Indonesian Journal of Electrical Engineering and Computer Science
Vol. 40, No. 2, November 2025, pp. 1050~1064
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v40.i2.pp1050-1064 a 1050

Development and evaluation of a generalized ontology
framework for software requirement specification

Sourav Kundu!, Soumay Kanti Das!, Abu Rafe Md Jamil', Md Kamrul Islam!,

SK. Shalauddin Kabir!, Mostafijur Rahman Akhond'»

! Department of Computer Science and Engineering, Jashore University of Science and Technology, Khulna, Bangladesh
2Department of Electrical Engineering and Computer Science, York University, Ontario, Canada

Article Info

ABSTRACT

Article history:

Received Nov 21, 2024
Revised Aug 3, 2025
Accepted Oct 15, 2025

Keywords:

Knowledge base

This paper presents an ontology developed to address challenges such as com-
munication gaps, risks of errors, and inconsistencies during the manual process
of creating software requirement specifications (SRS). The proposed ontology
offers a systematic and formal depiction of the requirements, enhancing consis-
tency and communication among stakeholders. The ontology has been devel-
oped from the software requirements documents to facilitate the development
process. This paper discusses the process of creating the ontology and demon-
strates using Pellet Reasoner for inference and Protégé for ontology construction
to save and reuse information. The ontology seems to be efficient in manag-

Ontology ing complex software projects, enabling accurate requirement retrieval through
Protege SPARQL queries. This study emphasizes how incorporating ontologies into re-
Software requirement quirement engineering can significantly enhance the quality and reliability of
specification SRS.
SPARQL

This is an open access article under the CC BY-SA license.
Corresponding Author:

Mostafijur Rahman Akhond

Department of Computer Science and Engineering, Jashore University of Science and Technology
Jashore, Khulna, Bangladesh

Email: mr.akhond @just.edu.bd

1. INTRODUCTION

In recent years, semantic technologies have advanced rapidly. The adoption of semantic data models
like ontologies and knowledge graphs has increased substantially. Ontologies are considered as the foundation
of the semantic web [1]. An ontology is a formal and explicit description of concepts within a specific area of
discourse (classes/concepts), attributes of each concept that characterize distinct qualities (slots/roles/properties),
and constraints on these attributes (facets/role limitations) [2]]. A knowledge base consists of an ontology and
a collection of distinct instances of classes. As the proverb goes, a knowledge base begins where the ontol-
ogy ends [2]]. Requirement engineering (RE) describes the process of gathering, analyzing, and validating the
features and constraints of a software system. The final output of the RE is a written document known as the
software requirement specification (SRS) [3]]. The software development team, including software engineers,
will follow the SRS document when developing the intended software. One of the challenges in software en-
gineering is developing and managing the SRS report. The reports must be clear to reflect the specifications
[4]. However, manually developing requirements specifications can lead to inconsistencies, ambiguity, and
errors [3)]. Lack of domain knowledge among non-technical customers complicates accurately communicating
the requirements with experienced analysts. Failing to identify and address the ambiguities on time can have
severe consequences [6]. To overcome the knowledge gap and the ambiguity of the SRS document, we have

Journal homepage: http://ijeecs.iaescore.com

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 0 1051

proposed this work representing a generalized knowledge database framework. One way to describe it is as
a machine-processable “Web of Data” [[7]. We have used the core concept of knowledge databases known as
ontology’ [8]]. Several studies use ontologies in many aspects of requirements engineering issues, such as the
elicitation process, handling inconsistencies, dealing with incomplete requirements, reducing ambiguities, and
reusing requirements [9]] but most of the ontologies are ‘domain-specific’ ontologies. Several ontologies have
been developed for this because there is no accurate methodology for constructing an ontology. Developing
an ontology for the SRS report can facilitate software developers, testers, and other stakeholders. This paper
proposed a generalized framework that enables the sharing and reusing of knowledge from the existing SRS
reports and is also usable for different types of domains. In this thesis, we construct an ontology that enables the
sharing and storing the knowledge related to the SRS for all types of software. We follow the IEEE 830-1998
format of SRS and the software engineering body of knowledge (SWEBOK) provided by IEEE. The proposed
framework can guide the users to follow the standard IEEE format of the SRS while developing their SRS
report, and it can help in sharing the data of the SRS with the community to reuse in the future and reduce the
communication gap. Table[T|summarizes the comparison of significant related works.

Table 1. Comparison of previous ontologies and the proposed one

Reference Domain-specific ~ Reduces-ambiguity Generalized Evaluation method
Haridy et al. [10] Yes Yes No Manual and application
Bencharqui et al. [3] Yes Partial No Manual
Ahmed et al. [6] Yes Yes No Application
Ahmed and Ahmed [11]] Yes Yes No Expert and application
Tan et al. [12] Yes Partial No Expert and application
Proposed ontology No Yes Yes Manual, expert, and application

Creating a document that can be methodically reviewed, assessed, and approved is what is usually
meant by “software requirements specification” in software engineering. The significant contributions of the
work are listed as:

— Designing an ontology that can standardly represent the SRS document using the IEEE 830-1998 format.

— Developing the ontology to represent the knowledge of the SRS in a generalized way and reducing the gap
of knowledge sharing among the stakeholders.

— Developing the framework that can change the unstructured requirements to a structured class-based model
so that the ambiguities of the specifications can be identified clearly.
Our methods include the following:
— An ontology that we have constructed enables formal definitions of concepts and connections within the
system.
— We have followed the standard format of the SRS document according to IEEE 830-1998 format [[13]].
— We have then populated the SRS document for two real-time systems.
— Then, we have tested the results using Reasoner and SPARQL queries.
The rest of the paper is structured as follows: section 2 provides the earlier work in order to obtain
a summary of previously proposed work and to determine how to come up with new solutions. Section 3
describes our model’s design and the recommended methods we have used thus far. Section 4 outlines the
requirements and procedures for evaluation and section 5 provides an overview of the potential for future
research as well as the conclusion section, which provides an outline of our thesis.

