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Abstract
In this paper the Routh Approximation method is explored for getting the reduced order model of a

higher order model. The reduced order modeling of a large system is necessary to ease the analysis of the
system. The approach is examined and compared to single-input single-output (SISO) and multi-input multi-
output (MIMO) systems. The response comparison is considered in terms of step response parameters and
graphical comparisons. It is reported that the reduced order model using proposed Routh Approximation
(RA) method is almost similar in behavior to that of with original systems.
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1. Introduction
The analysis of high order systems (HOS) is generally very much complicated and costly.

On other hand it became easy to analysis of lower order system [1, 2]. The reduced models
for the original high order system is achieved by using mathematical optimization procedures
or simplification procedures based on physical considerations [3]. Thus analysis, synthesis and
simulation of reduced low order systems is easier and practicable as compared to it’s high order
systems [4]. An approach to get reduced order model of a higher order system using time-
moments method is presented by [5]. The reduced model have a problem of stability because of
mathematical approximation in model reduction technique. The reduced model may be unstable
even though the high order system is stable [6].

The instability problem of reduced models was studied by Hutton [7], Shamash [8], Gut-
man et. al. [9] and Wan [10]. Some method based on stability criterion and other not based on
stability criterion but the reduced model for a stable high order system (HOS) is always stable
[11, 12]. Different methods give different approach some gives batter result in rise time, some
gives batter results in settling time [13]. The combination of these methods gives batter results.
The reduced model using combination of methods is nearly with its higher order system. The com-
bination of Routh approximation and particle swarm optimization (PSO) is presented in [14]. The
concept of preservation of stability is presented in [15]. The differentiation method for reduction
of systems is presented in [16]. The differentiation method is used to derive reduced order model
of single machine infinite bus power system in [17]. The application of Routh stability algorithm is
presented in [18, 19].

The application of soft computing techniques have been presented in literature in the field
of model order reduction [20]. The concept used is minimization of integral squared error using
bat algorithm [20]. The application of fire fly algorithm in model order reduction is presented in
[21]. The application of particle swarm optimization (PSO) is presented in [22]. The application
of Routh approximation with Cuckoo search algorithm for model order reduction is presented in
[23]. The hybrid application of stability equation method with self-adaptive bat algorithm to reduce
power system to a reduced model is presented in [24].
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In this paper the application of Routh approximation method is presented for deriving
reduced order model of the higher order LTI systems which includes bechmark problems. The
statement of problem is presented in section 2.. The detailed procedural steps on Routh approx-
imation method are included in section 3.. The systems under consideration and their reduced
order models are presented in section 4.. The results of original system and reduced models
are subjected to step input and compared in this section. Finally the manuscript is concluded in
section 5. and followed by references.

2. Problem Formulation
Consider a high order transfer function of a system represented as in Eq. 1.

G(s) =

n−1∑
i=0

bis
i

n∑
i=0

aisi
(1)

where, the G(s) represents a high order system with the order of n. The purpose of manuscript is
to reduce the order of such high order system to r. The reduced order model may be represented
as in Eq. 2.

R(s) =

r−1∑
j=0

djs
j

r∑
j=0

cjsj
(2)

where, ai, bi, cj and dj are the scalar constants of original high order system and the reduced
order system. The objective is to find a reduced rth order system model R(s) such that it retains
the important properties of G(s) for the same types of inputs.

3. Review on Routh approximation
This method number of useful properties like if original system is stable then reduce model

will be stable,converge monotonically of original system in terms of step and impulse response.
By increase order of approximation poles and zeros of the approximants move towards the poles
and zeros of the original. In this method Routh Table for original system is use to construct the
approximate in a manner that it will stable for stable original system [22].

3.1. Description of Method

G(s) =
bns

(n−1) + bns
(n−2) + . . .+ b1

ansn + a(n−1)s(n−1) + . . .+ a0
(3)

By taking reciprocal of Eq. 3 and shown in Eq. 4

Ĝ(s) =
1

s
G

(
1

s

)
=

b1s
(n−1) + . . .+ bn

a0sn + a1s(n−1) + . . .+ an
(4)

If si, represents the ith pole/zeros of the original system then 1/si, the ith poles/zeros of the
reciprocal system.
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3.2. Alpha-Beta expansion
The transfer function of Eq. 4 can be expanded in the canonical form as presented in Eq.

