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Abstract 
A novel approach for solving linear estimation problem in multi-user massive MIMO systems is 

proposed. In this approach, the difficulty of matrix inversion is attributed to the incomplete definition of the 
dot product. The general definition of dot product implies that the columns of channel matrix are always 
orthogonal whereas, in practice, they may be not. If the latter information can be incorporated into dot 
product, then the unknowns can be directly computed from projections without inverting the channel 
matrix. By doing so, the proposed method is able to achieve an exact solution with a 25% reduction in 
computational complexity as compared to the QR method. Proposed method is stable, offers an extra 
flexibility of computing any single unknown, and can be implemented in just twelve lines of code. 
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1. Introduction 
Multiple Input Multiple Output (MIMO) systems incorporate multiple antennas at the 

transmitter and the receiver to improve the data rate of wireless communication systems [1, 2].  
However, the ever growing desire for the increased data rates can hardly be satiated and there 
is a demand to increase the data rates even further. As a result, the researchers are aiming to 
achieve the asymptotic limits in capacity. Recently, it has been demonstrated that very high 
capacities are achievable on forward and reverse links as the number of transmit antennas 
approaches infinity [3]. Such systems in which a relatively large number of base station 
antennas serve a large number of users are known as Massive MIMO systems (M-MIMO) [4]. 

M-MIMO systems provide various advantages over the traditional MIMO systems. 
These systems promise higher data rates, higher antenna resolution, lower error probabilities, 
lower thermal noise, and lower transmit power per antenna. These advantages can be attributed 
to an overall averaging behavior of these systems. But these advantages become even more 
impressive in the multi-user scenario where the base station transmits to several users 
simultaneously. However, multi-user M-MIMO systems incur costs of their own: including 
increase in hardware, increase in power consumption, and increase in physical spacing. 
Eventually, the transceiver becomes complex as well [3-6].  

Transceiver complexity is currently an issue of great concern in M-MIMO systems. It 
has been shown that for the point to point  scenario, the decoding complexity of the receiver 
alone grows exponentially with increase in the number of transmit antennas [7]. In case of a 
multi-user scenario, the transmitter becomes complex as well because the transmitter now 
requires advanced coding schemes to manage simultaneous transmission of information to 
multiple users. Former operation, known as decoding, and the latter one, called precoding, 
generally comprise the transceiver operation [8].  

For a large number of transmit antennas, linear decoders and precoders have proven 
almost optimal [9-11]. These linear precoders/decoders require the inversion of a potentially 
large channel matrix. For example, a practical precoding method is the Zero-forcing (ZF) 
precoding method which computes the precoding matrix by forming the pseudoinverse of the 
channel matrix [9]. Similar to linear precoding, a simple linear decoder is the MMSE decoder 
which computes the decoding matrix by again forming the pseudoinverse of the channel matrix 
[12]. If the dimensions of a system are very large, inverting the channel matrix becomes a 
cumbersome task [4]. 
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Therefore, there is a need to eliminate the outright inversion. Various methods for 
approximate matrix inversion have been proposed in literature: including Cayley-Hamilton 
theorem method, Neumann series expansion method, QR decomposition method, random 
matrix methods, and methods based on polynomial and truncated polynomial filters [13-21]. 
These methods still require a lot of computational effort and some of them have proven to be 
even more complex than the direct inversion. However, it is important to note that the challenge 
is fundamentally different in at least three possible ways. To begin with, the channel matrix does 
not have a structure. Secondly, instead of being deterministic, it is random. Finally, there is no 
guarantee of sparsity. So we can dispense with the traditional methods for solving the linear 
estimation problem [22].  

With this in view, we propose a novel method to solve such large linear systems. The 
proposed method treats the linear estimation problem as a coordinate transformation problem. 
By doing so, the method is able to achieve zero norms in error and residue in contrast to the 
state of the art iterative methods for large systems – LSQR, LSMR, and Kaczmarz that achieve 
much higher norms - and a 25% reduction in computation complexity when compared to the QR 
method, the leading protagonist in exact methods [23-25]. Also by employing the proposed 
method, a particular unknown, which may be the only information required by a single user, can 
be computed without evaluating the entire solution vector while no such flexibility is available in 
the traditional methods. Furthermore, the method is stable and light on computation as well as it 
only relies on multiplication with simple rank-one projection matrices for obtaining the solution. 
Finally, the method can be programmed in just ten lines of codes. 

Rest of the article is organized as follows. Section 2 begins with a system model and 
defines the underlying problem.  Basic idea behind the proposed method is explored in Section 
3. The method is then explained in Section 4. Section 5 contains its complete proof. Section 6 
provides the proof of the choice of reflection matrices. A complete algorithm for step by step 
solution of the linear estimation problem according to the proposed method is outlined in 
Section 7. This section also includes a user-friendly code for the algorithm. Comparison of the 
proposed method with QR decomposition is carried out in section 8. The process of generation 
of inverse vectors is also discussed in this section. Computational complexity of the proposed 
algorithm is analyzed in Section 9 which is followed by its stability analysis in Section 10. 
Section 11 concludes the article in which the comparison of the proposed method is carried out 
with the state of the art methods available in literature for solving large systems. 