2. LITERATURE REVIEW

Software engineering is the application of fundamental engineering principles to develop cost effec-
tive and reliable software that functions efficiently on actual devices [[14]. Sommerville added that software
engineering is an engineering work involved with all aspects of software development, from the early stages
of system specification to system maintenance after the release for use [[15]. Requirement specification is a
crucial phase of RE where functional requirements and non-functional requirements are detected, which af-
fects the development of software. Generally, Software requirements depend on the stakeholders; in software
development, the requirements are divided into two main parts: i) functional requirement and ii) non-functional

Development and evaluation of a generalized ontology framework for ... (Sourav Kundu)

1052) ISSN: 2502-4752

requirement [16]. Requirement engineering is crucial to all software development life cycles (SDLC), but be-
cause development processes differ, it is frequently neglected or undervalued [11]. A frequently used reference
guide for the SRS report writing is IEEE Std. 830-1998 [[13]. In recent years ontologies are being used suc-
cessfully in the RE phase. Ontologies may reduce the ambiguity, inconsistency, and incompleteness of those
requirements. An ontology refers to a structured and precise representation of concepts, slots and facets within
a specific do main of discussion [2].

An ontology framework is presented in the study by Wongthongtham et al. [15] to resolve communica-
tion issues in multi-site software development. They emphasize how important it is for managers, stakeholders,
and developers to communicate effectively to reduce errors in software products, especially when the require-
ment engineering phase is underway. Through the use of diagrams, the suggested framework facilitates the
sharing of domain and instance knowledge by utilizing ontology as a communication tool. The writers hope to
reduce language barriers in the sector by offering an editable flowchart diagram and a case-building framework.

To improve software projects and address common issues like ambiguous and insufficient require-
ments Yue [[17] suggest a two-step procedure for consistency checking in ontology-based requirements elicita-
tion methodologies. This approach combines rule-driven completeness tests with ontology consistency checks.
In 2021, Khair and Meziane [18] published a review study on the application of ontologies to the elicitation of
software requirements. The study is considered one of the best in this field. According to the analysis, 83.6%
of the research supported specifications. According to the survey, 52.24% of respondents support functional re-
quirements, 2.99% support non-functional requirements, and 44.78% support both when it comes to the usage
of ontologies to express requirements.

For writing software requirements specifications that use requirements engineering data elements sug-
gested by the SWEBOK, Elliott and Allen [[19] developed an approach with automated support. It consists of
seven use cases, an ontological framework, and three empirical retrospective case studies that demonstrate the
utilization of the methodology. The case studies also demonstrated the ease with which the ontology may be
useable for other application domains. They conclude that ontological support can enhance procedures that
lead to the specification of software requirements and the subsequent creation of ontologies.

An approach for evaluating how well an existing ontology meets the needs of knowledge stakehold-
ers in requirement elicitation was created by Ermolayev [20]. The comprehensiveness and precision of the
interpretation are guaranteed by this methodology, and the evaluation of these requirements for ontology is
crucial for ontology engineering. The basis of the strategy employed in the published research is the ontology
refinement methodology and the OntoElect ontology process, which consists of three stages: feature extraction,
requirements conceptualization, and ontology evaluation.

In a research study on the automatic identification and updating of software requirement specifications
using ontology-driven software development, Bhatia et al. [21] described how the ontology will automatically
find the requirements that have been added, removed, or changed to the current software requirements speci-
fication on a particular case study. For evaluating the ontology, they used the Result management system of a
specific university.

Jones et al. [22] describe that there are four important methodologies for ontological engineering
named: TOVE (Toronto virtual enterprise), enterprise model approach, METHONTOLOGY, KBSI IDEFS5.
Jones et al. [22]] introduced some other non-comprehensive methodologies, named: Ontolingua, CommonKADS
and KACTUS, PLINIUS, ONIONS, Mikrokosmos, MENELAS, PHYSSYS, and SENSUS.

Raad and Cruz [23]] carried out a survey on ontology assessment techniques. This paper presents
the current ontology evaluation techniques and discusses their benefits and limitations in order to address the
problem of finding an effective ontology evaluation method. The methods for evaluating ontologies that are
offered can be divided into four groups: approaches based on criteria, tasks, corpuses, and gold standards.

Bhatia et al. [7] conducted a study on ontologies for software engineering: past, present, and future.
The study talks about different kinds of ontologies which are used in a software life-cycle. The study catego-
rized the ontologies against each step of the software life-cycle. Moreover, it shows the application scope of
the ontologies as well as it shows the application scope of ontologies in the software engineering area. The
study shows in which software development phase which ontology have been used as well as in future in which
phases will be able to use ontology in software engineering.

Bencharqui et al. [5] created an ontology-based procedure for requirement specification, in which
system domain knowledge is described using a requirement description ontology, common domain knowledge
is gathered using ontoReq, and requirements are controlled and improved using ReqDL, which they developed

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1050-1064

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 0 1053

in earlier research. In this work they used Methontology and their work is domain specific and they used
competency questions for ontology evaluation and for implementation, they used Portege as a tool. Overall the
research enhances the requirement’s specification process.

Tan et al. described the development and evaluation process of a software requirement ontology.
In this thesis, they designed an ontology for avionics software development that is strongly domain-specific.
For evaluation of ontology, they talked about two methods: evaluation by user and application-based evaluation
and they prefer evaluation by user method as it’s cost-friendly and user-friendly.

These works, however, can be considered independent ontologies because they work with problem-
specific to a software project or product. As a result, we require a method that can handle a maximum number
of software projects while reducing ambiguities in the RE process and, ultimately, saving the cost of future
software development and maintenance.

3. METHOD

This chapter covers the proposed ontology’s design process, required tools, and the development pro-
cess. For ontology-based RE, we generally need four major actors. They are: requirement engineers, stake-
holders, an ontology system, and a reasoner system. Requirements are obtained through elicitation, analysis,
specification, verification, validation, and creation of a software requirements document [24]].

