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1. INTRODUCTION

Agriculture serves as a foundation for ensuring global food security and driving economic growth,
and environmental sustainability. It is essential for feeding the growing global population, providing
livelihoods, and supporting various Sustainable Development Goals (SDGs) [1]. The sector supports the
global food supply by converting raw agricultural materials into value-added products, such as fruits,
vegetables, cereals, and root and tuber crops [2]. Global food systems exhibit a perilous reliance on a limited
number of staple crops. Six in particular—rice, wheat, maize, soybean, potato, and sugarcane—contribute to
over 75% of global plant-derived energy consumption [3]. These crops are not only staple foods globally but
hold particular significance in the Asian regions.

Staple crop production in Asian countries is notably high. Over 90% of rice production and
consumption occurs in Asia, where it serves the majority of the population, including approximately 560
million individuals facing hunger in the region [4]. The rice-wheat rotation is predominantly practiced in East
and Southeast Asia, supplying a reliable food source for more than 20% of the global population [5].
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Furthermore, maize (corn) ranks among the top three cereal crops in Asia. In fact, Asia contributes about
one-third to the world’s total maize production, with China leading in terms of yield and area [6]-[8].
Moreover, East and Southeast Asia mainly produce and consume soybeans, with Japan, as the largest
importing country, exerting considerable influence over the global market [9]. Furthermore, India ranks as
the second-largest producer of potatoes after China, with a yield of 51.3 million tonnes cultivated over an
area of 2.14 million hectares, representing 11.6% of global production [10].

Overall, Asia has a substantial staple crop production. However, climate change and population
growth pose significant threats to crop production, necessitating heightened agricultural productivity. This
demand for increased output may adversely impact the yield of staple crops, potentially leading to a dramatic
rise in hunger, poverty, and malnutrition [11]. Crop yield variability arising from diverse climate scenarios,
including droughts, excessive rainfall, and extreme temperature fluctuations, remains a critical concern for
farmers, governments, and markets. This underscores the urgent need for accurate and timely predictions of
crop yields in the face of an uncertain climate.

Crop yield prediction is a challenging problem in precision agriculture, and humerous models have
been proposed and validated to address it effectively. This highlights that crop yield prediction is a complex
task involving multiple intricate steps. While current models can estimate actual yield with reasonable
accuracy, improving predictive performance remains an ongoing goal for researchers [12]. Machine learning
(ML) approaches have become indispensable tools for predictive modeling not only in agriculture, supporting
decision-making processes related to crop selection and management throughout the growing season. Data
mining algorithms, including random forest (RF), decision trees (DT), support vector machine (SVM),
Gaussian Naive Bayes, and AdaBoost, are among the most commonly used and popular methods for crop
yield prediction. These algorithms have demonstrated robust performance, achieving high accuracy and low
root mean square error (RMSE) in various studies [12]-[15].

Furthermore, over 50 relevant studies were examined, revealing that the most common methods for
crop Yyield predictions are ML and deep learning methods [12]. Methods like convolutional and recurrent
neural networks (CNN-RNN) and artificial neural networks (ANN) are widely utilized and demonstrate
strong predictive performance. However, these advancements have limited the exploration of specific linear
and non-linear regression algorithms tailored for crop yield prediction [16]-[18]. Additionally, most existing
studies are either global in scope or focused on foreign countries, which could lead to overly generalized
conclusions.

Overall, research on predicting staple crop yields—such as maize, potato, rice, soybeans, and
wheat—under varying climate scenarios specific to Asian countries remains limited. This paper aims to
develop a predictive model for staple crop yields in Asia using ensemble methods despite the availability of
more advanced ML models. The proposed model is designed to analyze the relationships between crop yields
and climate-related variables such as temperature, rainfall, and pesticide usage. Furthermore, this paper seeks
to demonstrate that ensemble-based approaches are well-suited for modeling the complex, non-linear
relationships inherent in agricultural data, offering accurate and reliable predictions under diverse climate
conditions.

2. METHOD

In an attempt to predict crop yield, this paper employs conventional methods, including dataset
preparation, which includes data wrangling, exploratory data analysis (EDA), model development and
evaluation, and the derivation of insights. To consolidate relevant data, a unified dataset was constructed by
integrating information from three distinct sources — Kaggle [19], the Food and Agriculture Organization
(FAO) of the United Nations [20], and the World Bank Group [21]. The primary dataset was sourced from
Kaggle, containing records from 1990 to 2013, with features such as area (country), year, item (crop),
average rainfall (mm), pesticide use (tonnes), average temperature (°C), and yield (hg/ha). The raw data was
cleaned, structured, and enriched into the required format through a data wrangling process to facilitate more
informed and efficient analysis [22]. This involved several subprocesses, including describing the data based
on its general properties and performing data cleaning tasks, such as removing null values, duplicates, and
outliers. The initial dataset comprised a global collection encompassing multiple regions worldwide. To
focus the study on Asia, only records from Asian countries were included. Given that some Asian countries
did not have complete records within the specified year range (1990-2013), the analysis was restricted to
Asian countries with complete and continuous data. The selected countries represent diverse regions within
Asia. To extend the analysis period, data from two additional sources were integrated, providing information
for the years 2014 to 2022. Each record’s correctness was verified by cross-checking with the two latter
sources to ensure consistency.
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To objectively uncover the underlying characteristics of the dataset without any preconceived
assumptions [23], an EDA was performed. This process involved data visualizing the distribution of yields
using a histogram. Various visualizations, including scatterplots, were employed to describe the dataset and
explore relationships between variables.