 
 

2. Problem 
A narrowband memoryless MIMO channel with ݊ transmit and ݉ receive antennas can 

be modeled as a system of linear equations [13]. 
 
࢞  ൌ (1) ࢈

 
With, 
 

 

 ൌ

ۏ
ێ
ێ
ۍ
ࢀࢇ
ࢀࢇ
⋮

ےࢀࢇ
ۑ
ۑ
ې
ࢀ

࢞  ൌ ൦

ଵݔ
ଶݔ
⋮
ݔ

൪ ࢈ ൌ ൦

ܾଵ
ܾଶ
⋮
ܾ

൪ 

 
(2)

 is the output vector. Zero ࢈ .is the input vector ࢞ .is a large, random and non-sparse matrix 
Forcing (ZF) estimate ࢞ෝ of the input vector is: 

ෝ࢞  ൌ ൫
൯ࢀ

ିଵ


(3) ࢈ࢀ

Recovery of ࢞ requires the inversion of a potentially large matrix 
 .ࢀ
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3. Basic Idea 
Linear estimation problem presented by Equation (3) can be viewed as a coordinate 

transformation problem. ࢈ can be envisaged as the vector that undergoes the coordinate 
transformation, ࢞ represents its coordinates in the new coordinate system, and  contains the 
basis vectors for the new coordinate system [26]. The basis vectors can be orthogonal or non-
orthogonal.  For the first case, we are lead to the classic Least Squares (LS) solution depicted in 
Figure 1.  

 

 
 

Figure 1. Computation of unknowns in an orthogonal coordinate system 
 
 

In this case, the estimates ݔଵ, ,ଶݔ … ,   .on the respective basis vectors ࢈  are the projections ofݔ

 

ۏ
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ଵݔۍ ൌ

࢈ࢀࢇ
ࢇࢀࢇ

ଶݔ ൌ
࢈ࢀࢇ
ࢇࢀࢇ
⋮

ݔ ൌ
࢈ࢀࢇ
ےࢇࢀࢇ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (4)

When the basis vectors are not orthogonal, ࢞ is computed by forming the inverse of  
matrix. This is precisely what we desire to avoid. We would like to compute ࢞ from the direct 
estimate of the projections. In order to do so, we focus our attention on Figure 2 for the case of 
non-orthogonal basis vectors. As can be observed from figure, employing the definition of dot 
product in Equation (4) will yield much longer estimates than the actual ones. Reason for these 
incorrect estimates can be attributed to the presence of identity matrix in the general definition 
of the dot product. We demonstrate this fact by re-writing the first term in Equation (4). 

 
 

 
 

Figure 2. Computation of first unknown in a non-orthogonal coordinate system 
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ଵݔ   ൌ
࢈ࡵࢀࢇ

ࢇࡵࢀࢇ
 (5)

 
Identity matrix ࡵ depicts a set of orthogonal basis vectors. As they are not, we can 

replace the ࡵ matrix in Equation (5) by another matrix, say . 

ଵݔ   ൌ
࢈ࢀࢇ

ࢇࢀࢇ
 (6)

To solve for ݔଵ, we re-arrange Equation (6) a bit. 
 

ଵݔࢇࢀࢇ   ൌ (7) ࢈ࢀࢇ
 
Or, 
 

ଵݔࢇ   ൌ (8) ࢈
 

Equation (8) requires the vectors ࢇݔଵ and ࢈ to have equal projections on a plane 
spanned by the column space of . We observe from Figure 2 that ࢇݔଵ and ࢈ have equal 
projections on a plane orthogonal to the second basis vector ࢇ. ࢇݔଵ and ࢈ can be projected on 
such plane by a projection matrix of the form:  

 

   ൌ ቂࡵ െ
ࢀࢇࢇ

ࢇࢀࢇ
ቃ (9)

 
We can substitute  in Equation (5) to solve for ݔଵ. 
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ିࡵቈࢀࢇ
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ࢇ
ࢇࢀ

࢈
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ࢀ

ࢇ
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൨ࢇ
 (10)

 
Similarly for ݔଶ, 
 

ଶݔ   ൌ
ିࡵቈࢀࢇ

ࢇࢇ
ࢀ

ࢇ
ࢇࢀ

࢈

ିࡵࢀࢇ
ࢇࢇ

ࢀ

ࢇ
ࢇࢀ

൨ࢇ
ൌ

࢈ࢀࢇ

ࢇࢀࢇ
 (11)

 
 .  Using Equation (10) and (11), we canࢇ on a plane orthogonal to ࢈ ଶ andݔࢇ  will project
directly solve for ݔଵ without inverting the matrix . Equation (10) and (11) also have a 
connotation that ݔଵ can be solved independently of ݔଶ. 
 