3.1. Research design

The design process of the suggested ontology, which includes class and subclass identification, object
property identification, and data property identification, will be covered in this section. Figure [T] depicts the
proposed methodology. The following subsections provide a detail explanation of each steps. Though, there is
no accurate process or model for developing an ontology, we will follow the steps of Figure|[T|for our proposed
ontology.

srs documents

Identify
Processing s
Noun Phrases
Define Concepis
Verb Phrases
Define Relations
Properiy of
Define Atiributes Noun phrases
Instance Object
Define Instances

Correctness
Validation

Ontology

'

Figure 1. Proposed methodology

Development and evaluation of a generalized ontology framework for ... (Sourav Kundu)

1054) ISSN: 2502-4752

3.1.1. Identification of classes and subclasses/concepts
‘We have followed the top-down development process to build the ontology, which starts with the most

general concepts (classes) and subsequent specializations of the concepts (subclasses). The list of required

classes and subclasses is shown in Table[2] We have gathered the classes and subclasses list for building SRS

ontology from IEEE std. 830-1998 format [13], SWEBOK [16] and the book entitled “Software engineering:

a practitionar’s approach” [25]] by Pressma and Maxim.

— SRS document: will be the main class (concept) for our ontology. All sections will be sub_classes of this
class.

— Requirement: individual requirements and their descriptions are captured in a requirement.

— Requirement_Artefact: extra requirements information that may be connected to a requirement is captured
by a requirement_Artefact.

— Requirement_Elicitation_Technique: is a process of eliciting a requirement.

— Stakeholder: is an individual, group, or entity that has an interest or concern in a particular process, project,
organization, or system. We have got the subclasses from the book of Pressma and Maxim [25]].

— External interfaces: capture different kinds of interfaces that are required for the software system. System
requirement is the equivalent class of it.

— System other non-functional requirement: captures all the non-functional requirements that are needed for
the software system.

— System feature: refers to a specific capability or functionality of a system or software components working
together to achieve a particular goal.

— Document’s section: is an important class that holds the main section’s of a SRS document.

— Appendix: is a supplementary section at the end of a document or book that provides additional information,
details, or supporting documentation.

Table 2. Classes and subclasses list
Sub-classes
Appendix, Document_s_Section, External_Interface, Requirement, Require-
ment_Artefact, Requirement_Elicitation_Technique, Stakeholder, System_Feature,
System_Requirement, Systems_Other_Non-Functional_Requirement

Classes
SRS _Document

Appendix -
External_Interface Communication_Interface, Hardware _Interface, Software _Interface, User_Interface

Requirement Functional _Requirement, Non-Functional Requirement, Other_Requirements

Requirement_Artefact Goal, Limitation, Obstacle, Source, Story, TestCase
Requirement_Elicitation_Technique -

Stakeholder Business_Operation_Managers, Consultants, Customers, End_Users, Market-
ing_People, Other_Stakeholders, Product_Engineers, Product_Managers, Soft-
ware_Engineers, Support_and_Maintenance_Engineers

System_Feature -

System_Requirement -
System’s_Other_Non- BusinessRule, PerformanceRequirement, SafetyRequirement, SecurityRequire-
Functional_Requirement ment, SoftwareQuality Attribute
Story Scenario, UseCase
Customers ExternalCustomers, InternalCustomers

3.1.2. Identification of object properties

When the subject and object are entities (i.e., individuals), a binary predicate known as an object prop-
erty is employed to express facts in the subject-predicate-object form. The classes in the requirements ontology
are interrelated using the object properties listed in Table [3] The ability to relate requirements knowledge to
the object properties makes it easier to derive suggestions for solutions, such as alternative requirements. The
domains and ranges of the object properties in the requirements ontology are listed in Table

3.1.3. Identification of data properties

Data properties generally refer to the characteristics or attributes of data that describe its various as-
pects. These properties help to define and understand the data, making it possible to organize, analyze, and
utilize it effectively. The specifications as indicated in Table] ontology currently offers two data properties to
specify in addition to the requirements’ validation status.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1050-1064

Indonesian J Elec Eng & Comp Sci

ISSN: 2502-4752

a 1055

Table 3. Object properties list

Domain Object property Range
Requirement belongsToFeature System_Feature
Appendix belongsToSection Document_s_Section
System’s_Other_Non-Functional _Requirement belongsToSection Document_s_Section
Story describesRequirement Requirement
SRS_Document hasExternallnterface System_Requirement
SRS_Document hasFeature System_Feature
Requirement hasGoal Goal
Requirement hasObstacle Limitation
Requirement hasObstacle Obstacle
SRS_Document hasRequirement Requirement
Requirement hasScenario Scenario
Requirement hasSource Source
Requirement hasUseCase UseCase
Requirement isAlternativeOf Requirement
System_Feature isConflictWith System_Feature
Requirement isElicitedByTechniqueOf Requirement_Elicitation_Technique
Requirement isPositiveContributionToGoal Goal
System_Feature refinesTo Requirement
External Interface belongsToSection Document_s_Section
System_Feature belongsToSection Document_s_Section
Other_Requirements belongsToSection Document_s_Section
SRS_Document hasAppendix Appendix
SRS_Document hasExternallnterface External Interface

System_Feature hasFunctionalRequirement Functional_Requirement
System_Feature hasNonFunctionalRequirement Non-Functional Requirement
Requirement hasObstacle Limitation
System_Feature hasRequirement Requirement
Story hasScenario Scenario
SRS_Document hasSection Document_s_Section
Requirement hasTestCase TestCase
Requirement isAuthoredBy Stakeholder
Requirement isConflictWith Requirement
Requirement isNegativeContributionToGoal Goal
Requirement refinesTo System_Feature
Implementation

This section on implementation will cover the environment that ontologies run in, the software and

tools needed to build ontologies, and the process of actually creating the suggested ontology. For testing, we
will use two SRS documents from real-world systems that were founded by university students. They are titled:
1) “Undergraduate Final Admission System of JUST” and ii) “Online Job Application of JUST.”