5.

Ĝ(s) =

{
β1F1(s)+β2F1(s)F2(s)+β3F1(s)F2(s)F3(s) + . . .
+βnF1(s)F2(s)F3(s) . . ...Fn(s)

=
n∑

i=1

βi
∏i
i=1 Fj(s)

(5)

The Fi(s) can be defined by the continued fraction expansions as shown in Eq. 6.

Fi(s) =
1

αis+ 1

αi+1s+ 1
αi+2s+···

...
αn−1s+ 1

αns

(6)

In Routh Table 1, the first two rows of table are formed by coefficients of the denominator of
function Ĝ(s) and taking assumption that the entries of a0J = aI(J−1) = 0 for j > n.

ai+1
0

= ai−1
2 − αiai2

ai+1
2

= ai−1
4 − αiai4

...
ai+1
n−i−1 = ai−1

n−i − αiain−i

(7)

where, Eq. 7 stands for i = 1, 2, 3, . . . , n− 1. If the value of n− i as odd, the last term in Eq. 7 is
replaced by as shown in Eq. 8.

ai+1
n−i−1 = ai−1

n−i−1 (8)

For i = 1, 2, 3, . . . , n, the marginal entries for αi are calculated as in Eq. 9.

αi =
ai−1
0

ai0
(9)

The βi coefficients of the canonical form Routh table are determined using coefficients of
the numerator of Ĝ(s) and is shown in Eq. 10.

βi =
bi0
ai0

(10)

bi+2
j−2 = bij − βiaij (11)

The Routh Table 1 is equivalent to construction of following finite continued fraction expansion as
shown in Eq. 12.

D̂(s) =
α1

s
+

1
α2

s + 1
α3

s + · · ·
...
αn−1

s + 1
αn
s

(12)

It could be easy to say that the system with all α parameters being positive refers to an asymptot-
ically stable system [1].
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Table 1. Alpha table

Ist row a00 = a0 a02 = a2 a04 = a4
2nd row a10 = a0 a12 = a3 a14 = a5

α1 =
a00
a10

a20 = a02 − α1a12 a22 = a04 − α1a14 a24 = a02 − α1a16

α2 =
a10
a20

a30 = a12 − α2a22 a32 = a14 − α2a24 . . .

α3 =
a20
a30

a40 = a22 − α3a32 a42 = a24 − α3a34 . . .

α4 =
a30
a40

a50 = a32 − α4a42 . . . . . .

α5 =
a40
a50

a60 = a42 − α5a52 . . . . . .

α6 =
a50
a60

. . . . . . . . .

Table 2. Beta table

Ist row b10 = b1 b12 = b3 b14 = b5
2nd row b20 = b2 b22 = b4 b24 = b6

β1 =
b10
a10

b3
0 = b1

2 − β1a12 b3
2 = b1

4 − β1a14 . . .

β2 =
b20
a20

b4
0 = b2

2 − β2a22 b4
2 = b2

4 − β1a24 . . .

β3 =
b30
a30

b5
0 = b3

2 − β3a32 . . . . . .

β4 =
b40
a40

b6
0 = b4

2 − β4a42 . . . . . .

β5 =
b50
a50

. . . . . . . . .

3.3. Routh Convergent
The reduced kth order transfer function as R̂k(s) for an original transfer function G(s) is

derived by truncating the α − β expansion and rational arrangement of the results. The terms
appearing αk+1, . . . , αn and βk+1, . . . , βn are eliminated using α − β expansion. In this way the
the resultant is dependent on the first k-terms [7, 25].

Assuming a set of k-functions, which are defined by Gi,k for i = 2, 3, . . . , k and is repre-
sented as in following Eq. 13 [25].

Gi,k(s) =
1

αis+ 1
αi+1s+

1

αi+2s+ · · ·
...
αk−1s+ 1

αks

(13)

The above method possess slight modification for i = 1. The Ist term in the continued fraction
expansion is 1 + α1s instead of α1s. In this way, the kth convergent may be given by as in Eq. 14
[1, 25].

