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 Although collecting enormous volumes of heterogeneous data from many 

sensors and guaranteeing real-time decision-making are problems, precision 

agriculture (PA) has emerged as a promising approach to increase 

agricultural efficiency. The efficacy of current centralized solutions is 

limited in large-scale agricultural settings due to resource limitations and 

data saturation. In order to solve these problems, this paper suggests a 

decentralized computing environment for precision agriculture (DECPA), 

which divides resource management and data processing among several 

layers (end, edge, and cloud). DECPA optimizes task execution and resource 

allocation in the field by utilizing ensemble machine learning models (deep 

neural network (DNN), long short-term memory (LSTM), autoencoder (AE), 

and support vector machine (SVM)) and a multi-tier architecture. The 

findings demonstrate that DECPA combined with DNN performs better than 

alternative models, achieving a 20% decrease in energy usage, an 18% 

speedup in response time, a 5% improvement in accuracy, and a 51% 

reduction in latency. This illustrates the system’s capacity to manage 

massive amounts of data effectively while preserving peak performance. To 

sum up, DECPA uses decentralized resources and cutting-edge machine 

learning models to provide a scalable and affordable precision agriculture 

solution. To improve the system’s flexibility and real-time responsiveness, 

future research will investigate additional optimization and use in various 

agricultural contexts. 
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1. INTRODUCTION  

The area of precision agriculture (PA) calls for adopting various advanced technologies that can be 

used for autonomous management of farming region [1]. The primary goal of PA is towards optimizing various 

specific resources (pesticides, seeds, fertilizers, and water) adopted in any standard agricultural practices with an 

intention towards improving efficiency in farming, minimizing environmental impact, and enhancing yield of 

crops [2]. Various key components in PA are sensors and internet-of-things (IoT), usage of geospatial 

technology, drones and aerial imaging, data analytics, automated equipments (e.g. machinaries, harversters, and 

tractors), and variable rate technology [3]-[8]. There is an increasing attention of PA among scientific 

community which can be attributed by positive rationale e.g. sustainability, resource efficiency, increased yield, 

https://creativecommons.org/licenses/by-sa/4.0/


Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 A multi-tier framework of decentralized computing environment for … (Kiran Muniswamy Panduranga) 

1073 

and data-driven decision. However, PA is also characterized by various challenges too. The initial challenge is 

that PA involves higher initial cost which is mainly due to inclusion of various devices and technology that also 

demands specific way of configuring and maintaining for long-term operation. PA is also characterized by 

voluminous yield of agricultural data from various sensing devices while such massively generated data also 

demands a proper way to integrate them. Owing to inclusion of heterogeneous forms of devices, the complexity 

of integrating such data arises exponentially. From the viewpoint of infrastructure and connectivity, usually 

farming area are located remotely where better signal quality cannot be anticipated much. This acts as main 

obstacle towards implementing smart farming operations. The other challenges are data privacy and security [9] 

and environmental factors [10]. Such challenges are analyzed to be well-addressed by adopting machine 

learning approaches [11]-[13]. Exercising machine learning approaches on field data can offer predictive 

analysis of yield, weather, disease in crops. Deep learning is already investigated by various researchers towards 

predicting nutrient deficiency, pest infestation, disease by analyzing images of farming region [14]. However, 

existing research work using deep learning is often found to be more inclined towards accomplishing higher 

accuracy while the extensive computational and resource cost is often ignored. 

