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 Hysteresis is a common challenge in achieving precise position control of 

pneumatic artificial muscles (PAMs). Accurate modeling of this 

phenomenon is essential for the development of efficient PAM control 

systems. This study evaluates four mathematical models for modeling PAM 

dynamics: Nonlinear AutoRegressive with eXogenous inputs (NARX), Box-

Jenkins (BJ), Prandtl-Ishlinskii (PI), and second-order underdamped system 

and one zero (P2UZ). To assess the effectiveness of these models, 

experiments were conducted with reference input signals of varying 

amplitudes. The accuracy and goodness of fit of these models were 

evaluated based on root mean square error (RMSE) and coefficient of 

determination. Results show that the P2UZ model achieved the highest 

fitness (97.15%) and the lowest RMSE (1.80 mm), followed closely by the 

NARX model with 96.83% fitness and an RMSE of 1.90 mm. The PI and BJ 

models demonstrated lower performance, with the BJ model showing the 

lowest fitness (90.79%) and the highest RMSE (3.25 mm). These findings 

provide valuable insights for improving PAM control and PAM-based 

automation systems by highlighting the strengths and limitations of each 

model. 
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1. INTRODUCTION 

Pneumatic artificial muscles (PAMs) have demonstrated significant potential in various engineering 

fields, particularly in robotics, assistive devices, and automation systems [1]–[3]. Their exceptionally high 

force-to-weight and torque-to-weight ratios [4] make them attractive for applications in electrical, electronics, 

control, telecommunications, and computer engineering [5]–[7]. The PAM consists of three main 

components: an outer braided fiber, an internal rubber ball, and a sealed cover with an air intake/exhaust port. 

When compressed air is supplied to the PAM, it shrinks, increasing the diameter and decreasing the length, 

creating axial traction. Conversely, when the compressed air is released, the PAM expands and gradually 

returns to its original state [8]. The contraction force and displacement length of the PAM depend on the 

internal pressure. 

Despite its many favorable properties, the nonlinear behavior and high latency of PAMs present 

challenges in achieving precise mathematical modeling and PAM control [9], [10]. Hysteresis is a critical 

nonlinear characteristic commonly encountered in mechanical actuators and control systems [11]. In control 

and automation engineering, hysteresis in PAMs manifests as a discrepancy between the pressure-contraction 

relationship during pressurization and depressurization cycles [12]. Understanding and accurately modeling 
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this phenomenon is crucial for developing advanced control algorithms that enhance PAM performance in 

robotic and biomedical applications. 

Previous research efforts have focused on developing various mathematical models to characterize 

the hysteresis and dynamic response of PAMs. These efforts include both classical and modern approaches, 

such as physical-based models and data-driven techniques. However, existing models may face limitations in 

accuracy, computational efficiency, or adaptability to different operating conditions. Among various methods 

for modeling the dynamic response of PAMs reported in the literature, this study focuses on four 

mathematical models: nonlinear autoregressive model with exogenous inputs (NARX) [13]–[16], Box-

Jenkins (BJ) model [15], second order underdamped system and one zero (P2UZ) [16], and Prandtl–Ishlinskii 

(PI) model [17]–[19]. These models have been widely utilized to capture the dynamics of nonlinear systems. 

The NARX model is particularly effective in systems with complex, nonlinear input-output 

relationships, as it extends the linear ARX model by incorporating nonlinearities, allowing for the detailed 

representation of PAM dynamics [13]. Leveraging past input and output data to predict future outputs, it 

provides a powerful data-driven approach for modeling PAM behavior with intricate interactions between 

pressure inputs and muscle contraction. The BJ model utilizes rational polynomial functions to independently 

parameterize dynamics and noise, making this polynomial model highly effective for discrete-time system 

modeling and particularly useful to compensate for noise primarily from the measurement process rather than 

input disturbances [15], [20], [21]. 