R̂k(s) =

{
β1G1,k(s)+β2G1,k(s)G2,k(s)+ · · ·
+βkG1,k(s)G2,k(s) · · ·Gk,k(s)

=
k∑
i=1

βi
I∏
i=1

Gi,k(s)
(14)

The Ak(s) is the denominator of the kth convergent while Bk(s) represents the numerator of it. In
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this way, the kth convergent may be represented as in following Eq. 15 [26].

A1(s) = α1s+ 1
B1(s) = β1
A2(s) = α1α2s

2 + α2s+ 1
B2(s) = α2β1s+ β2
A3(s) = α1α2α3s

3 + α2α3s
2 + (α1 + α3)s+ 1

B3(s) = α2α3β1s
2 + α3β2s+ (β1 + β3)

Ak(s) = αksAk−1(s) +Ak−2(s)
Bk(s) = αksBk−1(s) +Bk−2(s) + βk
A−1(s) = 1, B−1(s) = 0
A0(s) = 1, B0(s) = 0

(15)

The R̂k(s) represents the approximation of Ĝ(s) with preserving the frequency behaviour. The kth

approximate can be derived by considering the reciprocal of R̂k(s) as shown in Eq. 16 [25].

Rk(s) =
1

s
R̂k

(
1

s

)
(16)

3.4. Algorithm of Routh approximation
The following steps can be followed for determining the reduced order of a high order

system.

(i) Initially determine the reciprocal (Ĝ(s)) of the full order system G(s)

(ii) Derive the α− β elements

(iii) Determine kth convergent using R̂k(s) = Bk(s)
Ak(s)

(iv) Reciprocate R̂k(s) for kth order Routh approximation Rk(s).

4. Results and Discussions
4.1. Example-1: SISO

Considering the 8th order system presented in Shamash, 1975 [8] and presented in Eq.
17.

G(s) =

18s7 + 514s6 + 5982s5 + 36380s4+
122664s3 + 222088s2 + 185760s+ 40320

s8 + 36s7 + 546s6 + 4536s5 + 22449s4

+67284s3 + 118124s2 + 109584s+ 40320

(17)

The reduced 2nd order and 3rd order models are presented in Eq. 18 and Eq. 19, respectively
using Routh Approximation method.

R2(s) =
1.990s+ 0.432

s2 + 1.174s+ 0.432
(18)

R3(s) =
4.968s2 + 4.331s+ 0.940

s3 + 2.545s2 + 2.555s+ 0.940
(19)

The step response comparison of the original system [8] and it’s reduced 2nd and 3rd

order models are graphically compared in Fig. 1. It can be observed that the stability of the
system that of with reduced models are retained except slight variation in rise time, settling time,
peak value and peak time as included in Table 3. Since, the important properties of the higher
order system are preserved in it’s reduced (2nd order) system, consequently the mathematical
ease is increased greatly.
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Figure 1. Step response of the original 8th order system [8] and its reduced model R2(s) (Eq. 18)
and R3(s) (Eq. 19) using the Routh approximation method

Table 3. Step response comparision of original system in Example-1, with reduced models using
Routh Approximation

Transfer Rise Settling Peak Peak
Function Time Time Value Time

Original: G8(s) [8] 0.0569 4.8201 2.2035 0.4493
MOR-RA: R2(s) 0.5514 8.7327 1.5717 2.3235
MOR-RA: R3(s) 0.1973 7.0765 2.1128 1.1637

4.2. Example-2: SISO
Considering the 4th order system presented in Hwang,1996 [27] and presented in Eq. 20.

G(s) =
10s4 + 82.s3 + 264s2 + 396s+ 156

2s5 + 21s4 + 84.s3 + 173s2 + 148s+ 40
(20)

The reduced 2nd order and 3rd order models are presented in Eq. 21 and Eq. 22, respectively
using Routh Approximation method.

R2(s) =
1.990s+ 0.432

s2 + 1.174s+ 0.432
(21)

R3(s) =
4.968s2 + 4.331s+ 0.940

s3 + 2.545s2 + 2.555s+ 0.940
(22)

The step response comparison of the original system [27] and it’s reduced 2nd and 3rd

order models are graphically compared in Fig. 2. It can be observed that the stability of the
system that of with reduced models are retained except slight variation in rise time, settling time,
peak value and peak time as included in Table 4. In this case the rise-time of the original, 2nd and
3rd order reduced models are 2.7456, 2.6830 and 2.5549 seconds, respectively. The difference
in the rise times is minimal and is enough to prove similarity of the original and reduced models.
The other step response data are enlisted in Table 4.