 
4. Method 

Now we present the method for solving the general problem of the form ࢞ ൌ  We .࢈
begin by expanding Equation (3), 

 
  ሾࢇ ࢇ … ିࢇ ࢞ሿࢇ ൌ (12) ࢈

 
Multiplying Equation (12) by a matrix ࡾ, 
 
  ሾࢇࡾ ࢇࡾ … ିࢇࡾ ࢞ሿࢇࡾ ൌ (13) ࢈ࡾ

 
In order for ࢇࡾ to be zero, 
 

ࡾ   ൌ ቂࡵ െ
ࢀࢇࢇ

ࢇࢀࢇ
ቃ (14)
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Equation (13) becomes, 
 
  ሾࢇࡾ ࢇࡾ … ିࢇࡾ ሿ࢞ ൌ (15) ࢈ࡾ

 
Multiplying Equation (15) by a matrix ିࡾ, 
 
  ሾିࡾࢇࡾ ࢇࡾିࡾ … ିࢇࡾିࡾ ሿ࢞ ൌ (16) ࢈ࡾିࡾ

 
In order for ିࢇࡾ to be zero, 
 

ିࡾ   ൌ ቂࡵ െ
ሺࢇࡾషሻሺࢇࡾషሻࢀ

ሺࢇࡾషሻࢀሺࢇࡾషሻ
ቃ (17)

 
Equation (16) becomes, 
 
  ሾିࡾࢇࡾ ࢇࡾିࡾ …  ሿ࢞ ൌ (18) ࢈ࡾିࡾ

 
Continuing in the same fashion, 
 
  ሾࡾ ࢇࡾିࡾ…  …  ሿ࢞ ൌ ࡾ (91) ࢈ࡾିࡾ…

 
or, 
 
ࡾ   ଵݔࢇࡾିࡾ… ൌ ࡾ (20) ࢈ࡾିࡾ…

 
Multiplying both sides by ࢇࢀ, 
 
ࡾࢀࢇ   ଵݔࢇࡾିࡾ… ൌ ࡾࢀࢇ  (21) ࢈ࡾିࡾ…

 
Or, 
 

ଵݔ   ൌ
࢈ࢀࢇ

ࢇࢀࢇ
 (22) 

 
With, 
  
   ൌ ࡾ  (23) ࡾିࡾ…

 
For the ݇-th unknown, 
 

ݔ   ൌ
ࢇ

࢈ࢀ

ࢇࢀࢇ
 (24) 

 
With, 
 
   ൌ ࡾࡾ ࡾ… 	∃	ࡾିࡾ… ്  (25)  

 
 

5. Proof 
In this section, we provide the proof of the proposed method. We begin the proof by 

writing the basic least squares problem. 
 

࢞ࢀ   ൌ (26) ࢈ࢀ
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Expanding Equation (26), 
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If columns of  are orthonormal, then Equation (28) becomes, 
 

 
 

ۏ
ێ
ێ
ێ
ۍ
  …  
  …  
⋮ ⋮ ⋱ ⋮ ⋮
  …  
  …  ے

ۑ
ۑ
ۑ
ې

࢞ ൌ

ۏ
ێ
ێ
ێ
ۍ ࢇ

ࢀ
࢈

࢈ࢀࢇ
⋮

࢈ିࢀࢇ
࢈ࢀࢇ ے

ۑ
ۑ
ۑ
ې

 

 

(29)

࢞  ൌ

ۏ
ێ
ێ
ێ
ۍ ࢇ

ࢀ
࢈

࢈ࢀࢇ
⋮

࢈ିࢀࢇ
࢈ࢀࢇ ے

ۑ
ۑ
ۑ
ې

 (30)

 
If columns of  are orthogonal, then Equation (28) becomes, 
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If columns of  are neither orthonormal nor orthogonal, then the off-diagonal terms in 

Equation (28) prevent the direct solution. If we can somehow eliminate these terms, then a 
direct solution of the form (32) is possible. In order to do that, we insert a block matrix ۱ matrix 
in Equation (26) and re-write it as: 

 
࢞۱ࢀ   ൌ (33) ࢈۱ࢀ

 
Expanding (33), 
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If only, 
 

ࢇ   ് 	∃	 ് (36) 
 
Then Equation (35) takes the form, 
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⋮ ⋮ ⋱ ⋮ ⋮
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ۑ
ۑ
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ێ
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And the solution becomes, 
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ێ
ێ
ێ
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࢈ࢀࢇ
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⋮
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ۑ
ۑ
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ۑ
ۑ
ۑ
ې

 (38)

 
For Equation (38) to hold, we can choose  to be: 
 

    ൌ ࡾࡾ ࡾ… 	∃ࡾିࡾ… ് (39) 
 
 .is a projection matrix ࡾ
 

ࡾ   ൌ ቂࡵ െ
ࢀࢇࢇ

ࢇࢀࢇ
ቃ (40)

 
 An important .ࢇ projects a vector on an axis that is orthogonal to the plane defined by ࡾ

property of ࡾ matrix is that the product ࢇࡾ is zero. This is because the projection of any vector 
on an axis orthogonal to itself is always zero. Hence, the product ࢇࡾ is always zero. 

 

ࢇࡾ   ൌ ቂࡵ െ
ࢀࢇࢇ

ࢇࢀࢇ
ቃ ࢇ ൌ ࢇ െ

ࢇࢀࢇࢇ

ࢇࢀࢇ
ൌ ࢇ െ ࢇ ൌ  (41)

 
This property of ࡾ matrix can be can be used to eliminate the off-diagonal entries in 

Equation (1). 
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Starting with the last term in first row on the left hand side of Eq. (42), we multiply the 
top row with ࡾ. 

