combines early and late fusion techniques, allowing it to adaptively integrate information 

from multiple modalities at different stages of processing. Additionally, inter-modal contrastive learning is 

applied to align semantically similar features while minimizing modality noise, thereby improving sentiment 

discrimination even under ambiguity. These innovations position UniMSE as a scalable and robust solution, 

capable of outperforming existing models in both accuracy and generalizability.  

 

 

3. METHOD 
The proposed UniMSE framework aims to enhance the robustness and generalizability of MSA by 

introducing a unified label formalization strategy, modality-specific feature extraction, hybrid fusion 

mechanisms, and inter-modal contrastive learning. This section provides a detailed explanation of the 

datasets, preprocessing pipeline, architectural components, and training setup.  

 

3.1.  Datasets 

To evaluate the performance of UniMSE across diverse multimodal scenarios, we selected four 

benchmark datasets: CMU-MOSI, CMU-MOSEI, MELD, and IEMOCAP. These datasets cover a broad 

spectrum of contexts from YouTube monologues to television dialogues and dyadic conversations offering 

varying degrees of sentiment granularity, emotional intensity, and modality combinations. All four datasets 

include synchronized text, audio, and visual modalities. A detailed overview of these datasets, including their 
size, modality distribution, source platforms, and language, is presented in Table 1. The diversity of these 

benchmarks ensures a thorough evaluation of UniMSE’s generalization capability across different domains 

and emotional contexts. 

 

 

Table 1. Overview of popular multimodal sentiment datasets 
Dataset Year Modalities Size Source Language 

IEMOCAP [24] 2008 Audio, video, text 1,039 segments Speech Lab, USC English 

DEAP [25] 2011 EEG signals 32 participants Queen Mary Univ. English 

MOSI [26] 2016 Audio, video, text 2,199 segments YouTube English 

MOSEI [27] 2018 Audio, video, text 23,453 segments YouTube English 

MELD [28] 2019 Audio, video, text 13,000 segments Friends TV Series English 

Multi-ZOL [29] 2019 Text, video 5,288 reviews ZOL.com Chinese 

CH-SIMS [30] 2020 Audio, video, text 2,281 clips YouTube Chinese 

MOSEAS [31] 2021 Audio, video, text 40,000 segments YouTube Spanish, French 

MALE-CALL [32] 2021 Audio, video, text 291 videos YouTube English 

B-TASA [33] 2021 Text, video 4,700 tweets Twitter English 

FACTIFY [34] 2022 Image, text 50,000 tweets Twitter English 

MEMOTION [35] 2022 Image, text 10,000 memes Reddit, Facebook English 
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IEMOCAP [24] is a multimodal dataset featuring 1,039 conversational segments over 12 hours of 

video with various emotions expressed through audio and visual data. DEAP [25] focuses on physiological 

signals from EEG data recorded at 512 Hz from participants rating video stimuli on valence and arousal. 

MOSI [26] consists of 93 YouTube videos with sentiment intensity annotations across 2,199 opinion 

segments. MOSEI [27] expands on this with over 3,228 videos segmented into 23,453 parts across multiple 

modalities. MELD [28] includes video clips from the Friends TV series annotated for seven emotions and 
sentiment. Multi-ZOL [29] contains mobile phone reviews rated on a sentiment scale. CH-SIMS [30] is a 

Mandarin dataset focused on facial and voice data with sentiment intensity annotations. MOSEA [31] covers 

multilingual sentence fragments with sentiment ratings. MALE-CALL [32] consists of YouTube videos in 

English across multiple modalities. B-TASA [33] includes tweets combining video and text for social media 

sentiment analysis. FACTIFY [34] is aimed at fake news detection with image-text data points categorized 

into support or refutation claims. Finally, MEMOTION [35] provides memes annotated for sentiment 

categories like humor and sarcasm. These datasets are crucial for advancing multimodal sentiment analysis 

research by offering diverse sources of data that enhance sentiment detection across various contexts. 

 

3.2.  Overview of the UniMSE framework  

The UniMSE framework is built to unify the learning process across sentiment and emotion 

classification tasks while addressing challenges such as modality misalignment, label inconsistency, and 
sentiment ambiguity [36]. It incorporates four key components: modality-specific feature extraction, unified 

task formalization, a hybrid fusion strategy, and inter-modal contrastive learning. 