4.3. Example-3: SISO
Considering the 7th order system presented in Jamshidi, 1983 [28] and presented in

state-space form by Eq. 23 - 24 and in transfer function by Eq. 25. It represents the SMIB power

Routh Approximation: An Approach of Model Order Reduction ... (D. K. Sambariya)
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Figure 2. Step response of the original 4th order system [27] and its reduced model R2(s) (Eq.
21) and R3(s) (Eq. 22) using the Routh approximation method

Table 4. Step response comparision of original system in Example-2, with reduced models using
Routh Approximation

Transfer Rise Settling Peak Peak
Function Time Time Value Time

Original: G8(s) [27] 2.7456 5.4346 3.8944 10.4392
MOR-RA: R2(s) 2.6830 3.9639 3.9748 6.4974
MOR-RA: R3(s) 2.5549 5.5932 3.8992 15.6589

system and the details are given in [29].

ẋ(t) =



−0.58 0 0 −0.269 0 0.2 0
0 −1 0 0 0 1 0
0 0 −5 2.12 0 0 0
0 0 0 0 377 0 0

−0.141 0 0.141 −0.2 −0.28 0 0
0 0 0 0 0 0.0838 2
−173 66.7 −116 40.9 0 −66.7 −16.7


x(t) +



1
0
1
0
1
0
1


u(t) (23)

y(t) =
[

1 −1 1 1 0 1 0
]
x(t) (24)

G(s) =

2s6 + 420.4s5 + 9435s4 + 1.39× 105s3

+4.663× 105s2 + 4.342× 105 + 1.877× 105

s7 + 23.48s6 + 331.7s5 + 2640s4 + 1.757× 104s3

+5.165× 104s2 + 3.534× 104s+ 1.729× 104

(25)

The reduced 2nd order and 3rd order models are presented in Eq. 26 and Eq. 27, respectively
using Routh Approximation method.

R2(s) =
10.085s+ 4.360

s2 + 0.821s+ 0.402
(26)
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Table 5. Step response comparision of original system in Example-3, with reduced models using
Routh Approximation

Transfer Rise Settling Peak Peak
Function Time Time Value Time

Original: G8(s) [28, 29] 0.1126 5.9294 16.0310 0.4307
MOR-RA: R2(s) 1.1998 7.4456 13.9203 3.3225
MOR-RA: R3(s) 0.5740 9.0915 13.2269 2.1099

R3(s) =
29.318s2 + 27.948s+ 12.081

s3 + 3.26s2 + 2.275s+ 1.113
(27)
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Figure 3. Step response of the original 7th order system [28, 29] and its reduced model R2(s)
(Eq. 26) and R3(s) (Eq. 27) using the Routh approximation method

In this example, the considered system is from the power system engineering. The orig-
inal system and it’s reduced 2nd and 3rd order models are subjected to step signal and super-
imposed to compare the responses in Fig. 3. It can be seen that the response due to original
system is having more oscillations as compared to that of with the reduced order models. The
step response information of these responses are enlisted in Table 5.

4.4. Example-4: SISO
Considering the 9th order boiler system represented in transfer function form in Eq. 28 as

presented in [26, 30]. The reduced 2nd order and 3rd order models are presented in Eq. 29 and

G(s) =

146.4s8 + 9.81× 104s7 + 5.999× 107s6 + 3.206× 1010s5 + 3.582× 1012s4

+1.113× 1014s3 + 1.154× 1015s2 + 3.971× 1015s+ 3.063× 1015

s9 + 659.8s8 + 4.136× 105s7 + 2.13× 108s6 + 2.422× 1010s5 + 8.737× 1011s4

+1.523× 1013s3 + 1.221× 1014s2 + 3.636× 1014s+ 2.406× 1014

(28)
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Table 6. Step response comparision of original system in Example-4, with reduced models using
Routh Approximation

Transfer Rise Settling Peak Peak
Function Time Time Value Time

Original: G9(s) [26, 30] 0.5432 2.2753 12.6986 4.5555
MOR-RA: R2(s) 0.6375 2.9668 13.2809 1.6504
MOR-RA: R3(s) 0.2577 2.4749 12.6920 4.5431

Eq. 30, respectively using Routh Approximation method.