 

  

ۏ
ێ
ێ
ێ
ۍ
ࢇࡾ ࢇࡾ … ିࢇࡾ ࢇࡾ
ࢇ ࢇ … ିࢇ ࢇ
⋮ ⋮ ⋱ ⋮ ⋮
ࢇ ࢇ … ିࢇ ࢇ
ࢇ ࢇ … ିࢇ ࢇ ے

ۑ
ۑ
ۑ
ې

࢞ ൌ

ۏ
ێ
ێ
ێ
ۍ
࢈ࡾ
࢈
⋮
࢈
࢈ ے
ۑ
ۑ
ۑ
ې

 (43)

 
With, 
 

ࡾ   ൌ ቂࡵ െ
ࢀࢇࢇ
ࢇࢀࢇ

ቃ (44)

 
Equation (43) becomes, 
 

  

ۏ
ێ
ێ
ێ
ۍ
ࢇࡾ ࢇࡾ … ିࢇࡾ 
ࢇ ࢇ … ିࢇ ࢇ
⋮ ⋮ ⋱ ⋮ ⋮
ࢇ ࢇ … ିࢇ ࢇ
ࢇ ࢇ … ିࢇ ےࢇ

ۑ
ۑ
ۑ
ې

࢞ ൌ

ۏ
ێ
ێ
ێ
ۍ
࢈ࡾ
࢈
⋮
࢈
࢈ ے
ۑ
ۑ
ۑ
ې

 (45)

 
Similarly, to eliminate ିࢇࡾ we multiply the top row in Equation (45) with ିࡾ, 
 

  

ۏ
ێ
ێ
ێ
ۍ
ࢇࡾିࡾ ࢇࡾିࡾ …  

ࢇ ࢇ … ିࢇ ࢇ
⋮ ⋮ ⋱ ⋮ ⋮
ࢇ ࢇ … ିࢇ ࢇ
ࢇ ࢇ … ିࢇ ےࢇ

ۑ
ۑ
ۑ
ې

࢞ ൌ

ۏ
ێ
ێ
ێ
ۍ
࢈ࡾିࡾ

࢈
⋮
࢈
࢈ ے

ۑ
ۑ
ۑ
ې

 (46)

 
Such that, 
 

ିࡾ   ൌ ቂࡵ െ
ሺࢇࡾషሻሺࢇࡾషሻࢀ

ሺࢇࡾషሻࢀሺࢇࡾషሻ
ቃ (47)

We continue this multiplication in this manner until all the off diagonal entries in the first 
row are removed. 

 

  

ۏ
ێ
ێ
ێ
ۍ
ࢇ  …  
ࢇ ࢇ … ିࢇ ࢇ
⋮ ⋮ ⋱ ⋮ ⋮
ࢇ ࢇ … ିࢇ ࢇ
ࢇ ࢇ … ିࢇ ےࢇ

ۑ
ۑ
ۑ
ې

࢞ ൌ

ۏ
ێ
ێ
ێ
ۍ
࢈
࢈
⋮
࢈
࢈ ے
ۑ
ۑ
ۑ
ې

 (48)

 
With  , 
 

   ൌ ࡾ ࡾ… (49) ࡾିࡾ…
 
And, 
 

ࡾ   ൌ ቈࡵ െ
൫ࡾశࡾశ…ࢇࡾ൯൫ࡾషశ…ࡾషࢇࡾ൯

ࢀ

൫ࡾషశ…ࡾషࢇࡾ൯
ࢀ
൫ࡾషశ…ࡾషࢇࡾ൯

 (50)

 
Following the same procedure to remove off diagonal entries for the remaining rows of 

Equation (48), it becomes: 
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ۏ
ێ
ێ
ێ
ۍ
ࢇ  …  
 ࢇ …  
⋮ ⋮ ⋱ ⋮ ⋮
  … ିࢇି 
  …  ےࢇ

ۑ
ۑ
ۑ
ې

࢞ ൌ

ۏ
ێ
ێ
ێ
ۍ
࢈
࢈
⋮

࢈ି
࢈ ے

ۑ
ۑ
ۑ
ې

 (51)

 
With, 
 

   ൌ ࡾࡾ ࡾ… 	∃ࡾିࡾ… ് (52) 
 
Multiplying both sides of Equation (52) with ࢀ to revert back to our least squares solution as in 
Equation (35), 
 

  

ۏ
ێ
ێ
ێ
ۍ ࢇ

ࢀ


ࢀࢇ
⋮

ିࢀࢇ
ࢀࢇ ے

ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ
ࢇ  …  
 ࢇ …  
⋮ ⋮ ⋱ ⋮ ⋮
  … ିࢇି 
  …  ےࢇ

ۑ
ۑ
ۑ
ې

࢞ ൌ

ۏ
ێ
ێ
ێ
ۍ ࢇ

ࢀ


ࢀࢇ
⋮

ିࢀࢇ
ࢀࢇ ے

ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ
࢈
࢈
⋮

࢈ି
࢈ ے

ۑ
ۑ
ۑ
ې

 (53)

 
Solving for	࢞ in Equation (53), we obtain Equation (38). 
 