The system processes raw text, audio, and visual data using dedicated feature extractors, including 

LSTM-based models for audio (A-LSTM) and visual (V-LSTM) streams, and a T5 encoder for textual input. 

These extracted embeddings are aligned and fed into a multimodal fusion layer within a transformer-based 

encoder-decoder structure. A contrastive learning loss is applied to ensure semantically similar embeddings 

across modalities are brought closer, while dissimilar ones are pushed apart. This mechanism improves 

representation robustness, especially in emotionally ambiguous scenarios [37]. 

Figure 2 illustrates the conceptual architecture of UniMSE, showing the end-to-end flow from 

modality-specific inputs to fused embeddings and task-specific outputs. The framework supports both MSA 

and emotion recognition in conversation through a shared architecture and decoding layer.  
 

 

 
 

Figure 2. Conceptual framework of the proposed UniMSE model, integrating text, audio, and visual 

modalities with fusion and contrastive learning for sentiment and emotion classification 
 
 

3.3.  Data preprocessing 

Each modality underwent preprocessing tailored to its nature. Text data was cleaned through 

lowercasing, stopword removal, and punctuation normalization. Utterances were tokenized using a pre-

trained T5-compatible tokenizer to retain contextual richness. For audio, acoustic features such as mel-

frequency cepstral coefficients (MFCCs), pitch, and energy were extracted using the openSMILE toolkit. 
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These features were normalized and temporally aligned with corresponding visual frames. Visual 

preprocessing involved sampling frames from videos at 5–10 FPS and extracting facial landmarks and 

expressions using pre-trained CNNs. All modalities were aligned using timestamp information to ensure 

consistent cross-modal representation. 

 

3.4.  Task formalization 

Given that sentiment datasets differ in annotation schemes ranging from binary sentiment labels to 
fine-grained continuous scores a task formalization step was required. For datasets like CMU-MOSI and 

MOSEI, which contain sentiment scores from -3 to +3, values were discretized into three classes: negative, 

neutral, and positive, using empirically defined thresholds. For datasets with pre-existing categorical labels, a 

direct mapping to this unified three-class framework was applied. This formalization allowed UniMSE to 

learn a consistent sentiment classification task across heterogeneous datasets, facilitating transfer learning 

and standardized evaluation.  

 

3.5.  Feature extraction 

UniMSE employs modality-specific neural encoders to extract discriminative representations. Text 

features are encoded using a pre-trained T5 encoder, capturing both semantic and contextual dependencies. 

Audio features, which exhibit strong temporal characteristics, are processed using bidirectional long short-

term memory networks to model patterns such as intonation and rhythm [38]. Visual features are extracted 
using convolutional neural networks, focusing on facial expressions and micro-gestures. All extracted 

embeddings are projected into a shared latent space to support effective multimodal fusion.  

 

3.6.  Hybrid fusion strategy 

To address the limitations of purely early or late fusion, UniMSE integrates a hybrid fusion 

mechanism. In the early stage, feature vectors from each modality are concatenated and passed through a 

self-attention layer to capture fine-grained inter-modal dependencies. This is followed by a decision-level 

fusion, where intermediate predictions from each modality stream are reweighted using a learnable gating 

mechanism, allowing the model to dynamically emphasize or de-emphasize modality contributions based on 

context [39]. This strategy enhances interpretability and robustness, especially in the presence of noisy or 

missing modalities.  
 

3.7.  Inter-modal contrastive learning 

To further enhance cross-modal alignment and mitigate representation noise, UniMSE incorporates 

inter-modal contrastive learning. This training objective encourages embeddings from different modalities 

but similar sentiment classes to converge in the shared space while pushing apart dissimilar samples. The 

contrastive loss is computed using cosine similarity and a temperature-scaled SoftMax function:  

 

ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = − log
exp(sim(𝑀𝑖,𝑀𝑗)/𝜏)

∑ exp(sim((𝑀𝑖,𝑀𝑘)/𝜏)𝑁
𝑘=1

  (1) 

 

In (1), ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒  denotes the contrastive loss, which is minimized during training to improve inter-

modal consistency. The term sim(𝑀𝑖 , 𝑀𝑗) represents the cosine similarity between modality embeddings 

𝑀𝑖  𝑎𝑛𝑑 𝑀𝑗 belonging to the same sentiment class. The denominator includes all 𝑀𝑘, representing other 

embeddings in the batch, used to normalize the similarity score. The variable τ is a temperature scaling parameter 

that controls the sharpness of the SoftMax distribution, and N is the number of samples in the batch [40].  