3.2.1. Necessary tools and softwares

RDF/RDFS: a language for knowledge representation of resources on the Internet is called the re-
source description framework. The majority of data stored on the internet is contained in ontologies, and a
large portion of that data is referenced using RDF [24]. An extension of RDF is called the RDF vocabulary
description language schema, or RDF(S). RDF(S) gives language users greater freedom to define every term
that will be used when defining web resources. Users can define resources as instances in multiple classes, and
it offers the ability to create hierarchical class relationships [24].

Web ontology language (OWL): created by the W3C, the OWL allows applications to do more than
just display the data found in documents; it also allows them to process the content of that data. OWL has a
larger vocabulary than XML, RDF, and RDF(S), which enhances the degree to which machines can process
and interpret that data. In support of the Semantic Web, this language is the most recent language specification
approved by the W3C [24].

SPARQL: the common protocol and query language for RDF and linked open data databases is
SPARQL. Because it is made to query a wide range of data, it can effectively retrieve information that is
hidden in data that is not uniform and is stored in different formats and sources [26]]. To put it simply, SPARQL
is to knowledge graphs and the Semantic Web what SQL is to relational databases [27]].

Development and evaluation of a generalized ontology framework for ... (Sourav Kundu)

1056) ISSN: 2502-4752

Protégé: for creating and managing ontologies, Protégé has emerged as the most popular tool. To
facilitate the creation and administration of OWL ontologies, a desktop system called Protégé 5 offers a wide
range of sophisticated functionalities [28]. Protégé 5.5.0 will be used to construct the software requirement
ontology.

Pellet, ‘an intelligent reasoner’: Pellet is an open-source OWL-DL reasoner built on Java that can
be used for ontology classification, consistency checks, and ontology validation. Additionally, the reasoner
establishes if it is possible to confirm classes and relationships within ontologies as consistent or satisfiable.
Pellet can also be used to access class hierarchy information, which serves as a visual aid for describing the
ontology [124]].

Table 4. Data properties list

Domain Data property Range
Requirement content xsd:string
System_Requirement content xsd:string
External_Interface content xsd:string
System_Feature content xsd:string
Stakeholder content xsd:string
External _Interface descriptionOfCharacteristics xsd:string
Requirement elicitedDate xsd:dateTime
Requirement hasDescription xsd:string
Requirement hasInput xsd:string
Requirement hasPriorityLevel xsd:string
System_Feature hasValidationState xsd:string
Requirement isValidated xsd:boolean
Requirement_Artefact label xsd:string
Requirement label xsd:string
Document_Section label xsd:string
System_Requirement label xsd:string
Stakeholder lastName xsd:string
SRS_Document operatingEnvironment xsd:string
SRS_Document purposeOfSystem xsd:string
Requirement_Elicitation_Technique content xsd:string
Document_Section content xsd:string
Requirement_Artefact content xsd:string
Appendix content xsd:string
Document_Section descriptionOfCharacteristics xsd:string
Stakeholder designation xsd:string
Stakeholder firstName xsd:string
System_Feature hasDescription xsd:string
Requirement hasOutput xsd:string
SRS _Document hasScope xsd:string
Requirement hasValidationState xsd:string
Appendix label xsd:string
Stakeholder label xsd:string
System_Feature label xsd:string
Requirement_Elicitation_Technique label xsd:string
External _Interface label xsd:string
Stakeholder middleName xsd:string
SRS _Document productPerspective xsd:string
Requirement validationDate xsd:dateTime

3.2.2. Ontology development

The ontology must be constructed in real-world applications once the class hierarchy, object proper-
ties, and data properties are located in Tables [2| to (4, We will use Protégé [28] 5.5.0 version to construct the
software requirement ontology.

— Classes and subclasses: we should run the Protégé application and give name of the ontology as SRS
ontology. Then we have to incorporate the class hierarchy founded on Table[2] SRS_Document, the subclass
of the thing class on Figure[2] is our primary class. All the other classes will be the sub-class of it. All of
the classes and subclasses listed in Table [2]have been added correspondingly.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1050-1064

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 1057

— Object properties: the next step is to add object properties, which are listed in Table[3]and will be a subclass
of topObjectProperty. The graphical form in Figure [3] can be identified. The domain and ranges for each
object property must be defined after creating as Figure [3] by adhering to Table [3] which will later create
relationships between various classes in the ontology.

— Data properties: the next step is to include the data properties, which are listed in Table [] and will be a
subclass of topDataProperty. The data for any individual will be represented by Table[d] so after creating as
Figure ??, we must define the domain and ranges for each object property. The term “data type” refers to
the ranges for data properties.

Onto graph allows us to create taxonomies for classes after the ontology is created on Protege. Re-
quirement, requirement artefact, and stakeholder taxonomy are depicted in Figures [5]to [7} respectively. The
requirement class is divided into three other sub_classes as shown in Figure[5] The system has some require-
ments. Requirement_Artefact class has also some subclasses. From them, the story class has again two sub-
classes, and the limitation class is equal to the obstacle class, as shown in Figure[6] The stakeholder may be an
individual or a company. The class stakeholder has subclasses. Again, the customers class has two subclasses
as shown in Figure[7]

< SRS_Ontology (http://www.semanticweb.org/anikd/ontologies/2024/0/5RS_Ontology) : [C\Users\Sou
File Edit View Reasoner Tools Refactor Window Ontop Help

< @ SRS_Ontology (http://www.semanticweb.org/anikd/ontologies/2024/0/SRS_Ontology

|Active ontology = | Entities x | Individuals by class = | DL Query = OntoGraf = VOWL x €

Classes Object properties Data properties | Annotation properties | Datatypes | Individuals

Asserted

v owl:Thing
\ SRS_Document
; Appendix
; Document_s_Section
\ £ External_Interface
Pt Communication_Interface
Hardware_Interface
Software_Interface
i User_Interface
\ £ Requirement
Lo Functional_Reguirement
Non-Functional_Requirement
i Other_Requirements
Y Requirement_Artefact
P Goal
Limitation
Obstacle
I Source
> Story
: TestCase
Requirement_Elicitation_Technigue
Y Stakeholder
Business_Operation_Managers
Consultants
> Customers
End_Users
Marketing_People
Other_Stakeholders
Product_Engineers
Product_Managers
Software_Engineers
-~ Support_and_Maintenance_Engineers
System_Feature
; System_Requirement
> Systems_Other_Non-Functional_Requirement