࢞   ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

࢈ࢀࢇ

ࢇࢀࢇ
࢈ࢀࢇ

ࢇࢀࢇ
⋮

࢈షషࢀࢇ

షࢇషషࢀࢇ
࢈ࢀࢇ

ࢇࢀࢇ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (Repeat)

 
 

6. Proof of the Choice of  Matrix 
In this section, we will provide a novel factorization of LS solution which confirms our 

choice of  matrix.  For the sake of brevity, we will provide the proof for ݉ ൌ 2. The proof can be 
similarly extended to any dimension. Substituting ݉ ൌ 2 in Equation (26) and expanding, 

 

 
 
ࢀࢇ
ࢀࢇ

൨ ሾࢇ ࢞ሿࢇ ൌ 
ࢀࢇ
ࢀࢇ

൨  ࢈

 
(54)

  
ࢇࢀࢇ ࢇࢀࢇ
ࢇࢀࢇ ࢇࢀࢇ

൨ ࢞ ൌ 
࢈ࢀࢇ
࢈ࢀࢇ

൨ (55)

 
Proceeding directly for the solution, 
 

࢞   ൌ
ଵ

൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯ି൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯

ࢇࢀࢇ െࢀࢇࢇ
െࢀࢇࢇ ࢇࢀࢇ

൨ 
࢈ࢀࢇ
࢈ࢀࢇ

൨ (56)

 
This would yield, 
 

࢞   ൌ
ଵ

൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯ି൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯

ሺࢀࢇࢇሻሺࢀࢇ࢈ሻ െ ሺࢀࢇࢇሻሺࢀࢇ࢈ሻ
ሺࢀࢇࢇሻሺࢀࢇ࢈ሻ െ ሺࢀࢇࢇሻሺࢀࢇ࢈ሻ

൨ (57)

࢞  ൌ
ଵ

൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯ି൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯
൦

൫ࢀࢇࢇ൯൫ࢀࢇ࢈൯ି൫ࢀࢇࢇ൯൫ࢀࢇ࢈൯

ࢇࢀࢇ
ࢇࢀࢇ

൫ࢀࢇࢇ൯൫ࢀࢇ࢈൯ି൫ࢀࢇࢇ൯൫ࢀࢇ࢈൯

ࢇࢀࢇ
ࢇࢀࢇ

൪ (58)
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࢞   ൌ
ଵ

൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯ି൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯
൦
ࢀࢇ ቂࡵ െ

ࢀࢇࢇ
ࢇࢀࢇ

ቃ ሻࢇࢀࢇሺ࢈

ࢀࢇ ቂࡵ െ
ࢀࢇࢇ
ࢇࢀࢇ

ቃ ሻࢇࢀࢇሺ࢈
൪ (59)

 
The term ሺࢀࢇࢇሻሺࢀࢇࢇሻ െ ሺࢀࢇࢇሻሺࢀࢇࢇሻ can be in written two ways. Firstly, multiply 

and divide it by ࢀࢇࢇ, 
 

 ሺࢀࢇࢇሻሺࢀࢇࢇሻ െ ሺࢀࢇࢇሻሺࢀࢇࢇሻ ൌ
൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯ି൫ࢀࢇࢇ൯൫ࢀࢇࢇ൯

ࢇࢀࢇ
 ࢇࢀࢇ

  ሺࢀࢇࢇሻሺࢀࢇࢇሻ െ ሺࢀࢇࢇሻሺࢀࢇࢇሻ ൌ ࢀࢇ ቂࡵ െ
ࢀࢇࢇ
ࢇࢀࢇ

ቃ ሻ (60)ࢇࢀࢇሺࢇ

 
Secondly, multiply and divide it by ࢀࢇࢇ, 

ሺࢀࢇࢇሻሺࢀࢇࢇሻ െ ሺࢀࢇࢇሻሺࢀࢇࢇሻ ൌ
ሺࢀࢇࢇሻሺࢀࢇࢇሻ െ ሺࢀࢇࢇሻሺࢀࢇࢇሻ

ࢇࢀࢇ
 ࢇࢀࢇ

  ሺࢀࢇࢇሻሺࢀࢇࢇሻ െ ሺࢀࢇࢇሻሺࢀࢇࢇሻ ൌ ࢀࢇ ቂࡵ െ
ࢀࢇࢇ
ࢇࢀࢇ

ቃ ሻ (61)ࢇࢀࢇሺࢇ

 
Opting Equation (60) and Equation (61) for first and second rows of Equation (59) respectively,  
 

࢞   ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ࢇۍ

ࢀ
ቈିࡵ

ࢇࢇ
ࢀ


ࢇࢀࢇ
࢈൫ࢀࢇࢇ൯

ିࡵࢀࢇ
ࢇࢇ

ࢀ


ࢇࢀࢇ
൨ࢇ൫ࢀࢇࢇ൯

ିࡵቈࢀࢇ
ࢇࢇ

ࢀ


ࢇࢀࢇ
࢈൫ࢀࢇࢇ൯

ିࡵࢀࢇ
ࢇࢇ

ࢀ


ࢇࢀࢇ
൨ࢇ൫ࢀࢇࢇ൯ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (62)