R2(s) =
35.448s+ 27.343

s2 + 3.246s+ 2.148
(29)

R3(s) =
90.835s2 + 319.054s+ 246.1

s3 + 9.662s2 + 29.214s+ 19.331
(30)

The considered 9th order system is a practical boiler system as presented in [26, 30]. The
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Figure 4. Step response of the original 9th order system [26, 30] and its reduced model R2(s)
(Eq. 29) and R3(s) (Eq. 30) using the Routh approximation method

system is reduced to 2nd and 3rd order models using Routh approximation method. The original
and reduced models are subjected to step input and the graphical comparison is presented in
Fig. 4. It can be seen that the original and main properties of the original higher order system
are retained in it’s reduced model responses with comparatively reduced overshoots. The step
response information are included in Table 6.

4.5. Example-5: MIMO
A power plant system can be classified as a multivariable large-scale system. Numerous

methods of analysis and synthesis for such processes have been developed, but the remarkable
dimensions of the model structure makes their implementation very difficult. Considerable atten-
tion has therefore been devoted to the problem of deriving reduced-order models for such sys-
tems. The size and complexity of current electric power networks involves methods for studying
approximated models to investigate the dynamic behaviour of such system types in a more suit-
able way; the methods currently used for determining reduced-order dynamic models for power
systems in multi-bus, multi-machine frames are generally referred to as ”dynamic equivalents”.
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IJEECS ISSN: 2502-4752 � 495

An electric power system consisting of a salient-pole synchronous generator connected
to an infinite bus-bar is considered. Taking into account the well known performance equations of
both the machine and the transmission line, a very accurate non-linear mathematical model in the
state-space form has been derived. As state variables of the electrical part of the synchronous
machine, the set of winding currents of the q−d equivalent circuit has been chosen. The seventh-
order state vector of the original system consists of the stator currents id, iq, the field circuit
current ifd, two damping circuit currents ikq, ikd and the mechanical quantities δ and ω. The input
vector, in the chosen representation, consists of two quantities, the mechanical torque Tm and the
voltage Vf . As output variables, the machine voltage VI and the mechanical state variables δ and
ω have been chosen [3].

By considering small variations (∆) around a steady-state operating point, a linear model
has been derived. The values of the parameters, steady-state working conditions and further
details on the adopted model are reported by Ramamoorty and Arumugan [31].

we indicate with:

• Change in mechanical torque (∆Tm) as input 1

• Change in field voltage (∆Vf ) as input 2

• Change in terminal voltage (∆Vt) as output 1

• Change in power angle (∆δ) as output 2

• Change in speed (∆ω) as output 3

The transfer function of multi-input multi-output (MIMO) single-machine infinite-bus (SMIB) power
system can be represented as in Eqn. 31. The transfer function of the system with output ∆Vt
to input ∆Tm can be represented by G11(s) = g11(s)/d(s) and si,ilarly for others. The considered
MIMO SMIB consists of six different transfer function with different sets of input and output sig-
nals. The denominator of these systems is common and represented by d(s) in Eqn. 32. The
polynomials presented in Eqn. 33 - Eqn. 38, are the numerators of different transfer functions due
to different sets of input and output signals.

G(s) =

 g11(s) g21(s)
g12(s) g22(s)
g13(s) g23(s)


d(s)

(31)

d(s) =


s7 + 258.7s6 + 4.31× 105s5

+4.835× 107s4 + 1.853× 109s3

+2.54× 1010s2 + 5.973× 1010s
+1.886× 1010

(32)

g11(s) =

 −12.41s4 + 1.213× 104s3

−2.866× 106s2 − 3.325× 108s
−6.404× 109

(33)

g12(s) =

 −12.41s5 + 1.213× 104s4

−2.866× 106s3 − 3.325× 108s2

−6.404× 109s+ 0.0006087
(34)

g13(s) =


0.2005s6 + 47.88s5

+3.928× 104s4 + 5.122× 106s3

+2.288× 108s2 + 3.434× 109s
+5.492× 109

(35)
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Table 7. Step response comparision of original system in Example-4, with reduced models using
Routh Approximation

