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Partial shading (PS) significantly reduces power generation and efficiency in
solar photovoltaic (PV) systems. This research presents a novel totalcross-
tied (TCT) methodology designed to mitigate shading effects by optimizing
array layout while preserving electrical connectivity. The TCT method is
compared to three established configurations: series-parallel (S-P), bridge-
linked (B-L) and honey-comb (H-C). MATLAB simulations on a (9x9) PV
array under variousshading conditions demonstrate TCT’s superior
performance in achieving the global maximum power point (GMPP). Key
findings indicate that TCT surpasses the other configurations, reaching a
maximum power output of 16,650W at GMPP, with a mismatch power loss
of 2,600W, a power loss of 13.32%, a fill factor (FF) of 38.27, and an
execution ratio (ER) of 0.866.
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1. INTRODUCTION

The rising worldwide need for affordable, sustainable energy options has greatly boosted interest in
solar photovoltaic (PV) systems. These systems offer a practical means of converting sunlight into electricity;
however, their performance can be significantly affected by environmental elements like solar irradiation,
temperature changes, dust accumulation, and especially partial shading conditions (PSCs) [1], [2]. PS
remains one of the major unresolved challenges in solar PV systems, as it introduces multiple maximum
power points (MPPs) in the system’s current-voltage and power-voltage characteristics, leading to inefficient
energy harvesting and complicating MPP tracking (MPPT) efforts [3].

Several notable contributors have proposed solutions to mitigate the effects of PSCs. Ebhota and Jen [4]
explored renewable energy systems to overcome fossil fuel issues. The authors found that the solar PV can be
pivotal in transitioning only to hybrid energy systems. Yadav et al. [5] developed a magic-square puzzle PV
array configuration. In this the performance was improved by evenly distributing shading effects. Oufettoul
et al. [6] compared PV module arrangements under shading. They found optimal layouts can reduced by
shading impacts. Fu et al. [7] used Fresnel lenses for uniform illumination. They maintained consistent power
output under sunlight concentration. Madhanmohan et al. [8] proposed a diagonally dispersed totalcross-tied
(TCT) configuration. The output was improved under PS compared to traditional layouts. Kadhim et al. [9]
reviewed PV array reconfiguration methods under PSC. The authors highlighted those physical
reconfigurations and intelligent strategies significantly mitigate shading losses.
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Roman et al. [10] developed a micro-inverter MPPT system with individual inverters for each PV
module connected to a common AC bus, but the high cost of micro-inverters was a significant drawback.
Dhople et al. [11] proposed a multiple-input boost converter for MPPT in series strings of solar cells with
bypass diodes, suitable for distributed MPPT systems using micro-inverters. Koutroulis and Blaabjerg [12]
introduced a new MPPT technique for tracking the GMPP of PV arrays under PS conditions (PSCs) using a
D-flip/flop and analog/digital converter. Pandem and Mikkili [13] compared large S and S-P PV array
configurations under PSCs, using MATLAB/Simulink for modeling and analysis, revealing that global peak
power is affected by array configuration and shading patterns. Ajmal et al. [14] provided a brief comparison
of PV array configurations under row and column shading, discussing challenges in reconfiguration methods
for maximizing power in PV systems.

Ranjbaran et al. [15] studied floating PV (FPV) systems with various PV array designs. Bhatnagar
et al. [16] evaluated multiple MPPT algorithms for optimizing power extraction by adjusting device input
impedance to match the PV array’s MPP.. These works consistently highlight that intelligent configuration
and dynamic array management can significantly improve energy output. Despite these advances, several
limitations persist, including the complexity of physical reconfigurations, the need for numerous switches
and sensors, the cost implications of dynamic reconfiguration systems, and the challenge of handling
dynamic, real-world shading scenarios in a scalable, efficient manner.