The PI model is widely recognized for its capability in hysteresis modeling. Reasons for the wide 

use of the classical PI model and its variants include the simplicity and flexibility in characterizing hysteresis 

nonlinearities [22]–[24]. It employs play operators to simulate symmetric and asymmetric hysteresis 

behaviors, offering a practical solution for real-time PAM control [17]–[19]. Recent advancements in PI 

modeling have further enhanced its accuracy and computational efficiency [24]–[27].  

The P2UZ model extends the traditional second-order underdamped system by incorporating a zero 

into the transfer function. This enhancement improves its accuracy in modeling the oscillatory nature of 

PAMs. Its robustness in handling multi-frequency systems makes it particularly suitable for applications 

requiring precise control and stability. 

This research aims to investigate the comparative effectiveness of these models in accurately 

capturing PAM dynamics and to gain insights into PAM hysteresis modeling across various operating 

conditions. To assess their performance, root mean square error (RMSE) and model fitness metrics will be 

utilized. The findings of this study will contribute to the development of more reliable PAM control systems, 

providing guidelines for selecting an appropriate hysteresis model that will ultimately advance their 

applications in robotics, biomedical devices, and industrial automation. 

 

 

2. METHOD 

2.1.  System overview 

The PAM experimental setup is depicted in Figure 1. A PAM (MAS-20-200N, FESTO) with a 

diameter of 20 mm and an initial length of 200 mm was used. According to FESTO specifications, this PAM 

can shrink up to 25% at the pressure of 6 bar. Preliminary experiments showed that its maximal shrinkage of 

37 mm could be achieved with a load mass of 20 kg and an input pressure of up to 5.5 bar. The position of 

the PAM was measured via its displacement with a proximity sensor (KTC-100, Texas Instruments). The 

pressure applied to the PAM was measured with an SR13002A pressure sensor whose measurable range is up 

to 10 bar. The compressed air was fed through a 5/3 scale directional control valve (MPYE-5-1/8-HF-101B, 

FESTO). A TMS320F28379D LaunchPAD (Texas Instruments C2000 microcontroller) was used to transmit 

measurement and control signals to and from a laptop computer (Windows 11 Home, core i5-1155G7, 16-GB 

RAM) executing control and measurement algorithms in Simulink environment – MATLAB 2021a. A 20-kg 

load was applied to the PAM in all experiments. Figure 2 illustrates the input pressure signals and 

corresponding PAM responses used during the calibration and testing phases. Two types of input signals 

were employed. The first, shown in Figure 2(a), was a 0.1 Hz triangular waveform with progressively 

decreasing amplitudes after each cycle, used for model calibration. The second input, shown in Figure 2(b), 

retained the triangular shape but introduced greater complexity and variability to assess the model’s 

robustness under more realistic and unpredictable conditions. The resulting PAM responses are depicted in 

Figures 2(c) and (d), respectively. Figure 2(c) demonstrates the PAM’s response to the first signal, revealing 

multiple hysteresis loops caused by the gradually decreasing amplitude, which makes this input particularly 

useful for calibrating models under varying conditions. In contrast, Figure 2(d) shows the response to the 

more complex input, where identical pressure levels yielded markedly different displacements. This 

underscores the system’s nonlinear, memory-dependent behavior and highlights the necessity of such data for 

evaluating the generalization capability of the developed models. 
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2.2.  PAM modeling methods 

The mathematical model of the PAM can be fundamentally expressed by (1): 

 

𝑦 = 𝑓(𝑥) = 𝑎𝑥 + 𝑏 (1) 

 

 
 

Figure 1. Overview of the PAM system 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 2. Input signals and corresponding responses of the PAM system used for model development and 

testing: (a) triangular input signal with decreasing amplitude used for calibration; (b) complex input signal 
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with varying amplitude used for testing; (c) system response to signal (a), showing multiple hysteresis loops; 

and (d) system response to signal (b), highlighting nonlinear and memory-dependent behavior 

where x  represents the response of the investigated model among those four models under investigation in 

this study and b  is a constant added to increase the accuracy of the model, defined as (2): 

 

𝑏 = 𝑧(0) − 𝑥(0) (2) 