 
Terms ࢀࢇࢇ and ࢀࢇࢇ are scalars. Cancelling and simplifying Equation (62), 
 

࢞   ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ࢇۍ

ࢀ
ቈିࡵ

ࢇࢇ
ࢀ


ࢇࢀࢇ
࢈

ିࡵࢀࢇ
ࢇࢇ

ࢀ


ࢇࢀࢇ
൨ࢇ

ିࡵቈࢀࢇ
ࢇࢇ

ࢀ


ࢇࢀࢇ
࢈

ିࡵࢀࢇ
ࢇࢇ

ࢀ


ࢇࢀࢇ
൨ࢇے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ൦

࢈ࢀࢇ
ࢇࢀࢇ
࢈ࢀࢇ
ࢇࢀࢇ

൪ (63)

 
The factorization process reveals the same  matrix we employed in Equation (38) as 

the solutions obtained by Equation (38) and (63) are exactly same. This confirms our choice of 
 .matrix in Equation (38) 

 
  

7. Algorithm 
In this section, we present an algorithm for proposed method. We will start with an 

example, say computation of ݔଵ, and onwards build a generic algorithm. We begin by re-writing 
Equation (15), 

 
࢞ିࡾ   ൌ (64) ࢈ࡾ

 
 ࡾ by removing its last column. This last column is used to construct   is generated fromି
which is then multiplied wି. 
 

ିࡾ   ൌ ቂࡵ െ
ࢀࢇࢇ

ࢇࢀࢇ
ቃି ൌ ቂି െ

ࢇ
ࢇࢀࢇ

ቃିࢀࢇ ൌ ቂ࢈ െ
ࢇ

ࢇࢀࢇ
ቃ (65)࢈ࢀࢇ

 
  .are then updated ࢈  andି
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ି   ൌ ቂି െ
ࢇ

ࢇࢀࢇ
ቃ (66)ିࢀࢇ

 

࢈   ൌ ቂ࢈ െ
ࢇ

ࢇࢀࢇ
ቃ (67)࢈ࢀࢇ

 
This step can be achieved in a single line of code. It would eliminate the need of extra 

variables to store their previous values of  and ࢈. Similarly, ି is generated from ି by 
removing its last column from which ିࡾ is constructed for subsequent multiplication by ି 
and ࢈ and then the update. 

 
࢞ିିࡾ   ൌ (68) ࢈ିࡾ

 
And, 
 

  ቂି െ
షࢇ

షࢇࢀషࢇ
ቃିࢀିࢇ ࢞ ൌ ࢈ െ

షࢇ
షࢇࢀషࢇ

(69) ࢈ࢀିࢇ

ି   ൌ ି െ
షࢇ

షࢇࢀషࢇ
 (70)ିࢀିࢇ

࢈   ൌ ࢈ െ
షࢇ

షࢇࢀషࢇ
(71) ࢈ࢀିࢇ

 
Continuing in same fashion, 
 

ࢇ   ൌ ࢇ െ
ࢇ

ࢇࢀࢇ
 (72)ࢇࢀࢇ

 
 .ࢇ  will just be a single column at this step so we have replaced it by
 

࢈   ൌ ࢈ െ
ࢇ

ࢇࢀࢇ
(73) ࢈ࢀࢇ

 
To compute ݔଵ, it would be appear from Equation (24) and (25) that there would be a need to 
store the original  matrix.  
 

ଵݔ   ൌ
࢈ࢀࢇ

ࢇࢀࢇ
 (74) 

 
But this would be unnecessary. In ordinary least squares, 
 
ࢋࢀࢇ   ൌ ࢇ

࢈ሺࢀ െ ଵሻݔࢀࢇ ൌ 0 (75) 
 

 which makes the dot product in Equation (75) equal to zero. In our ࢋ	 is orthogonal toࢇ
case, it is the  matrix that makes the dot product equal to zero. 
 
ࢋࢀࢇ   ൌ ࢇ

ࢀ
࢈ሺ െ ଵሻݔࢀࢇ ൌ 0 (76) 

 
Hence, multiplication by ࢇ can be avoided. Here, ordinary summation will do the job. 
 

ଵݔ   ൌ
∑ 

సభ

∑ 

సభ

 (77) 

 
Equation (77) represents the desired solution. A stepwise algorithm for computing any 

arbitrary unknown is given in Table 1.  
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Table 1. Stepwise recursive algorithm for the proposed method 

1. Initialize a variable ݇ that represents the ݇-th unkown to be determined. 

2. Initialize a variable  such that  ൌ ݊ and ensure  ് ݇. 

3.

Generate ି from  by separating ࢇ and update the ି matrix using:  

ି ൌ ቈି െ
ࢇ

ࢇࢀࢇ
 ିࢀࢇ

 

4.
Update the ࢈ vector using: 

࢈ ൌ ቈ࢈ െ
ࢇ

ࢇࢀࢇ
 ࢈ࢀࢇ

5. Decrement . 

6. Move back to step 3 and keep iterating until  ൌ 1. 

7.
Compute the unknown using: 

ݔ ൌ
∑ ܾ

ୀଵ

∑ ܽ

ୀଵ

 

 
 
8. Generation of Inverse Vectors and Comparison with Qr Decomposition 

In this section, we will demonstrate that the first run of the algorithm described in 
section 7 will generate the first inverse vector [27], the first unknown ݔଵ, and the complete ࡽ 
matrix,. We begin by considering Equation (65). In that equation, we removed the last column of 
 , and thenି with ࡾ from the removed column, multiplied ࡾ , constructedି to form 
finally disposed off that last column. We proceeded in the similar fashion until we arrived at ࢇ in 
Equation (72). But during the entire process, we disposed off the columns that have been used 
to construct ିࡾ matrices at each stage. If these columns are kept instead, then they would 
constitute the ࡽ matrix and the last column ࢇ will ultimately be the inverse vector [27]. This can 
be explained as follows. 