This research proposed a comprehensive evaluation of the effective TCT PV array design to address
existing challenges. While previous studies have explored TCT configurations, this study specifically
analyzes their performance through MATLAB/Simulink simulations under four shading patterns (Short-
wide, short-narrow, long-narrow, and center shading) on an (8x8) system at the Mahatma Gandhi Post
Graduate Institute of Dental Sciences (MGPGIDS) in Puducherry, India. Unlike earlier efforts, this research
seeks to enhance performance without complex reconfiguration or additional hardware, emphasizing
practical application in real PV systems.

The paper is organized as follows: section 2 discusses the modeling of PV cells and modules.
Section 3 presents the mathematical analysis of different PV array configurations: series-parallel (S-P),
bridge-linked (B-L), honey-comb (H-C), and the proposed TCT arrangement. Section 4 covers the
performance metrics of solar PV systems. Section 5 reviews simulation results and analyzes the performance
of each configuration under varying shading conditions. Finally, section 6 concludes the findings,
highlighting the TCT configuration’s superiority in enhancing PV system efficiency under PS.

2. MODELLING OF SOLAR PHOTO-VOLTAIC SYSTEMS

The performance evaluation of PV array is heavily reliant on the modelling of the PV cell, making it
a crucial factor. There are various techniques for representing PV cells in research papers, including the
single diode, dual diode, and triple diode models [17]. The PV cell behavior was modeled using a singlediode
equivalent model because it is a well-validated, industry-standard approach that enables high-fidelity yet
computationally efficient modeling, crucial for analyzing large arrays under multiple scenarios. This model
effectively captures essential PV characteristics like diode ideality factor, series resistance, and reverse
saturation current, which are critical under non-uniform irradiance conditions. The relation between the SPV
cell’s voltage and current is shown in the following equation [18],

I=1,—1, [exp (V+1RS) _ 1] _ VHIRs )

nvr Rsp

Figure 1. Equivalent cell modelling using single diode
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3. DIFFERENT PV ARRAY CONFIGURATIONS

Four distinct PV array interconnection structures were developed in an (8x8) matrix (64 modules) as
shown in Figure 2 and Figure 3. PV module interconnection styles, Figure 2(a) is S-P and Figure 2(b) is B-L.
Meanwhile, Figure 3(a) shows H-C and Figure 3(b) shows the proposed TCT.

3.1. S-P configuration

The S-P setup is commonly used in PV systems because of its straightforward design and absence of
extra connections. However, it is very prone to mismatch losses during PSCs because of the way more
modules are connected in series. Each module is initially linked in series to create strings, which are then
linked in parallel [19]. Blocking and bypass diodes protect the strings from short circuits and PSCs. The total
output current (Ipv), voltage (Vev), and power (Ppy) are calculated using (2).

Istr) = izt L Istr2) = P L Iser(z) = s Lei Istra) = i3 e )
IStr(S) = Z’ﬁzgg IkiIStr(e) = ’ﬁzﬁ Ik;IStr(7) = leﬁzig IkZIStr(a) = Zlﬁzg‘; Iy; |
Ly = Istrcry + Isprezyteeeeenneennnnn, sty = 2oy I } )
Vi =V +V, + Vot +Vg = Xk28 Y, = 8V, |
Py =V X L, )

3.2. Bridge-link (B-L) configuration

Modules can be arranged like bridge rectifiers with cross ties. If some modules in the PV array
experience PS, the output voltage drops significantly. In this setup, two modules are connected in series and
paralleled with another pair of series modules [20]. The total output voltage is the sum of the series voltages,
while the current is the sum of the parallel currents, achieving the desired output levels. The total output
current (Ipy), voltage (Vey) and power (Ppy) are calculated using (3).