 

where (0)z  and (0)x  denote the experimental signal and the response of the investigated model at time  

t = 0, respectively. The slope a in (1) is calculated as (3): 

 

𝑎 =
𝑚𝑎𝑥 𝑧(0)−𝑚𝑖𝑛 𝑧(0)

𝑚𝑎𝑥 𝑥(0)−𝑚𝑖𝑛 𝑥(0)
 (3) 

 

where max(z) and min(z) represent the maximum and minimum values of the experimental signal z, 

respectively; max(x) and min(x) represent the maximum and minimum values of the model’s response x. This 

adjustment aims to account for any initial discrepancies between the experimental and model-generated 

signals, thereby improving the accuracy and robustness of the PAM modeling. The values of parameters a 

and b for each mathematical model are detailed in Table 1. 

These detailed methodologies provide a comprehensive overview of the various mathematical 

models used in this study to represent the dynamic response of PAMs. Each model offers unique advantages, 

contributing to a deeper understanding and more accurate prediction of PAM behavior under different 

experimental conditions. 

 

 

Table 1. Values of parameters a and b for each mathematical model 
Investigated model a b (mm) 

P2UZ 1 10.21 

Nonlinear ARX 1 2 

Prandtl-Ishlinskii 1 9.03 
Box-Jenkins 8.43 8.41 

 

 

2.2.1. Nonlinear AutoRegressive with eXogenous input 

The Nonlinear AutoRegressive with eXogenous inputs (NARX) model is a popular method for 

identifying and modeling nonlinear system, extending from the linear ARX model [28], with the ability to 

describe the nonlinear relationships between input and output variables. The NARX model is (4). 

 

𝑥(𝑡) = 𝑓(𝑥(𝑡 − 1), 𝑥(𝑡 − 2),⋯ , 𝑥(𝑡 − 𝑛), 𝑣(𝑡 − 1), 𝑣(𝑡 − 2),⋯ , 𝑣(𝑡 − 𝑚)) + 𝑒(𝑡), (4) 

 

where x(t) and v(t) are the output and input at time t, respectively; n and m denote the numbers of output and 

input delay, respectively; f is the NARX function; and e(t) is the noise or model error. The NARX model 

allows the description of complex nonlinear relationships, providing high flexibility in defining nonlinear 

functions for effectively capturing complex dynamic PAM behaviors. System Identification Toolbox™ – 

MATLAB was used, in which the Adaptive Gauss-Newton method was applied for model identification. 

 

2.2.2. Box-Jenkins Model 

The BJ model is a special configuration of polynomial models that provides completely independent 

parameterization for dynamics and noise via rational polynomial functions. BJ models, which have always 

been discrete-time models, can only be estimated from data in the time domain [15]. Using a BJ model is 

beneficial when the noise comes primarily from the measurement process rather than from the input noise. 

The structure of the BJ model offers great flexibility in modeling noise due to its ability to isolate and 

analyze the system's dynamics independently.  

The formulation of a BJ model is as (5). 

 

𝑥(𝑡) = ∑

𝑖=1
𝑛𝑢 𝐵𝑖(𝑞)

𝐹𝑖(𝑞)
𝑣𝑖(𝑡) +

𝐶(𝑞)

𝐷(𝑞)
𝑒(𝑡), (5) 

 

where x(t) and v(t) are the output and input signals, e(t) is the error, and Bi, Ci, Fi, and Di are second-order 

polynomials, which were determined using the Box-Jenkins structure in Polynomial mode with the Adaptive 

Gauss-Newton method in System Identification Toolbox™ – MATLAB. 
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𝐵(𝑧) = 0.2377 − 0.469𝑧−2, (6) 

 

𝐶(𝑧) = 1 + 0.1284𝑧−1 − 0.87𝑧−2 (7) 

 

𝐷(𝑧) = 1 − 1.979𝑧−1 + 0.9792𝑧−2 (8) 

 

𝐹(𝑧) = 1 − 1.954𝑧−1 + 0.9536𝑧−2 (9) 