 

3.8.  Training configuration 

UniMSE is trained using a composite loss function that includes categorical cross-entropy for 

sentiment classification and contrastive loss for inter-modal alignment. The model is optimized using the 

Adam optimizer with a learning rate of 1e-4 and a batch size of 32. Early stopping based on validation loss is 

used to prevent overfitting. All experiments are conducted using the PyTorch framework on systems 

equipped with NVIDIA GPUs. Hyperparameters are tuned via grid search, using validation accuracy and  
F1-score as the main evaluation criteria.  

 

 

4. RESULTS AND DISCUSSION 

To evaluate the performance of the proposed UniMSE framework, we conducted extensive 

experiments on four benchmark datasets: CMU-MOSI, CMU-MOSEI, MELD, and IEMOCAP. Each dataset 

presents unique challenges ranging from sentiment granularity and emotional ambiguity to modality noise 
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and conversational variability making them ideal for assessing the robustness and generalizability of 

multimodal models. Evaluation was performed using widely accepted metrics, including mean absolute error 

(MAE), correlation (Corr), binary and 7-class accuracy (ACC-2, ACC-7), and macro F1-score for CMU-

MOSI and MOSEI, and accuracy (ACC) and weighted F1-score (WF1) for MELD and IEMOCAP. 

Across all four datasets, UniMSE consistently outperformed state-of-the-art models. On CMU-

MOSI, UniMSE achieved a MAE of 0.691, Corr of 0.839, ACC-2 of 85.48%, and an F1-score of 85.90%, 
surpassing strong baselines such as MAG-BERT, Self-MM, and MulT. On CMU-MOSEI, which includes 

more than 23,000 opinion segments, UniMSE attained a MAE of 0.523, Corr of 0.773, and a 7-class accuracy 

of 85.86%, with an F1-score of 87.97%, setting a new benchmark in multimodal sentiment prediction. 

In the emotion-oriented MELD and IEMOCAP datasets, which emphasize conversational context, 

UniMSE also demonstrated significant improvements. For MELD, the model achieved an accuracy of 65.51% 

and WF1 of 65.91%, outperforming previous models such as MMIM and MMGCN. On IEMOCAP, UniMSE 

reached 70.66% accuracy and a WF1 of 70.46%, outperforming models including DialogXL and COSMIC. 

These results highlight the effectiveness of UniMSE’s hybrid fusion strategy and inter-modal 

contrastive learning. Unlike traditional early or late fusion methods, UniMSE dynamically adapts the 

contribution of each modality, allowing it to better capture the nuances of sentiment expression. The 

contrastive loss, in particular, was beneficial for emotionally ambiguous samples—such as sarcastic or 

conflicting utterances by enhancing alignment between semantically similar signals across modalities.  
A comparative performance analysis with leading models is presented in Table 2. The table summarizes 

UniMSE’s consistent improvements across all tasks, with especially notable gains in macro F1-score a 

critical metric for evaluating performance on imbalanced datasets such as MELD. 

 

 

Table 2. Comparative performance of UniMSE and existing state-of-the-art models across CMU-MOSI, 

CMU-MOSEI, MELD, and IEMOCAP datasets 
Method MOSI 

(MAE↓

) 

MOSI 

(Corr↑

) 

MOSI 

(ACC

-2↑) 

MOSI 

(ACC

-7↑) 

MOS

I 

(F1↑) 

MOSEI 

(MAE↓

) 

MOSE

I 

(Corr↑

) 

MOSE

I 

(ACC-

2↑) 

MOSE

I 

(ACC-

7↑) 

MOSE

I (F1↑) 

MELD 

(ACC↑

) 

MELD 

(WF1↑

) 

IEMOCA

P (ACC↑) 

IEMOCA

P (WF1↑) 