Figure 2. Class heirachy in Protege

Development and evaluation of a generalized ontology framework for ... (Sourav Kundu)

1058) ISSN: 2502-4752

Active ontology x | Entities x | Individuals by class x| DL Query x | OntoG
Classes | Object properties | Data properties | Annotation properties | Datat

Object property hierarchy:

Active ontology = Entities = | Individuals by class x l DL Quer
|CI=sses I Object properties i Data properties | Annotation prope

Data property hierarchy:

V- = owltopObjectProperty

B pelongsToFeature
B belongsToSection

Figure 3. Object properties in Protégé

V- owltopDataProperty
- assumptionsAndDependencies

: ! W= content
= describesRequirement m= descriptionOfCharacteristics
= hasAppendix = designAndimpl ionConstraints
== hasExternalinterface = designation
™ hasFeature W clicitedDate
== hasFunctionalRequirement = firstName
- hasGoal = hasDescription
== hasNonFunctionalRequirement - hasinput
-~ hasObstacle " hasOutput
== hasPriority - hasPriorityLevel
-~ hasRequirement ™ hasScope
™= has Scenario - W has StimulusOrResponseSequences
-~ hasSection ™= hasType
™= has Source - hasValidation State
- hasTestCase W isValidated
= hasUseCase - |abel
-mm hasUserClasses : lﬂ;t;‘;l:e
= isAlternativeOf - _—m ame
- isAuthoredBy = operatingEnvironment
== isConflictWith - productFunctions
- isElicitedByTechniqueOf - "“’“”““‘e'ssm“'e
= isNegativeContributionToGoal - :’““"’::g :“9"‘
- isPositiveContributionToGoal argertediudelence
= isValid - -type
_mm refinesTo mm userClassesAndCharacteristics
- yserDocumentation
#m validationDate

Figure 4. Data properties in Protégé

Figure 6. Requirement artefact taxonomy

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1050-1064

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 0 1059

J— =

Marketing Peopl Busness Operal
e won_Managers

ExtemaiCus ome
s

*® hnlemaCusiane
s

Figure 7. Stakeholder taxonomy

4. EVALUATION AND DISCUSSION
We will discuss the evaluation procedures, the proposed ontology’s evaluation process, and how to
ensure that our research goals are met in this section.

4.1. Evaluation

A set of criteria is examined using measurements and techniques in ontology evaluation. The main
differences between the ontology evaluation approaches are the number of criteria they target and the rationale
behind their assessment of the taxonomy [23]. Numerous methods of evaluation exist; however, the four most
feasible and effective methods are listed as: gold-standard-based, corpus-based, task-based, and criteria-based
[23]], [29]. Competency questions (CQs) are a common process used in ontology validation [5]. We can declare
ontology to be validated if the approaches described above satisfy the CQs. CQs can be easily completed with
software-dependent or task-based approaches using SPARQL queries or reasoning [30]. A few competency
questions for our suggested ontology are displayed in Table[5] Our ontology will be consistent if we receive
answers to those questions [8].

Table 5. Competency questions list

Q. No. Competency questions (CQs)

CQ1 Given a feature, what are the functional requirements related to it?
CQ2 Is the SRS unambiguous?

CQ3 Can any requirement artefact be determined with a requirement?
CQ4 Can it represent the knowledge correctly?

4.1.1. Reasoner: Pellet

Pellet works with the Protege framework and can accomplish all of the aforementioned tasks on OWL
ontologies [24]]. It is compatible with Proteg “e. To initiate the reasoner, click “Reasoner,” choose “Pellet,” and
then click “Start Reasoner.” Next, switch from asserted mode to inferred mode, choose any individual, and if a
new connection is formed by ontology, it will turn yellow. For a clearer understanding, see Figure[§] Whereas
the ontology infers five new relations in Figure[8] In addition, a reasoner can identify ontology inconsistencies.
It provides recommendations for the ontology to address issues if it is inconsistent or the class hierarchy is
incorrect. The reasoner runs our ontology error-free, indicating consistency in our ontology.

4.1.2. SPARQL queries

The common protocol and query language for RDF and linked open data databases is SPARQL [26]].
It is utilized in the semantic web to retrieve information from ontologies in relation to a legitimate relationship
between the ontology’s instances. Here, we present some results from SPARQL queries on both systems.
The successful retrieval of system features related to the university admission system is demonstrated by the
SPARQL query in Figure[0] The query shown in Figure[I0|retrieves every system feature related to the online
job application system. Functional requirements are displayed in relation to system features in Figure [TT]

4.1.3. Metric based evaluation
An additional evaluation that is predicated on the computation of ontology quality measures is feasi-
ble. OntoMetrics [10]], a free online tool for metric definition and computation, is provided by the author of

Development and evaluation of a generalized ontology framework for ... (Sourav Kundu)

1060) ISSN: 2502-4752

[31]. Five distinct metrics are calculated in the suggested ontology using OntoMetrics and are divided into
two groups: knowledge base and schema. The equations presented in Table [6] were originally formulated by
Haridy et al.[10]. Specifically, (I), @), and (3) are employed to evaluate the accuracy of the ontology, while
@) and (B) are used to assess its conciseness.

Property assertions: System_Features_Online_Job_Application_of JUST NEmH

Object property assertions
™ hasFeature Send_Admit_Card
= hasFeature Authentication_and_Authorization
. hasFeature Add_Job_Circular
mm hasFeature Add_Personal_Information_and_Academic_Qualification
mm hasFeature Perform_and_Submit_CS
W hasFeature GenerateActivationLink
mm belongsToSection SRS_Online_Job_Application_of_JUST
™ hasSection Send_Admit_Card
M hasSection Add_Personal_Information_and_Academic_Qualification
mm hasSection Add_Job_Circular
mm hasSection Perform_and_Submit_CS
™ hasSection Authentication_and_Authorization

Figure 8. A system feature of online job application

systemFeatures
Applicant_Profile_Management
Registrar_Office_Management
User_Management_by_Admin
Hall_Office_Management
Medical_Office_Management
Dean_Office_Management

Figure 9. System features for university admission system

SELECT ?systemFeatures
WHERE {

?systemFeatures rdftype exSystem_Feature .