 

2.2.3. Second order underdamped system and one zero (P2UZ) 

The standard form of the transfer function of a second-order underdamped system is (10): 

 
𝐾

𝑇𝜔
2𝑠2+2𝜁𝑇𝜔𝑠+1

 (10) 

 

where 0 1   is the damping ratio. Although this underdamped system can be used to model simple 

oscillation, it has certain limitations when applied to more complex real-world systems with higher-order 

terms, resulting in low accuracy in describing the system dynamics. When the system has to receive input 

signals of high complexity or has a variety of frequency components, a second-order underdamped transfer 

function cannot provide an accurate response and adequately reflect the system behaviors [29]. To overcome 

these limitations, adding a zero to the model can significantly improve the accuracy and modeling 

capabilities of the system. For example, adding zeros enables tuning the system's frequency response and 

enhancing the system's response to various input signals [30]. Thus, this study modeled the PAM system 

using a second-order underdamped system with one zero, the transfer function of which is formulated as (11).  

 

𝑋(𝑠) = 𝐾
𝑇𝑧𝑠+1

(𝑇𝜔
2𝑠2+2𝜁𝑇𝜔𝑠+1)

 (11) 

 

The model was estimated using “Estimate Process Model” task of System Identification Toolbox™ – 

MATLAB (2021a version). The estimation results yielded 6.7987K = , 156.3105zT = , 5.7018T = , and 

9.1096 = . 

 

2.2.4. Prandtl-Ishlinskii model 

The PI model is widely used to simulate nonlinear hysteresis, particularly for PAMs’ hysteresis. As 

an operator-based model, it can support parallel computation, high flexibility, and facilitate integration with 

other dynamic factors [31]. As an operator-based model, a PI model also fits PAM hysteresis by weighting 

several operators called “play operators,” which describe the relationship between the input pressure v(t) and 

the output displacement x(t). These operators are defined as (12) [32]. 

 

𝐹𝑟[𝑣,𝑀0](𝑡) = 𝑚𝑎𝑥{ 𝑣(𝑡) − 𝑟,𝑚𝑖𝑛{ 𝑣(𝑡) + 𝑟, 𝐹𝑟[𝑣](𝑡𝑘−1)}} (12) 

 

where v(t) and Fr[v](t) are the input and output of the operator at time t, respectively; r is the input threshold 

of the play operator. The PI model uses the play operator, as defined by (12). The relationship between input 

pressure v(t) and output displacement x(t) is formulated as (13) [25]. 

 

𝑥(𝑡) = 𝑝0𝑣(𝑡) + ∑

𝑖=1
𝑛

𝑝𝑖𝐹𝑟
𝑖[𝑣](𝑡) (13) 

 

where    0ip   is the weight of the i-th play operator 
i

rF  with the threshold value ir , and n is the number of 

play operators empirically defined from the experimental data. 

The thresholds ir  are determined based on significant changes in the nonlinearity between the input 

and output characteristics of the PAM system observed from the experimental data. These thresholds are 

determined by dividing the hysteresis loop into several characteristic segments; each is considered a line 

segment with a slope iS  significantly different from the previous line segment. The slope iS  of each 

segment is computed as (14). 

 

𝑆𝑖 =
𝑥𝑖−𝑥𝑖−1

𝑟𝑖−𝑟𝑖−1
 (14) 
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where ix  and 1ix −  are the displacement values corresponding to thresholds  ir and 1ir −  for two consecutive 

segments. A larger slope corresponds to a large PAM displacement due to the input pressure, indicating a 

stronger system response in the corresponding segment. The weight ip  can be determined from the slope as 

(15) [26].  

 

𝑆𝑖 = ∑

𝑔=1
𝑖

𝑝𝑔−1,   for 𝑖 = 1,… , 𝑛 + 1 (15) 

 

In this study, seven “play operators” were determined. The corresponding threshold and operator 

weight vectors are as (16) and (17). 