However, machine learning models also encounters various rounds of on-going practical issues. The 

first issue is related to poor data availability and sub-optimal quality of it which is mainly due to increased cost 

associated with data collection. Adoption of PA also calls for adopting multiple devices and technologies which 

further give rise to diversified data that are quite challenging to analyze in real-time owing to lack of 

standardization. Another critical problem is that existing studies using machine learning models have mainly 

focused on use-case of crops or specific farming aspect without considering varying condition associated with 

it. Such modelling may suit well for standalone problem addressing but its lack of generalization leads to 

narrowed scope of applicability to other set of problems. Hence, they are not cost-effective when it comes to 

practical world deployment. Further, machine learning models are build on trained data with specific range of 

features which will work well when they are validated with similar set of untrained data; however, the problem 

shoots up when they are exposed to diversified climatic condition on unforeseen variables. This phenomenon 

leads to outliers eventually. Still, after all these shortcomings, machine learning is always a better and cost-

effective choice to implement a proactive solution for improving the overall performance of PA. It is because of 

the reason that different variants of machine learning exists while they are still in nascent stages to be 

investigated. With its power to realize the complex pattern of problems, machine learning still offer a better 

choice to understand the problem.  

Various related work has been studied in perspective of machine learning adoption to understand 

their effectiveness. The adoption of long short-term memory (LSTM) has been presented by Gafurov et al. 

[15] in order to perform predictive analysis of crop recognition in PA. Bhimavarapu et al. [16] have 

presented a predictive model when LSTM is used for optimizing predictive performance towards crop yield 

rate. Similar direction towards predictive performance optimization is also carried out by Shen et al. [17] 

where random forest (RF) is jointly used with LSTM towards analyzing growth rate of crops. Another 

version of deep learning model known as autoencoder (AE) is implemented by Mujkic et al. [18] in order to 

understand the degree of anomalies followed by positively confirming them for agricultural vehicles.  

Iatrou et al. [19] have developed a predictive model towards realizing nitrogen demands using variational AE 

where transformed data representation is learned to extract feature followed by anomaly detection. Bai et al. 

[20] have presented discussion of the AE with stacked structure inclusive of encoder and decoder in order to 

categorize the images obtained from remote sensing devices. Al-Naeem et al. [21] have used support vector 

machine (SVM) in order to perform monitoring of the crops by controlling the movement and location of 

unmanned aerial vehicle (UAV). Adoption of SVM is also witnessed to address the classification problems of 

stress-related traits among plants as noticed in work presented by Islam et al. [22]. Lyu et al. [23] have used 

gaussian Naïve Bayes (GNB) classification approach for estimating the center line of agriculture area. 

Adoption of deep neural network (DNN) has been also witnessed in existing literatures of PA. Jin et al. [24] 

have constructed a predictor using DNN to investigate the influence of weather on crops in smart farming 

where training is carried out using gated recurrent units. Regazzo et al. [25] have used convolution neural 

network towards solving classification problems using images of leafs. Another interesting work has been 

demonstrated by Cama-Pinto et al. [26] towards studying propagation of radio waves. 

The research problems extracted from existing studies are manifold that demands to be addressed. 

Following are some critical area of problems viz. i) none of the existing studies using machine learning 

models have yet addressed the problems associated with data transmission considering resource constraints 

among sensors deployed on field, ii) studies are evaluated with accuracy ignoring possible latency and 

resources that are equally affected while performing on-field operations in PA, iii) existing studies have 

considered data gathered from one field or specific to one type of crop to perform prediction ignoring the role 

of actuators in PA, and iv) decision made by machine learning models offered only one predictive outcome 

without considering the challenged involved in relaying the information back to the field (to actuators). 
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The aim of the proposed scheme is to address the above-mentioned problem by presenting a 

decentralized architecture using machine learning. The value-added contribution of the study are as follows: 

i) the multi-tier decentralized architecture is presented to share the overall operation related to generalized 

applications of PA, ii) edge computing servers have been considered to address the speedily dissipated 

resources for sensor nodes, iii) a cloud environment has been considered where machine learning based 

analytical processing is carried out to control operations of actuators as well as data analysis for field 

information captured by sensors. The next section elaborates the adopted methodology of the study. 