?systemFeatures exbelongsToSection ex System_Features_Online_Job_Application_of_JUST .
}

systemFeatures
Perform_and_Submit_CS
Add_Job_Circular
Send_Admit_Card
Add_Personal_r ion_and_/ _Quali
Authentication_and_Authorization

Figure 10. System features online job application system

syshemF eature funcionalReqguiremant

Repiskar_Ofice_Managemeant View_depariment_seal_stahis
Add_lot_Ciitulas Add_Deparimect_barme
Medical_Office_Managemen Admit_Applicant

|M:~u|'_1l Office_Managament Downdcad_ofical_record_in_pal_file

| Li5Rr_Manage mnt_by_sdmin Authenbation
DCiean_Ofica_Managamisni Search_Applicant

¥ Regisiar_OMice_Uanagemant Show_Applicands_Profile

¥ Medical_Ofics_Managameni ieerll_Updabs_Medical_info

¥ muhentication_and_Authorization Enterindormation

¥ Dean_Office_Management Receive_Pendng_dooument_applicant

i Medical_Office_Management View_sdmited_Agplcan!

L]

1 Execute

: Synchronising

Figure 11. Requirements with features

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1050-1064

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 0 1061

Table 6. OntoMetrics equations

Metric Equation Description
Attribute richness (AR) AR = |att|/|C| (1) |att| = total number of attributes; |C| = total number of
classes
Inheritance richness (IR) IR = |H|/|C| (2) |H|=number of subclass relations; |C| = total number
of classes
Relationship richness (RR) RR=|P|/(|JH|+|P]) () | P| = number of non-inheritance relations; |H| =
number of inheritance relations
Average population (AP) AP = |I|/|C]| “4) |I] = total number of individuals (instances); |C| =
total number of classes
Class richness (CR) CR =|C'"|/|C| (5) |C’| = number of classes with at least one instance;

|C| = total number of classes

Figure [I2] represents the ontology metrics for the proposed one, where axiom, class count, object
property, and data property count are shown. The OntoMetrics results of the proposed ontology are displayed
in Table[7] Furthermore, a comparison is made with three more domain-specific ontologies (Hontology, Travel,
and EGYTour) [10].

Ontology metrics: FINEEE

Metrics

Axiom 1072
Logical axiom count 833
Declaration axioms count 239
Class count 43
Object property count 27
Data property count 29
Individual count 142

Figure 12. Proposed ontology metrics

Table 7. Comparison of OntoMetrics
Ontology AR IR RR AP CR
Hontology 0.1092 0.9613 0.3209 0.0000 0.0000

Travel 0.1143 0.8571 0.4340 0.4000 0.2286
EGYTour 1.0789 1.6930 0.3216 7.0263 0.4605
Proposed 0.6744 0.9767 0.4247 3.3023 0.4419

4.2. Discussion

Criteria-based methods are the most effective for assessing the clarity of an ontology [23]. The role
of CQs in ontology validation is significant. When the test result matches the correct response to the CQ, the
ontology is considered validated. Requirements are obtained in Figure [TT] based on its features that satisfy
our first CQ (CQ 1). We checked the ontology for ambiguity and inconsistency using Pellet Reasoner, and
the results (Figure [8) were positive, meeting our CQ (CQ 2). IEEE std. 830-1998 [13] served as the gold
standard for this ontology, and it adheres to the standard correctly. Likewise, the ontology mapping for both
SRS document datasets was correct, indicating that the SRS ontology fulfilled CQ (CQ 4) by successfully
supplying users with knowledge. Finally, Figure 0] and Figure [I0] retrieve features for a requirement, thereby
fulfilling another CQ (CQ 3). We can declare this to be clear and consistent because this ontology successfully
satisfies all of our CQs.

Table[7)shows that the proposed ontology and previous models differ significantly in ontology metrics.
The suggested ontology has an AR score of 0.6744, which puts it in second place after EGY Tour. With a score
of 0.9767 in IR, it comes in second place, again behind EGYTour. The suggested model’s RR of 0.4247 is
extremely close to Travel’s highest value of 0.434, suggesting a balanced use of both inheritance and non-
inheritance relationships. The suggested ontology ranks second, only behind EGY Tour, with scores of 3.3023

Development and evaluation of a generalized ontology framework for ... (Sourav Kundu)

1062) ISSN: 2502-4752

for AP and 0.4419 for CR. The suggested ontology consistently performs well across all dimensions, despite
not being at the top in any one.

The proposed ontology is unique in that it is independent of domains. In contrast to earlier ontologies
like EGYTour and Travel, which are domain-specific, the suggested model is made to be cross-domain applica-
ble, which means it may be used for a variety of software requirement specifications, including e-governance,
education, recruitment, and e-commerce. Together with its continuously high metric performance, this general-
ity makes the suggested ontology a more scalable and reusable solution for real-world applications in a variety
of domains. The ontology is publicly available on the internet via GitHub [32].

5. CONCLUSION

A generalized ontology framework for SRS is presented in this study to solve the common problems
of ambiguity, inconsistency, and lack of standardization in traditional requirement engineering procedures. By
combining formal ontology principles, reasoning tools (Pellet), and semantic queries (SPARQL), we showed
how our method improves software requirements’ traceability, reusability, and clarity. This work’s importance
arises from its cross-domain generalization, which makes it appropriate for a variety of applications from re-
cruitment platforms to educational systems, without requiring significant customization. In alignment with
IEEE 830-1998, this ontology provides the research community with a reusable knowledge model that serves
as a basis for further research into intelligent requirement engineering and model-driven development. The
framework will be enhanced with visual editors and user-friendly tools in the future, NLP pipelines will be
integrated for automatic ontology population, and domain-specific modules will be added to the ontology for
deployment that can be customized. In order to get closer to the objective of completely intelligent and col-
laborative software engineering environments, these improvements are aimed at increasing acceptance in both
academic and industry environments.