LMF 0.917 0.655 82.5 - - 0.633 0.703 82 - - - - - - 

TFM 0.907 0.696 84.3 - - 0.614 0.723 83.7 - - - - - - 

MFM 0.836 0.714 84.4 - - 0.561 0.733 84.2 - - - - - - 

MTAG 0.906 0.711 84.3 - - 0.651 0.735 83.7 - - - - - - 
SPC 0.812 0.714 84.1 - - 0.51 0.74 84.6 - - - - - - 

ICCN 0.738 0.731 84.2 - - 0.544 0.756 84.2 - - - - - - 

MulT 0.871 0.714 84.4 - - 0.565 0.75 85.1 - - - - - - 

MSA 0.804 0.744 85.02 84.83 85.07 0.544 0.756 82.9 84.99 83.46 - - - - 

Self-MM 0.713 0.751 84.14 85.23 84.12 0.51 0.748 84.15 85.99 84.27 - - - - 

MAG-

BERT 

0.712 0.761 84.25 85.12 84.93 0.517 0.754 82.72 84.99 83.46 - - - - 

MMIM - - - - - - - - - - 59.46 59.49 65.1 65.38 

DialogGCN - - - - - - - - - - - - 64.18 63.54 

DialogXL - - - - - - - - - - - - 66.35 66.53 

EMRG-

DialogGCN 

- - - - - - - - - - - - 64.6 64.74 

COG-

BART 

- - - - - - - - - - - - 65.63 66.1 

Psychologis
t 

- - - - - - - - - - - - 65.72 66.22 

COSMIC - - - - - - - - - - - - 66.24 66.39 

TODKAV - - - - - - - - - - - - 64.12 64.4 

MMGCN - - - - - - - - - - - - 65.66 65.91 

MM-DFN - - - - - - - - - - - - 64.44 64.72 

UniMSE 0.691 0.839 85.48 85.56 85.9 0.523 0.773 84.23 85.86 87.97 65.51 65.91 70.66 70.46 

 

 

Despite its strengths, UniMSE has limitations. The model’s performance degraded slightly in 

scenarios involving extreme modality imbalance, such as missing visual cues or noisy audio input. This 

suggests a need for further robustness techniques, such as modality dropout or uncertainty-aware fusion. 

Additionally, the model’s decision-making process remains a black box; while attention mechanisms 

improve adaptivity, a deeper understanding of why certain modalities are prioritized remains unexplored. 

Future work could incorporate explainability tools, such as saliency mapping or attention visualization, to 
improve interpretability for deployment in high-stakes settings. Overall, the experimental results confirm that 

UniMSE successfully addresses core challenges in multimodal sentiment analysis. Its strong performance, 

generalizability, and resilience to ambiguity position it as a viable solution for real-world applications, including 

emotion-aware artificial intelligence (AI) systems, human-computer interaction, and social media analysis. 
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5. CONCLUSION  

This paper introduced UniMSE, a unified framework for multimodal sentiment analysis that 

integrates text, audio, and visual modalities through task formalization, hybrid fusion, and inter-modal 

contrastive learning. The model was developed to overcome common limitations in the field, such as 

inconsistent task definitions, weak modality alignment, and reduced performance in ambiguous emotional 

contexts. To address these, UniMSE introduced a unified label mapping scheme, leveraged modality-specific 

encoders, and employed a dual-stage fusion strategy supported by a contrastive learning objective. 
Extensive experiments on four benchmark datasets CMU-MOSI, CMU-MOSEI, MELD, and 

IEMOCAP demonstrated that UniMSE outperforms existing models in both accuracy and F1-score. Its 

consistent performance across datasets validates its generalizability and effectiveness in handling diverse 

sentiment and emotion classification scenarios. Particularly, the hybrid fusion mechanism allowed for 

dynamic modality weighting, while contrastive learning improved robustness in cases of sentiment ambiguity 

or modality conflict. 

The results obtained in this study validate the objectives outlined in the introduction. The unified 

task formalization, hybrid fusion strategy, and contrastive learning components proposed in UniMSE were 

empirically shown to address the key challenges of multimodal sentiment analysis, including cross-modal 

alignment, task inconsistency, and emotion ambiguity. This direct alignment between the research goals and 

the achieved outcomes confirms the methodological soundness and practical value of the approach. 

Furthermore, the adaptability of UniMSE across datasets suggests promising potential for future applications 
in emotion-aware systems, social media monitoring, human-computer interaction, and multilingual sentiment 

environments. 

Nevertheless, several limitations remain. The model’s performance may be affected in cases of 

severely corrupted or missing modalities, and its internal decision-making process lacks full interpretability. 

Future work may focus on integrating adaptive modality dropout, attention visualization, or explainability 

modules. Additionally, extending the framework to support multilingual sentiment recognition and domain-

specific tuning (e.g., medical, educational, or low-resource languages) presents valuable directions for further 

research. 
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