Removal of the	݊-th column from  will form ି as in Equation (65). Removed 
column is kept as ࢇ. Multiplying ࡾ with ି removes the projections of the columns of ି  
that lie along ࢇ as described in Equation (65). Last column of the resulting matrix is removed to 
generate ି in Equation (68). This column is kept as ିࢇ. ିࢇ will be orthogonal to ࢇ. This 
is because the projection of ିࢇ that lies along ࢇ has been removed after multiplication with 
 Continuing in the same fashion, projection of every removed column will be subtracted from .ࡾ
the remaining columns of ି matrix due to multiplication with  ିࡾሺାሻ matrix. In the end, we 
obtain ࢇ in Equation (72) from which all its components that lie parallel to separated columns 
have been removed. As a result, ࢇ will be orthogonal to all the remaining columns. This is 
precisely the definition of inverse vector [27]. Hence, ࢇ is the first inverse vector and the 
desired solution to the first unknown ݔଵ.  

Now we will explain the generation of ࡽ and ࡾ matrices. From ࢇ, all its projections that 
lie along the separated ሺ݊ െ 1ሻ columns have been removed. Hence, ࢇ will generate ሺ݊ െ 1) 
zeros when multiplied with the  matrix on the left hand side. This will form the first row of a 
lower triangular matrix with ሺ݊ െ 1ሻ zeros. From ࢇ, all the projections that lie along the last 
ሺ݊ െ 2ሻ columns have been removed. This will generate the second row of the lower triangular 
matrix with ሺ݊ െ 2ሻ zeros. Continuing in the same fashion, we arrive at ࢇ from which no 
projection has been removed. This will generate the last row of the lower triangular matrix that is 
full and does not contain any zeros. Given that the removed columns are stored row-wise in a ࡽ 
matrix, multiplying it with  will produce a lower triangular matrix. As we have started from the 
݊-the column and the moved backwards to the first column, the matrix generated will be lower 
triangular. If instead we start from the first column and then move forward to the ݊-th column, 
the resulting matrix will be upper triangular. This matrix is termed as ࡾ matrix in ࡾࡽ 
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decomposition. So	ࡴࡽ will be equal to ࡾ or  ൌ  decomposition ࡾࡽ This completes the .ࡾࡽ
process. 

 
 

9. Computational Complexity 
We begin the analysis of the computational complexity of the algorithm by examining 

Equation (66) and (67). 
 

ି   ൌ ି െ
ࢇ

ࢇࢀࢇ
 Repeatିࢀࢇ

 

࢈   ൌ ࢈ െ
ࢇ

ࢇࢀࢇ
Repeat ࢈ࢀࢇ

 
The term ିࢀࢇ will require the largest number of multiplications which is ሺ݊ െ 1ሻ݉. In 

the next step, multiplication by ିࡾ will require ሺ݊ െ 2ሻ݉ multiplications. Continuing in same 
fashion to ࡾ, there will be a total of  ሾ1 ⋯ ሺ݊ െ 3ሻ  ሺ݊ െ 2ሻ  ሺ݊ െ 1ሻሿ݉ multiplications. The 

series ሾ1 ⋯ ሺ݊ െ 3ሻ  ሺ݊ െ 2ሻ  ሺ݊ െ 1ሻሿ can be summed up using Gauss’s formula 
ሺାଵሻ

ଶ
 for 

the sum of first ݊ numbers. Since the last number is ሺ݊ െ 1ሻ, the sum of the series becomes 
ሺିଵሻ

ଶ
, resulting in 

ሺିଵሻ

ଶ
݉ multiplications. So the order of complexity for the computation of a 

single unknown would be ܱ ቀ
య

ଶ
ቁ for a large system. It is tempting to think that the computation 

of all ݊-unknowns would require the order of complexity to rise to ݊ସ but this is not the case. 
Once an unknown is computed, say ݔଵ, it can be substituted backwards which requires only ݉ 
additional multiplications. Now for the second unknown, the reduced system does not have to 
be solved all over again as all the ࡾ’s and ࢈’s that are required for its calculation have been 
computed in the first phase, i.e., the phase in which ݔଵ was calculated. Leaving aside the first 
and the last unknowns which do not require any back substitution, a total of ሺ݊ െ 2ሻ݉ extra 
multiplications will be required for computing all unknowns. Therefore, the order of the 

complexity will not rise above ݊ଷ. Therefore, the total cost of the algorithm will be 
య

ଶ
 . Comparing 

it with the QR algorithm which has the cost of 
ଶయ

ଷ
 [22], 

 

 
మయ

య
ି
య

మ
మయ

య

ൌ
య

ల
మయ

య

ൌ
ଵ

ସ
ൌ .25 

 
There is a 25% reduction in the total computational cost. 
 