 

𝑟 = [0 0.3392 0.6654 0.9917 1.3179 1.6442 1.9704] (16) 

 

𝑝 = [0.3067 0.1146 0.0895 0.0673 0.0673 0.0455 0.0261 0.0034] (17) 

 

2.3.  Evaluation of the model performance  

The model performance is evaluated via the RMSE and the response fitness. These two indicators 

are calculated based on the actual and estimated responses z and y, respectively. RMSE is a quantitative 

measure to evaluate the model accuracy, determined as (18): 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑧(𝑗)−𝑦(𝑗))2

𝑁

𝑁
𝑗=1  (18) 

 

where z(j) and y(j) are the actual and estimated responses z and y at sampling time j, respectively; N is the 

total number of observations. 

The goodness of fit between the actual response and the model’s estimate is calculated based on a 

fitness value derived from the statistical coefficient of determination as (19): 

 

 fitness = (1 −
∑

𝑗=1
𝑁
[𝑧(𝑗)−𝑦(𝑗)]2

∑

𝑗=1
𝑁
[𝑧(𝑗)−�̄�]2

) × 100% (19) 

 

where z  is the average of ( )z j . 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Experimental setup 

In this study, two input pressure signals of triangular shapes with a frequency of 0.1 Hz and varying 

amplitudes from 5.5 bar to 1.0 bar were applied to the system. Preliminary experiments showed that a 

maximum displacement of 37 mm could be achieved within this input pressure range. The initial position of 

the PAM was approximately 0 mm with an initial pressure of 1.0 bar. A load of 20 kg was used in the 

experiment. 

The experiment was conducted following as follows. In the model calibration phase, the input signal 

shown in Figure 2(a) was applied to the system. This signal had decreasing amplitudes after each cycle; 

therefore, different hysteresis loops were observed, as shown in Figure 2(c). These responses were used to 

develop more accurate NARX, BJ, P2UZ, and PI models under changing conditions. The procedures for 

developing NARX, BJ, P2UZ, and PI are introduced in section 2.2, with more detailed information being 

provided in [15], [26], [28], [30], respectively. The simulated responses of these models to this signal were 

plotted in Figure 3 to compare their performances in the model calibration phase. 

In the testing phase, another input signal with higher complexity and variability, as shown in Figure 

2(b), was applied to the system. Figure 2(d) shows that the PAM displacement differed significantly under 

the same pressure level. The simulated responses of the investigated models were also plotted as shown in 

Figure 4 to evaluate the robustness and adaptability of the developed models to more realistic, unpredictable 

conditions. These observations would contribute to more accurate modeling of the PAM hysteresis, 

supporting the design and automatic control of PAM systems. 
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3.2.  Modeling results and performance evaluation  

NARX, BJ, P2UZ, and PI were developed based on the input pressure signal 1 (Figure 2(a)) and the 

PAM displacement response (Figure 2(b)). The performances of these models are evaluated with the input 

signal 2. Figures 3 and 4 show the models’ responses with respect to the actual PAM displacements – the 

experimental values, in both calibration and testing phases, respectively, with a performance summary 

tabulated in Table 2. It is apparent that all four investigated models demonstrated good performance with a 

fitness value of greater than 90%. Particularly, the P2UZ model demonstrated the best performance with the 

RMSE of about 1.8 mm and 1.91 mm in the calibration and testing phases, respectively. The fitness values of 

97.15% and 97.31%, respectively, obtained in the calibration and testing phases, showed the effectiveness of 

the P2UZ model in PAM hysteresis modeling. The performance of the NARX model was comparable to the 

P2UZ model in terms of RMSE and fitness values (96.83% and 96.72% in the calibration and testing phases). 

It can be concluded that both P2UZ and NARX models accurately modeled the nonlinear characteristics 

between the input pressure and the PAM displacement due to the inherent PAM hysteresis. 