 

 

2. METHOD 

The primary aim of the proposed study is to develop a decentralized computing environment that is 

capable of addressing the problem associated with overload data management in PA and hence the model is 

named as decentralized computing environment for precision agriculture (DCEPA). The implementation of 

the proposed study is carried out considering analytical research methodology where the intention is towards 

developing a flexible and streamlined transmission of agricultural field information considering cloud-IoT 

architecture with edge computing. The secondary aim of the study is towards outsourcing the task of data 

analytics to edge nodes in order to conserve the resources demanded by sensory devices on the field.  

The architecture for DCEPA is shown in Figure 1. 

 

 

 
 

Figure 1. Architecture of DCEPA 

 

 

According to Figure 1, it can be noted that proposed DCEPA is designed on 3-layered architecture 

that comprises of end layer, edge layer, and cloud layer. The agenda towards the adopted research 

methodology is mainly towards ensuring seamless and highly structured acquisition of field data from 

multiple origination point bearing heterogenous fields of agricultural data. Each layer interacts with each 

other to ensure that the final outcome assist in both enriched acquisition of field information followed by 

relaying of final decision-making commands to the actuators on the fields. The detailed information of each 

layer operations are as follows: 

 

2.1.  End layer operation 

The end layer is the bottom layer in DECPA architecture which mainly comprises of two types of 

devices viz. i) sensory devices to capture field information and ii) actuators to carry out specific agriculture 

related task. Figure 2, shows mechanism and entities within end layer operation. As the proposed architecture 

is meant for generalization, hence, no specific use-case scenario is applicable; however, DECPA considers 

that these sensory devices could be soil sensor, climate and weather sensor, crop health sensor, air quality 

sensor, sensors for irrigation and water management, robotic and automation sensors. Each sensors collect 
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the information from agricultural field using time division multiple access (TDMA) and forwards all the data 

to a local gateway node. The local gateway node carry out data fusion operation where the fused data is 

further forwarded to edge nodes in its upper layer. DECPA also considers inclusion of actuators which is 

mainly meant for executing certain agriculture related task after receiving the commands from local gateway 

node. The actuator considered in design of DECPA could be related to certain unmanned tractors or 

automatic water/pesticide sprinklers, or it would be some device that could capture selective information 

based on event criticality. All the sensors are interconnected to each other and performed their process of data 

acquisition and processing based on formation of network with other sensors. All the sensors are considered 

to be deployed with a definitive resources which information’s are retained within the local gateway. As 

proposed DECPA targets a large-scale decentralized operation, it considers presence of various local gateway 

assigned to different farming areas in different geographical regions. All the local gateway further 

communicates with edge layer in order to carry out their respective task i.e., data fusion from information 

captured from sensory devices and relaying commands to actuators to carry out specific task. 

 

 

 
 

Figure 2. Mechanism within end layer 

 

 

2.2.  Edge layer operation 

The proposed system of DECPA introduces edge layer in order to offer computing support towards 

proper resource management as shown in Figure 3. The rationale behind introducing edge layer are manifold. 

Conventional sensor-based approaches in PA usually rely on data-driven methodologies when each sensor is 

burdened with acquisition of voluminous information from agricultural farm followed by processing them. 

This phenomenon saturates excessive resources of sensors. Further, existing mechanism of sensor network 

indulge themselves into routing operations using sophisticated transmission protocol, which dissipates energy 

apart from the energy drained by its self-hardware-related operation by consistent monitoring. Further, the 

load of information processing differs from one sensor to another while implication of similar routing scheme 

may result in higher fluctuation and inconsistencies of performance of sensor. This could eventually lead to 

faster resource drainage along with sub-optimal quality of data acquisition process. Hence, DECPA 

introduces fog nodes which can address this challenges. The task of sensor node is just to acquire data and 

forward them to edge nodes where data fusion is carried out unlike existing approaches where aggregation 

and fusion is carried out within sensor nodes. This layer consists of multiple number of edge nodes which are 

connected in decentralized manner with each other syncing information gathered from all the local gateways 

from end layer. The edge nodes performs multiple task as follows: i) it fuses the data followed by 

preprocessing the data and forward the preprocessed data to next upper layer of cloud, ii) it identifies the load 

on each sensor along with monitoring their respective resources to carry out the task. In case, if edge node 

finds one of its sensors to have reduced resources, it identifies a neighboring sensor with sufficient resources 

and outsource/split the task of aggregating the sensory data. Accordingly, it alters the topology to ensure 

resources of each sensors are optimally used. iii) Finally, the edge node forwards hierarchies of commands to 

local gateway node which are then relayed to actuators. 