Ipv=Il+19+117+125+I33+I4_1+I4_9+157=8XVk
‘/pv = Vl + VZ + V3+ ....... +V8 = Zﬁz? Vk = 8Vk (3)
By = Vo X L,

(@) (b)
Figure 2. PV module interconnection styles, (a) S-P and (b) B-L

3.3. H-C configuration

In the H-C setup, six modules are organized in a hexagonal pattern that looks like a honeybee hive,
with all hexagonal units linked by cross-ties [21]. Each hexagon is made up of two groups of three modules
linked in series, and these groups are then connected in parallel. The overall output voltage and current are
calculated by adding the series voltages and parallel currents. The total output current (Ipv), voltage (Vev),
and power (Ppy) are calculated using (4),
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Iy =1L+ 1o+ 117+ s+ 33+ 14 + 1o+ 15, =8XV
Ve =Vi + Vo + Vot +Vg = Yk=8y, =8V, (4)
By = Vo X Ly
3.4. Proposed TCT configuration

The TCT configuration, also called the cross-tied configuration, aims to lessen the effects of PS in
S-P systems. Cross-ties between modules create alternative current paths for shaded modules, removing the
need for bypass diodes and avoiding hotspot problems. In this arrangement, modules are linked in rows (in
parallel), and these rows are then connected in series. The TCT configuration is assessed systematically
under various PSC scenarios, providing a structural mitigation approach instead of depending on dynamic
electronic reconfigurations. The total output current (lpv), voltage (Vev), and power (Ppy) are calculated using (5).

Ipv =L+Ig+L,+ L+ 3+ + g+ 15, =8XV,
Voo = Vew1 + Vewz + Vaws + Vewa + Vews + Vewes + Vaws + Vews 5)
Poy = Vpy X Ly
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Figure 3. PV module interconnection styles, (a) H-C and (b) proposed TCT

4. PERFORMANCE PARAMETERS
The effectiveness of the suggested methods is assessed based on the following criteria.

4.1. Mismatching power

Mismatch loss occurs when solar cells or modules with varying characteristics are interconnected
and subjected to different conditions. As a result, the difference in power generation between two scenarios,
such as the maximum power output under ideal conditions and the reduced power output under PS, is
referred to as mismatch PL:

P(mismatchingloss) = Pmax (unShadEd Condition) - PGMPP [22] (6)

4.2. FF

The FF is a key metric for assessing solar panel efficiency. It is determined by dividing the actual
rated maximum power (Pm) by the theoretical maximum power, which is the product of the open-circuit
voltage (Voc) and short-circuit current (Isc). A higher FF indicates lower losses due to internal resistances,
regardless of whether the cells are connected in series or parallel:

Fill - Factor = [—-max ][ 3] ©)

Voc*Isc)
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4.3. Power losses (%0)

The term refers to the ratio between the difference of the global maximum power point (GMPP) of
the PV array under standard test conditions (STC) and the GMPP under partial shaded condition (PSC) to the
global maximum power under STC,

GMPP(STC)_GMPP(PSC)] [24] (8)

Power - Loss = [
GMPPsT()

44. ER
It is defined as the ratio of Maximum power at global maximum power point (PGMPP) and
Maximum power at STC [PSTC]. The efficiency of solar PV increases with increasing ER,

ER = Pepso) _ (VMPP*IMPP)PSC] [25] 9)

P(sTc) (Vmpp*IMPP)STC

5. SIMULATION RESULTS AND DISCUSSIONS

The evaluation of the SP, HC, BL, and proposed TCT setups was conducted for a 335W (8x8) PV
array using MATLAB. The array has a nominal voltage of 38.1 V and a current of 8.80 A. Simulations under
various shading conditions assessed performance metrics like FF, Mismatching power, Power loss, and ER.
The simulations were run on a MATLAB/SIMULINK platform with a Dual-Core Processor, 2.2GHz, and
8GB RAM. Specifications for the single diode PV model are in Table 1.