 

 

Table 2. The RMSE index of the mathematical model compared to the experimental data of PAM 

Model 
Model calibration with input signal 1 Model testing with input signal 2 

RMSE (mm) fitness (%) RMSE (mm) fitness (%) 

NARX 1.90 96.83 2.10 96.72 

BJ 3.25 90.79 3.17 92.55 
P2UZ 1.80 97.15 1.91 97.31 

PI 2.60 94.08 2.48 95.44 

 

 

 
 

Figure 3. Model responses and actual PAM displacement in the model calibration phase 

 

 

The BJ model had the poorest performance, with the largest RMSE of about 3.25 mm and 3.17 mm 

in the calibration and testing phases. However, it had an acceptable fitness value of about 90.79% and 

92.55% in model calibration and testing, respectively. The BJ model could not respond quickly enough in the 

second-half period of the reference triangular input when the amplitude is decreasing, which might lead to a 

larger RMSE of the BJ model compared with the other models.  

The PI model showed moderate performance with calibration and testing RMSEs of 2.6 and 2.48 

mm, respectively, and a considerable fitness value of 95.44% was obtained in the testing phase. Figures 3 and 

4 show that the PI model stimulated good responses at the lower hysteresis loop-ends with insignificant 

overshoot nor undershoot. However, Figure 4 shows significant overshoots of the PI model. Because many 

variants of PI models have demonstrated their effectiveness in PAM hysteresis modeling [25]–[27], carefully 

choosing more PAM-based operators at the upper hysteresis ends can help reduce high-end-loop overshoots. 

The proper choice and configuration of play operators would be more complex. However, it is 

mathematically more difficult for the other models in this study to deal with positive and negative overshoots 

at the hysteresis ends. 
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The experimental results confirm the effectiveness of PAM modeling in achieving accurate position 

control under various working conditions, reinforcing its importance in this study. These findings provide 

valuable guidelines for selecting appropriate modeling approaches for PAMs. For applications requiring a 

balance between simplicity and performance, P2UZ and NARX models offer reliable options. However, 

when precision is paramount, a PI model or its variants should be prioritized, provided that the optimal 

number of play operators is determined and their configurations are properly analyzed. The study focused on 

a limited set of mathematical models, highlighting the need for future research to explore additional modeling 

approaches, including PI variants, to further enhance accuracy and applicability in real-world PAM control 

systems. 

 

 

 
 

Figure 4. Model responses and actual PAM displacement in the model testing phase 

 

 

4. CONCLUSION 

This study investigated four models – NARX, BJ, PI, and P2UZ – for modeling the hysteresis 

behavior of PAMs. The models’ performance was evaluated using RMSE and fitness values, with robustness 

assessed across input signals of varying amplitudes. All models achieved a fitness values above 90%, 

indicating a general adequacy for PAM hysteresis modeling. Among them, the P2UZ model exhibited the 

highest accuracy (RMSE: 1.91 mm, fitness: 97.31%), followed closely by the NARX model (RMSE: 2.1 

mm, fitness: 96.72%). The PI model showed moderate performance (RMSE: 2.48 mm, fitness: 95.44%), 

while the BJ model had the lowest accuracy (RMSE: 3.17 mm, fitness: 92.55%).  

The results highlight the effectiveness of the P2UZ and NARX models as reliable, simple, and 

computationally efficient approaches for PAM modeling and position control. Additionally, the PI model's 

comparable performance achieved with a simple configuration suggests that further refinement – particularly 

in optimizing its play operators to mitigate overshoot at the upper hysteresis loop – could significantly 

enhance its accuracy. This study provides insights into selecting effective PAM modeling strategies and 

improving modeling accuracy for real-time control applications, including robotic actuators and prosthetic 

devices. 

Future research should focus on optimizing the PI model for improved hysteresis compensation, 

potentially by dynamically adjusting its play operators in response to system behavior. Additionally, 

generalized PI models and the use of hysteresis inversion as a feedforward compensator could be explored to 

enhance closed-loop control performance. Further validation through real-time implementation in dynamic 

systems, such as robotic actuators and prosthetic devices, would provide valuable insights into the practical 

applicability and adaptability of these models. 
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