Given that the dataset contains categorical data, one-hot encoding was applied to convert the
categorical variables into a binary format, enabling their effective use in ML models. This method is
particularly effective when handling datasets with missing values and incurs lower computational costs [24].
Subsequently, a standard scaler was used to transform the features of the dataset to a comparable scale and to
reduce dimensionality, addressing the increase in dimensionality caused by one-hot encoding, particularly in
variables with multiple categories. Thereupon, the data was split into training and testing sets, which
involved input data (features) and target data (labels or output). Thirty percent of the data was allocated for
testing, while the remaining seventy percent was designated for training. The data was shuffled prior to
splitting to ensure a well-mixed distribution in both the training and test sets, thereby mitigating any potential
ordering bias. The seed for random number generation was set to 40 to ensure reproducibility.

Multiple regression techniques were employed to construct the model using Google Colab. The
techniques utilized include gradient boosting regressor, linear regression with stochastic gradient descent
(SGD), ridge regression, lasso regression, support vector regression (SVR), ElasticNet, RF regressor, and
extreme gradient boosting (XGBoost) regressor some of which have demonstrated effectiveness in similar
studies on yield prediction [25].

This study evaluated the performance of the used regressors in predicting crop yields while
comparing them to less frequently applied methods to identify strengths and limitations for developing robust
predictive models. In evaluating the models, a hybrid set of regression report metrics was used — mean
absolute error (MAE), median absolute error, mean squared error (MSE), root mean squared error (RMSE),
max error, R2 score, explained variance score (EVS), and mean absolute percentage error (MAPE). These
were used along with the implementation of hyperparameter tuning techniques, such as GridSearchCV and
RandomizedSearchCV, based on cross-validated performance. The evaluation reports were subsequently
visualized to facilitate insights derivation and comparison and improve understanding of the results.

3. RESULTS AND DISCUSSION

By applying the aforementioned methods, the results of this study provide valuable insights into the
relationship between climatic variables and the yield of staple crops, highlighting the predictive performance
of various regression techniques.

3.1. Dataset for prediction

The initial dataset from Kaggle, consisting of 28,242 rows, was consolidated with other datasets,
then cleaned, structured, enriched, and extended for analysis, resulting in a final dataset of 7,043 rows, with
its properties detailed in Table 1.

Table 1. Final dataset description
Attribute Description Values
area country name Armenia, Azerbaijan, Bangladesh, India, Indonesia, Iraqg,
Japan, Kazakhstan, Lebanon, Malaysia, Nepal, Pakistan,
Qatar, Saudi Arabia, Sri Lanka, Tajikistan, Thailand

item staple crops maize, potato, rice (paddy), soybean, wheat

year planting year 1990-2022

average_rain_fall_mm_per_year  average recorded rainfall 59-2,875
in millimeters
pesticides_tonnes average annual use of 0.92-349,797.62
pesticides in tonnes
avg_temp average recorded 7.44-26.37
temperature in celsius
hg/ha_yield Amount of crop yield in 50-340,000

hectograms per hectare

3.2. EDA

Since crop yield is primarily the target variable, a histogram was used to see the overall distribution
as seen in Figure 1. The distribution is right-skewed, indicating that most fields have lower yields than a
smaller number of fields with very high yields. Outliers on the higher end, representing fields with
exceptionally high yields, were identified and addressed to prevent overly generalized prediction.
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Figure 1. Yield distribution

Furthermore, scatterplots were used to reveal the correlations between variables. Figure 2 illustrates
the correlation between crop yield (hg/ha) and four key variables: year, average rainfall, pesticide usage, and
average temperature. The results show a weak positive correlation of 0.14053 between year and yield, as seen
in Figure 2(a), and between rainfall and yield (Figure 2(b)) with 0.01162, suggesting that while yield has
slightly increased over the years, the relationship is not strong, and rainfall has a minimal impact on yield.
Moreover, increased pesticide usage (Figure 2(c)) and higher temperatures (Figure 2(d)) may slightly
decrease yield, but the relationship remains weak.
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Figure 2. Correlation of: (a) yield and year, (b) yield and rainfall, (c) yield and pesticide, and

(d) yield and temperature
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While a weak positive correlation was observed between variables, the relationship is not
statistically significant. This suggests that other factors not considered in this study may play a more
significant role in the observed variation. Nevertheless, despite the weak relationships observed, the
researcher proceeded with building the model, as the dataset provides factual data, considering that outliers
have been addressed.