 

 

 
 

Figure 3. Mechanism within edge layer 
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2.3.  Cloud layer operation 

This is the top most layer of DECPA which is basically responsible to undertake some critical 

decision to ensure efficient operation of given smart field as shown in Figure 4. The primary task of this layer 

is to acquire the preprocessed information from edge layer. The preprocessed information from its bottom 

layer (edge layer) consists of on-field data along with status of sensor nodes. The preprocessed data is then 

subjected to various machine learning models which undertakes its final decision that is relayed back to edge 

nodes. The machine learning model used by DECPA performs following task: the model takes multiple input 

of preprocessed data, extracts features, and carry out its predictive operation. The objective function of this 

operation is to find out optimal sensor node with sufficient resources as well as make a sequential listing of 

nodes based on order of their resources. This information outcome significantly assists the edge node to 

instantly select a node with higher resources in cases some of the neighboring nodes are depleting its 

resources fastly. Another objective function of this layer is related to activating the actuator by relaying a 

specific command. The machine learning model perform its predictive analysis to forecast the instance of 

time, location, and selective operation to be executed by an actuator. As the complete operation is hosted 

under cloud environment managed by service provider, hence no specific concern of resource utilization in 

this layer is considered owing to assumption of high-end resources. 

 

 

 
 

Figure 4. Mechanism within cloud layer 

 

 

3. RESULTS 

Prior to implement DECPA, it is noted that existing dataset for PA is usually image-based while 

string-oriented dataset is demanded in proposed study (owing to adoption of sensors). Hence, a synthetic 

dataset has been designed with 50,000 fields capturing information of field hypothetically designed.  

The study further considers 500 sensors, 10 local gateway nodes, and 4 fog nodes in simulation area of 

1,100x1,500 m2 with 7 discrete geographical farming location. Proposed DECPA has been testified with 

multiple machine learning models (e.g., LSTM, DNN, AE, and SVM) which are reported to be frequently 

adopted in existing literatures in PA. The performance metric considered are energy consumption, response 

time, accuracy, and latency. Table 1 showcases the numerical outcome of the varied combination of DECPA 

which states that DECPA performs optimally when combined with DNN. The accomplished outcome shows 

that DECPA-DNN to offer approximately 20% of reduced energy consumption, 18% of faster response time, 

5% of increased accuracy, and 51% of minimized latency. For better understanding, the graphical 

representation of respective numerical scores are shown in Figure 5.  

 

 

Table 1. Numerical accomplishment of DECPA 
Approaches Energy consumption (%) Response time (s) Accuracy (%) Latency (s) 

DECPA-LSTM 53.7 1.902 93.6 0.817 
DECPA-DNN 27.8 0.578 98.7 0.181 

DECPA-AE 38.2 2.671 95.6 0.622 

DECPA-SVM 46.9 1.998 92.6 0.809 
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According to comparative analysis of Figure 5(a), it can be noted that LSTM and GNB induces 

more energy consumption which is mainly due to complexities associated with both the models when 

exposed to larger dataset. Similarly, response time for AE and GNB is noted to be quite higher that can be 

justified by constraints of this models towards working on sequential data along with training complexities 