FUNDING INFORMATION
Authors state no funding involved.

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
Data availability is not applicable to this paper as no new data were created or analyzed in this study.

REFERENCES

[1] R. Rawat, R. K. Chakrawarti, A. S. A. Raj, G. Mani, K. Chidambarathanu, and R. Bhardwaj, “Association rule learning for threat
analysis using traffic analysis and packet filtering approach,” International Journal of Information Technology, vol. 15, no. 6,
pp. 3245-3255, Aug. 2023, doi: 10.1007/s41870-023-01353-0.

[2] N.F Noy and D. L. Mcguinness, “Ontology development 101: a guide to creating your first ontology.” Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05, 2001.

[3] K. Siegemund, Y. Zhao, J. Z. Pan, and U. ABmann, “Measure software requirement specifications by ontology reasoning,” in 8th
International Workshop on Semantic Web Enabled Software Engineering (SWESE’2012), 2012, pp. 1-15.

[4] E. M. Zamzami and E. K. Budiardjo, “Documenting software requirements specification using R2UC ontology.” Universitas Su-
matera Utara, 2012.

[S] H.Bencharqui, S. Haidrar, and A. Anwar, “Ontology-based requirements specification process,” E3S Web of Conferences, vol. 351,
p. 01045, May 2022, doi: 10.1051/e3sconf/202235101045.

[6] U. Ahmed, A. Farooq, and T. Farhat, “ReqSpecOnto: investigating explicit software requirements specification,” Innovative Com-
puting Review, vol. 1, no. 2, pp. 44-70, Dec. 2021, doi: 10.32350/icr.0102.03.

[71 M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontologies for software engineering: past, present and future,” Indian Journal of
Science and Technology, vol. 9, no. 9, pp. 1-16, Mar. 2016, doi: 10.17485/ijst/2016/v9i9/71384.

[8] V. Castafieda, L. Ballejos, M. L. Caliusco, and M. R. Galli, “The use of ontologies in requirements engineering,” Global Journal of
Researches in Engineering, vol. 10, no. 6, pp. 2-8, 2010.

[91 D. Dermeval et al., “Applications of ontologies in requirements engineering: a systematic review of the literature,” Requirements
Engineering, vol. 21, no. 4, pp. 405-437, 2016, doi: 10.1007/s00766-015-0222-6.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1050-1064

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 0 1063

[10]

[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]
[28]

[29]
[30]

[31]

[32]

S. Haridy, R. M. Ismail, N. Badr, and M. Hashem, “An ontology development methodology based on ontology-driven conceptual
modeling and natural language processing: tourism case study,” Big Data and Cognitive Computing, vol. 7, no. 2, 2023, doi:
10.3390/bdcc7020101.

S. Ahmed and B. Ahmad, “Transforming requirements to ontologies,” Jonkoping University, School of Engineering, 2020.

H. Tan, M. Ismail, V. Tarasov, A. Adlemo, and M. Johansson, “Development and evaluation of a software requirements ontology,”
in SKY 2016 - 7th International Workshop on Software Knowledge, Proceedings - In conjuction with IC3K 2016, 2016, pp. 11-18,
doi: 10.5220/0006079300110018.

“IEEE recommended practice for software requirements specifications.” IEEE, Piscataway, NJ, USA, Jun. 25, 1998, doi:
10.1109/IEEESTD.1998.88286.

“Software engineering: report on a conference sponsored by the Nato Science Committee.” Brussels: Scientific Affairs Division,
NATO, Garmisch, Germany, 1968.

P. Wongthongtham, E. Chang, T. Dillon, and I. Sommerville, “Development of a software engineering ontology for multisite
software development,” IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 8, pp. 1205-1217, 2009, doi:
10.1109/TKDE.2008.209.

P. Bourque and R. E. Fairley, Guide to the software engineering body of knowledge - SWEBOK V3.0. IEEE and IEEE Computer
Society, 2014.

K. Yue, “What does it mean to say that a specification is complete?,” in Proceeding of IWSSD-4, Fourth International Workshop on
Software Specification and Design, 1987, pp. 42-49.

A. M. M. Khair and F. Meziane, “The use of ontologies in software elicitation,” Humanitarian and Natural Sciences Journal,
vol. 2, no. 9, pp. 427441, Sep. 2021, doi: 10.53796/HNSJ2923.

R. A. Elliot and E. B. Allen, “Creating a software requirements specification document using an ontology based methodology,”
International Journal of Advanced Research in Science, Engineering and Technology, vol. 3, no. 9, pp. 2616-2630, 2016.

V. Ermolayev, “OntoElecting requirements for domain ontologies the case of time domain,” Enterprise Modelling and Infor-
mation Systems Architectures. International Journal of Conceptual Modeling, vol. 13, no. Sp. Issue, pp. 86-109, 2018, doi:
10.18417/emisa.si.hcm.9.

M. P. S. Bhatia, A. Kumar, R. Beniwal, and T. Malik, “Ontology driven software development for automatic detection and updation
of software requirement specifications,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 23, no. 1, pp. 197-208,
2020, doi: 10.1080/09720529.2020.1721884.

D. Jones, T. Bench-Capon, and P. Visser, “Methodologies for ontology development,” In Proceeding of IT&KNOWS Conference of
the 15th IFIP World Computer Congress, 1998.

J. Raad and C. Cruz, “A survey on ontology evaluation methods,” in Proceedings of the 7th International Joint Con-
ference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, 2015, vol. 2, pp. 179-186, doi:
10.5220/0005591001790186.

R. A. Elliott, “Software requirements elicitation, verification, and documentation: an ontology based approach,” Mississippi State
University, 2012.

R. S. Pressma and B. R. Maxim, Software engineering: a practitioner’s approach, 8th ed. McGraw-Hill Education, 2014.

“What Is SPARQL?,” Ontotext A Graphwise Company, 2016. [Online]. Available:
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql.