 
10. Stability 

In this section we analyze the stability of the proposed method. For this purpose, we 
determine its spectral radius. Spectral radius is defined as the absolute value of the largest 
eigenvalue of the controlling matrix. It should be less than or equal to one for a stable operation 
[22]. In the proposed method, matrices that control the solution are rank one-projection 
matrices. These matrices have a single largest eigenvalue of one whereas all the remaining 
eigenvalues are zero. Their spectral radius is 1. This means that if an arbitrary vector ࢞ is 
multiplied with these matrices, its length will not be inflated.  

 

‖࢞ࡾ‖   ൌ ࢞ࡾࢀࡾࢀ࢞ ൌ ࢞ࡾࢀ࢞ ൌ ࢀ࢞ ቂࡵ െ
ࢀࢇࢇ

ࢇࢀࢇ
ቃ ࢞ ൌ ࢞ࢀ࢞ െ

ฮ࢞ࢀࢇฮ


ࢇࢀࢇ
 (78)

 
Where, 
 

ࡾࢀࡾ  ൌ ࡵ െ 
ࢀࢇࢇ

ࢇࢀࢇ


ࢀࢇࢇ

ࢇࢀࢇ
ൌ ࡵ െ

ࢀࢇࢇ

ࢇࢀࢇ
ൌ  ࡾ

 
When ࢞ࢀࢇ ൌ , Eq. (78) becomes ‖࢞ࡾ‖ ൌ ࢇ  . In case‖࢞‖ ൌ ‖࢞ࡾ‖ ,࢞ ൌ . In general: 
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‖࢞ࡾ‖     (79)‖࢞‖
 
Therefore, there is no risk of explosion in the length of ࢞ after repeated multiplications.  
 
 
11. Results/Discussion 

We now present the simulation results of the algorithm. The components of the channel 
matrix are chosen to be independent and identically distributed (IID) Gaussian random variables 
with a zero mean and unity variance. ݉ is selected equal to ݊ as this refers to multi-user case in 
M-MIMO systems because both the number of transmitting and receiving antennas become 
very large. Also when ݉ ൌ ݊, an exact solution is possible and the residue and hence the error 
in the estimate can be zero. Various matrix sizes have been selected and the results obtained in 
terms of the norm of residue, norm of the error in estimate and the computational time taken are 
displayed in Table 2 against the state of the art algorithms available in literature. Codes required 
for simulation of LSMR and LSQR algorithms have been adopted from the website of Stanford 
University’s System Optimization Laboratory [28] and were used as is. As the proposed method 
is exact, it achieves zero norms in all the cases. Its columns for residue and error norms are not 
included in the table. Simulation results demonstrate that LSMR, LSQR, and Kaczmarz 
algorithms yield much higher norms for both the residue and the error for large matrix sizes. 
Due to these higher norms, the estimate becomes practically useless despite the fact that 
LSMR and LSQR are much faster than the proposed algorithm. On the other hand, QR being an 
exact method achieves zero error/residue norms. But it takes more computation time than the 
proposed method. Hence, the proposed method is a much better choice in this scenario. It has 
higher speed as compared to QR method and lower error/residue norms when compared to 
LSMR, LSQR, and Kaczmarz algorithms. 

 
 
Table 2. Comparison of the proposed algorithm with the state of the art methods  

ܯ
ൌ ܰ 

Proposed QR LSMR LSQR 
Kaczmarz 

100 iterations 

time time ‖ݎ‖ ‖݁‖ Time ‖ݎ‖ ‖݁‖ time ‖ݎ‖ ‖݁‖ time 

ܰ
ൌ 20 

0 0 0.0804 0.6418 0 0.1596 1.3585 0 0.5191 1.2066  0.0630 

ܰ
ൌ 40 

0 0 0.1116 1.7462 0 0.1960 1.6275 0 1.3482 1.3463 0.1260 

ܰ
ൌ 60 

0.0156 0.0211 0.1589 2.0725 0 0.5782 1.8263 0 1.5294 2.3033  0.2200 

ܰ
ൌ 80 

0.0469 0.0627 0.1896 2.1318 0.0150 1.2171 2.3114 0 2.5787 3.0479 0.4070 

ܰ
ൌ 100 

0.0781 0.1045 0.2144 2.3678 0.0151 1.6671 3.0958 0 3.2469 4.3231 0.5010 

ܰ
ൌ 120 

0.1094 0.1459 0.2186 2.4746 0.0153 1.8697 3.5757 0 3.8631 5.2422  0.7050 

ܰ
ൌ 140 

0.1563 0.2083 0.2320 2.4962 0.0159 2.3005 3.6616 0 4.5234 9.3310  0.9870 

ܰ
ൌ 160 

0.2188 0.2916 0.2540 2.6058 0.0160 2.4816 3.7103 0 4.7671 11.7761  1.2980 

ܰ
ൌ 180 

0.3281 0.4375 0.3468 2.8010 0.0310 3.2124 3.7700 0.0320 5.6000 14.2675 1.6420 

ܰ
ൌ 200 

0.4375 0.5833 0.3862 2.8263 0.0780 3.4337 3.8408 0.1870 5.1865 23.5984 2.0490 
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