Figure 5(b). The accuracy towards decision making by LSTM, SVM, and GNB are quite similar where 

scalability issues surfaces when interaction is performed by edge layer and cloud layer with seamlessly 

growing data Figure 5(c). The similar reason are also noted towards higher latency Figure 5(d). DECPA 

when combined with DNN offers an extensive ability to model complex relationship between all the input 

variables offering balance between accuracy and other performance metric. Apart from this, DNN is noted to 

quite capable of managing larger stream of dataset inclusive of multiple features. Hence, proposed system 

excels better result when combined with DNN in multiple perspective in PA overall exhibiting a cost-

effective deployment. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 5. Evaluation outcome for (a) energy consumption, (b) response time, (c) accuracy, and (d) latency 

 

 

According to the study’s findings, the DECPA is successful, especially when combined with DNN. 

Significant performance gains were achieved by combining DECPA and DNN, including a 20% decrease in 

energy usage, an 18% speedup in response time, a 5% improvement in accuracy, and a 51% decrease in 

latency. These results demonstrate how well the system can manage resources and carry out tasks in 

extensive agricultural settings. One of the main arguments in favor of DNN’s superiority over other machine 

learning models, such as LSTM, SVM, and AE, is its capacity to manage intricate datasets and variable 

relationships, which makes it more flexible in the face of changing field conditions and diverse sensor data. 

It is evident from comparing these findings to earlier PA research that traditional approaches, which 

frequently rely on centralized systems or sensor-based aggregation, have trouble with resource efficiency and 

scalability. Prior studies have demonstrated the drawbacks of centralized data processing, which frequently 

leads to data congestion and excessive energy usage (e.g., LSTM and SVM in this study). The 

implementation of a multi-tier decentralized architecture with edge computing in this work, however, is a 
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notable advancement. This strategy’s primary advantage is its distributed resource management, which 

lessens the bottlenecks that traditional systems encounter. However, one drawback is that the system requires 

a significant number of sensors and computational power to operate completely, which could be difficult in 

settings with fewer resources. The sequential nature of the AE model’s data processing, which has trouble 

handling big datasets and the demands of real-time decision-making in PA, is probably the reason why it 

unexpectedly fared poorly in terms of response time and latency. 

The purpose of this study was to present a new decentralized computational framework for 

enhancing precision agriculture decision-making and resource efficiency. The findings highlight the value of 

integrating cutting-edge machine learning methods with edge computing to tackle issues in contemporary 

agriculture, such handling massive data sets and guaranteeing real-time responsiveness. The study offers 

insightful information about the advantages of a multi-layered, decentralized strategy. The system’s 

scalability in even bigger, more varied agricultural contexts is still up for debate, though. Future studies 

might concentrate on examining other machine learning models for particular agricultural activities or 

refining the infrastructure for smaller-scale deployments. Furthermore, investigating how cloud-edge synergy 

and IoT integration might improve the framework would offer chances to increase the system’s effectiveness 

and affordability. 

 

 

4. CONCLUSION 

The application of modern computing technology in agriculture, notably PA, has the potential to 

transform how we manage resources, increase crop yields, and make more informed, data-driven decisions. 

As global agricultural demand grows, tackling the difficulties of data overload and real-time processing is 

critical to ensure sustainable and efficient methods. This paper introduces the DECPA, a revolutionary 

method to resource management and decision-making that makes use of decentralized computing and 

powerful machine learning models. DECPA, particularly when paired with DNN, has shown higher 

performance in energy usage, response time, accuracy, and latency, making it a promising alternative for 

current agricultural operations. While some may claim that centralized systems or simpler models are 

sufficient, DECPA’s scalability and efficiency, particularly in handling massive datasets and assuring real-

time replies, make it the obvious choice for addressing PA’s difficulties. Unlike previous systems, DECPA 

spreads computational load, resulting in better resource use and speedier decision-making. Future research 

should focus on improving DECPA for smaller-scale applications and investigating its interaction with IoT 

and cloud-edge technologies. The potential for increased adoption and impact is enormous, and improving 

these technologies will pave the path for more sustainable, efficient, and intelligent agricultural methods. 
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