Original System ROMs Transfer functions

G11(s)
R2(s) −0.0134s−0.2581

s2+2.407s+0.76

R3(s) 0.0055s2−0.1914s−3.687
s3+14.6s2+34.39s+10.86

G12(s)
R2(s) −0.2581s

s2+2.407s+0.76

R3(s) −0.1914s2−3.687s
s3+14.6s2+34.39s+10.86

G13(s)
R2(s) 0.1384s+0.2213

s2+2.407s+0.76

R3(s) 0.1256s2+1.977s+3.162
s3+14.6s2+34.39s+10.86

G21(s)
R2(s) 0.8918s+0.8519

s2+2.407s+0.76

R3(s) 0.7691s2+12.74s+12.17
s3+14.6s2+34.39s+10.86

G22(s)
R2(s) 0.8519s

s2+2.407s+0.76

R3(s) 12.74s2+12.17s
s3+14.6s2+34.39s+10.86

G23(s)
R2(s) −0.0269s−0.3653

s2+2.407s+0.76

R3(s) 0.0006s2−0.3842s−5.219
s3+14.6s2+34.39s+10.86

g21(s) =

 52.08s5 + 1.076× 104s4

+2.187× 107s3 + 1.377× 109s2

+2.213× 1010s+ 2.114× 1010
(36)

g22(s) =


52.08s6 + 1.076× 104s5

+2.187× 107s4 + 1.377× 109s3

+2.213× 1010s2 + 2.114× 1010s
+0.0009095

(37)

g23(s) =

 7.448s5 + 2.701× 104s4

+8.685× 105s3 − 1.664× 107s2

−6.673× 108s− 9.065× 109
(38)

In this section a practical power system with multi-input and multi-output is considered.
The system concerned is SMIB power system model with 2-inputs and 3-outputs. The system
appeared as of 7th order and represented by 6 different transfer functions. Each transfer function
is reduced to it’s 2nd and 3rd order models. The reduced models of the original systems are
enlisted in Table 7. The respective original system and it’s reduced models are subjected to step
response and compared in Fig. 5 - Fig. 10. The step response information in terms of rise-time,
settling-time, peak and peak-time are summarized in Table 8.

5. Conclusion
In this paper, the application of Routh Approximation is explored to obtain reduced order

of SISO and MIMO systems in literature. The four examples of LTI SISO of practical importance
and one on MIMO a power sytem example is considered to get 2nd and 3rd order reduced model.
The similarity in original and reduced models are examined using step response graphical and
statistical comparisons. It have been found that the reduced order models are able to retain
stability of the considered system and reflects impressive degree of similarity in terms of rise
time, settling time peak value and peak time. It could be easy to state that the characteristics
of the reduced order models closer to original system are having more similarity as compared to
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Table 8. Step response comparision of original system in Example-5, with reduced models using
Routh Approximation

Systems and ROMs Rise time (s) Settling time (s) Peak Peak time (s)

G11(s) 6.0012 10.9472 0.3393 19.8313
R2(s) 6.0503 10.9570 0.3394 20.9108
R3(s) 6.0014 10.9474 0.3393 19.7016

G12(s) - 11.8495 0.0905 0.9330
R2(s) 0 12.0300 0.0867 1.0320
R3(s) 0 11.8547 0.0904 0.9333

G13(s) 5.7667 10.3078 0.2911 22.3338
R2(s) 5.7608 10.2977 0.2911 22.3142
R3(s) 5.7665 10.3078 0.2911 22.3338

G21(s) 5.2590 9.7107 1.1207 22.0030
R2(s) 5.2369 9.6813 1.1190 16.2674
R3(s) 5.2599 9.7105 1.1189 16.1383

G22(s) 3.0254E-15 7.6495 0.9039 0.0709
R2(s) 0 12.0300 0.2861 1.0320
R3(s) 0 8.0417 0.7695 0.1919

G23(s) 6.0018 10.9253 0.4805 21.9535
R2(s) 6.0483 10.9348 0.4804 20.9108
R3(s) 6.0015 10.9258 0.4804 20.5690

lower order. It means the 3rd reduced model is more similar to original system as compared to
2nd order reduced model.
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