3.3. Model performance

The  features used for the model are  pesticides_tonnes, avg_temp, and
average _rain_fall_mm_per_year to predict the target variable hg/ha_yield. The performance of each
regression model employed for crop yield prediction was evaluated using the aforementioned metrics through
cross-validation while implementing GridSearchCV and RandomizedSearchCV hyperparameters. Figure 3
shows that among the ML algorithms evaluated for predicting staple crop yield, the XGBRegressor (in a
green-filled bar) achieved the highest performance with an R? score of 0.958367. This suggests that the
model accounted for about 95.8% of the variation observed in the crop yield data, outperforming all other
models tested. XGBoost’s ability to handle non-linear relationships, manage missing data effectively, and
incorporate regularization likely contributed to its superior accuracy.

Furthermore, XGBR registered one of the lowest RMSE values at 4,253, which further reinforces its
strong predictive accuracy and reliability in estimating crop yield outcomes. A lower RMSE indicates that the
model’s predicted values are, on average, very close to the actual observed values, making the predictions not
only statistically accurate but also practically useful in real-world agricultural planning. The RMSE
comparison, as visualized in Figure 4, clearly demonstrates the superior performance of both XGBoost and
RF regressor, which had notably lower error margins compared to the other models tested. In contrast,
models such as ElasticNet, ridge regression, and SGD regressor produced significantly higher RMSE values,
indicating less precision and larger deviations in their predictions.
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Moreover, Figure 5 utilizes normalized values for each metric, facilitating a clearer, side-by-side
comparison of the regression models. This normalization is particularly important given the considerable
variation in raw values. By normalizing the data, no single large value disproportionately influences the
visualization, thereby enabling a more balanced assessment of model performance across the various error
metrics. Normalized values are indicative of superior predictive performance. Models such as XGBoost
(MAE: 1909.11, max error: 62417.16, MAPE: 0.115), RF regressor (MAE: 1845.76, max error: 42377.99,
MAPE: 0.143), and gradient boosting regressor (MAE: 1663.13, max error: 77315.79, MAPE: 0.096)
consistently exhibit lower normalized values, suggesting they outperform other models across key metrics,
including MAE, MEDAE, maximum error, and MAPE.

A noteworthy observation from the graph is the consistent performance of the ensemble models,
particularly XGBoost and RF, which maintain relatively low normalized values across all metrics. This
consistency is indicative of their robustness in not only minimizing average prediction errors but also in
mitigating the occurrence of extreme outliers, as evidenced by their low max error and MAPE values.

In contrast, the linear models, including ElasticNet (MAE: 8001.77, max error: 85168.66, MAPE:
0.684), SGD regressor (MAE: 7314.31, max error: 82864.39, MAPE: 0.571), lasso regression (MAE:
7310.81, max error: 82938.52, MAPE: 0.570), and ridge regression (MAE: 7309.69, max error: 82948.34,
MAPE: 0.570), exhibit higher error values across the metrics. The elevated normalized values for these
models indicate poor generalization ability and higher variability in prediction accuracy, suggesting that they
may not be as reliable for practical applications in agricultural yield prediction.

The SVR (MAE: 2578.87, max error: 77325.95, MAPE: 0.136) demonstrates moderate
performance, positioned between the linear models and the ensemble methods. Although its performance
exceeds that of the linear models, its error metrics still lag behind those of XGBoost and RF.
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4. CONCLUSION

Crop yield prediction has gained increasing importance, utilizing advanced statistical and ML
techniques to support agricultural planning and food security. In this study, while the EDA revealed
relatively weak linear relationships among individual variables, the predictive performance of the evaluated
models demonstrated that reliable yield forecasts can still be achieved. The findings underscore the efficacy
of ensemble methods, particularly XGBoost, in accurately predicting staple crop yields under varying
climate-related conditions in Asia. With XGBoost achieving an impressive R2 score of 0.958 and maintaining
the lowest error margins across key metrics such as RMSE, MAE, and MAPE, the results strongly support
the growing scientific consensus that ensemble models are particularly well-suited for modeling complex,
non-linear relationships in agricultural data. These findings not only align with existing research on the
advantages of tree-based ensemble models but also demonstrate their practical applicability in climate-
informed agricultural planning and food security analysis.

Future research can build upon these findings by incorporating a larger dataset and a broader set of
features, such as soil quality, irrigation patterns, CO2 concentration levels, and socioeconomic variables, to
further enhance model robustness. Additionally, extending the study to include temporal forecasting (e.g.,
next-season yield prediction) using time-series methods or hybrid models may yield even deeper insights.
Conducting region-specific model training across diverse Asian subregions could also help capture localized
agricultural dynamics more effectively. Furthermore, developing a software tool for automatic crop yield
prediction could streamline the process, enabling real-time forecasting and facilitating more accessible
decision-making for farmers and agricultural stakeholders.
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This study highlights that XGBoost provide not only statistical accuracy but also practical reliability
for real-world agricultural yield prediction. Its consistent performance across multiple error metrics suggests
that it is capable of supporting informed decision-making in climate-resilient agriculture. As climate
variability continues to challenge traditional farming systems, adopting such advanced ML approaches could
play a critical role in optimizing yield forecasts and ensuring food security in the region.
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