M. DeBellis, “A practical guide to building OWL ontologies using Protégé 5.5 and Plugins,” ResearchGate Preprint, 2021.

M. A. Musen, “The Protégé project: a look back and a look forward.,” Al matters, vol. 1, no. 4, pp. 4-12, 2015, doi:
10.1145/2757001.2757003.

J. Brank, M. Grobelnik, and D. Mladenic, “A survey of ontology evaluation techniques,” in Proceedings of the Conference on Data
Mining and Data Warehouses (SiKDD 2005), 2005, pp. 166-170.

E. Blomgyvist, A. Seil Sepour, and V. Presutti, “Ontology testing - methodology and tool,” in Knowledge Engineering and Knowledge
Management. EKAW 2012, Springer Berlin Heidelberg, 2012, pp. 216-226.

B. Lantow, “OntoMetrics: putting metrics into use for ontology evaluation,” in Proceedings of the 8th International
Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, 2016, pp. 186-191, doi:
10.5220/0006084601860191.

S. Kundu, “SRS_Ontology,” Github, 2024. [Online]. Available: https://github.com/SouravKunduSK/SRS_Ontology.

BIOGRAPHIES OF AUTHORS

Sourav Kundu 0 EJE3 € is a lecturer at Bangladesh University of Business and Technology (BUBT),
in the Department of Computer Science and Engineering. Structured programming language, object-
oriented programming language, discrete mathematics, and data communication are some of the
courses he has taught. He graduated from Jashore University of Science and Technology (JUST),
Bangladesh, with a Bachelor of Science degree in computer science and engineering. Software en-
gineering, machine learning, and knowledge-based technologies are the main areas of his research
interest. He can be contacted at email: souravkunduss1 @gmail.com.

Development and evaluation of a generalized ontology framework for ... (Sourav Kundu)

https://orcid.org/0009-0000-7513-7616

1064) ISSN: 2502-4752

Soumay Kanti Das 0 1B is currently working as junior software developer at CSM, Bangladesh.
He completed B.Sc. in computer science and engineering from Jashore University of Science and
Technology. His is interested in research in the field of software engineering, and knowledgebase
technologies. He can be contacted at email: 180148.cse @student.just.edu.bd.

Abu Rafe Md Jamil k4 B © is a teacher at Bangladesh’s Jashore University of Science and
Technology (JUST) in the area of computer science and engineering. He has been working in this
field for more than two years, and his areas of expertise are research and programming, specifically
in the area of reinforcement learning for transportation systems. His objectives are to assist students
reach their greatest potential, stimulate critical thinking, and arouse curiosity. He can be contacted at
email: arm.jamil @just.edu.bd.

Md Kamrul Islam © £J Ed # received his bachelor’s degree in computer science and engineering in
2009 from Khulna University of Engineering and Technology, Bangladesh. He started his career in
the software industry, especially in software development jobs. At the end of 2010, he finally joined
as a faculty member in the Department of Computer Science and Engineering, Jashore University
of Science and Technology (JUST), Bangladesh. At JUST, he is fully involved in academic and
research-oriented jobs. He has completed his Master’s degree in Computing from Universiti Malaysia
Pahang, Malaysia in 2019 and Ph.D. in computer science from University of Lorraine, France in
2023. His research interest includes big data processing, especially data mining, graph mining, graph
representation learning, knowledge graphs, drug repurposing and social network analysis. He can be
contacted at email: mk.islam@just.edu.bd.

SK. Shalauddin Kabir ©|kd B is a lecturer at Jashore University of Science and Technology
(JUST), Bangladesh, in the Computer Science and Engineering (CSE) Department. He was employed
as a lecturer in the Computer Science and Engineering (CSE) Department at Northern University
of Business and Technology Khulna (NUBTK), Khulna, Bangladesh, prior to joining JUST. Sk.
Shalauddin Kabir graduated from Jashore University of Science and Technology (JUST), Bangladesh,
with a B.Sc. (Engg.) and an M.Sc. (Engg.) in Computer Science and Engineering (CSE). At JUST’s
fourth convocation in 2023, he received the Dean’s Award for demonstrating exceptional academic
achievement in his bachelor’s degree. Al, SDN, IoT, image processing, and machine learning are
some of his areas of interest. He can be contacted at email: sks.kabir@just.edu.bd.

Mostafijur Rahman Akhond |2 &4 B © is employed at Jashore University of Science and Tech-
nology as an assistant professor at the moment. Under the guidance of Prof. Young Koo Lee at the
Data and Knowledge Engineering (DKE) Lab, he earned his master’s degree in computer science
and engineering from Kyung Hee University in South Korea. The South Korean President Schol-
arship allowed Mr. Akhond to complete his master’s degree. By the time of the master’s program,
he was also employed as a research assistant. Mr. Akhond majored in software engineering and
earned his bachelor’s degree from the University of Dhaka’s Institute of Information Technology.
He is now working toward a Ph.D. at York University’s Department of Electrical Engineering and
Computer Science, located at 4700 Keele St., North York, Canada. He can be contacted at email:
mr.akhond @just.edu.bd.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1050-1064

https://orcid.org/0009-0004-5102-4245
https://orcid.org/0000-0001-8870-7171
https://scholar.google.com/citations?user=6nW-V_UAAAAJ&hl=en
https://www.researchgate.net/profile/Abu-Rafe-Jamil
https://scholar.google.com/citations?user=HX3NF-wAAAAJ&hl=en
https://orcid.org/0000-0002-0031-8807
https://scholar.google.com/citations?user=_7plOXsAAAAJ&hl=en&oi=ao
https://orcid.org/0000-0003-4902-4858
https://scholar.google.com/citations?user=_zuWeyIAAAAJ&hl=en

	Introduction
	Literature Review
	Method
	Research design
	Identification of classes and subclasses/concepts
	Identification of object properties
	Identification of data properties

	Implementation
	Necessary tools and softwares
	Ontology development

	Evaluation and Discussion
	Evaluation
	Reasoner: Pellet
	SPARQL queries
	Metric based evaluation

	Discussion

	Conclusion