Table 1. Specifications of the proposed MGPGIDS Vikram solar PV module

Parameter Values
Prmax 335w
Imax 8.80A
Vmax 38.1V

lsc 9.35A
Voc 46.5V

5.1. During short-wide (SW) shading conditions

The last three rows in this shading design had shading across three columns with irradiances of 600,
400, and 200 W/m?2. Figure 4 shows the partial shading. The first four columns of the fifth row were shaded
at 600 W/m?, while the rest received full irradiance of 900 W/m?, as illustrated in Figure 4(a). Figure 4(b)
shows SN, Figure 4(c) shows LN, and Figure 4(d) shows center. In this shading pattern, the performance of
different PV array configurations was assessed, and the findings clearly indicate the enhanced efficiency of
the suggested TCT configuration when compared to traditional S-P, B-L, and H-C setups, as presented in
Table 2. The proposed TCT configuration achieved the highest GMP of 10,718 W, outperforming S-P
(10,190 W), B-L (10,359 W), and H-C (10,324 W), thereby proving its enhanced capability in extracting
power under PS conditions are shown in Figure 5.

I:l 200 W/m? . 300 W/m? I:l 400 W/m? - 600 W/m?* I:l 700 W/m? 900 W/m?

1l12]1314]15[16]17[18 1|12|13[14[15]16]17]18
2122|2324 [25] 262728 21 (222324 [25[ 262728
31 [32[33]34[35[36]37]38 31[32[33[34[35[36[37]38
41 [ 42143 [44 [45[46 |47 [ 48 41 [ 4243 [ 4445 4647 48
55|56 |57 | 58 51 |52|53]54 57 | 58
63 | 64 | 65 | 66 | 67 | 68 61 | 62| 63 | 64 67 | 68
73 |74 |75 [ 76 | 77 | 78 71172173 |74
83 [ 8485868788 81|82 83| 84 [f
(@)
121314 15[16]17][18 11 18
21[22[23|24[25[26]27]28 21 28
31 [32]33]34[35][36]37]38 31 38
414243 |44[45]4647]48 41 48
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61 [ 62]63]64]65]66]| 67|68 ‘ 61 68
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Figure 4. Partial Shading (a) SW, (b) SN, (c) LN and (d) center
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Table 2. Estimation of performance indices for shade pattern (1-4)
Shadingpattern  Configuraton GMP  Mis-matchingLoss (W)  Fill-factor(FF)  Power-Loss(PL)  Execution ratio(ER)

S-P 10190 9010 23.43 46.92 0.530
W B-L 10359 8841 23.82 46.04 0.539
H-C 10324 8876 23.74 46.22 0.537
Proposed TCT 10718 8482 24.65 4417 0.558
S-P 15285 3915 35.15 20.39 0.796
SN B-L 15476 3724 35.59 19.39 0.806
H-C 15438 3762 35.50 19.59 0.804
Proposed TCT 16066 3134 36.95 16.32 0.836
S-P 14572 4628 33.51 24.10 0.758
LN B-L 15035 4165 34.58 21.69 0.783
H-C 14863 4337 34.18 22.58 0.774
Proposed TCT 15450 3750 35.53 19.53 0.804
S-P 15823 3377 36.39 17.58 0.824
Center B-L 15978 3222 36.75 16.78 0.832
H-C 16134 3066 37.10 15.96 0.840
Proposed TCT 16641 2599 38.27 13.32 0.866
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Figure 5. PV characteristics under SW and SN pattern

Additionally, it recorded the lowest mismatch loss at 8,482 W, underscoring its efficiency in
minimizing energy disparities caused by uneven irradiance. The FF for the TCT configuration was also the
highest at 24.65, reflecting improved conversion efficiency of solar energy. In terms of power loss, the TCT
configuration exhibited the lowest percentage at 44.17%, significantly better than that of S-P (46.92%), B-L
(46.04%), and H-C (46.22%). This reduction in power loss indicates decreased energy wastage. Moreover,
the ER is a measure of the configuration’s operational reliability and it was also highest for the TCT setup at
0.558, further validating its superior performance under shaded conditions.

5.2. During short-narrow (SN) shading conditions

The shaded areas of the column and row have lower irradiance levels of (600, 400) W/m?, while the
rest of the panel reaches a maximum of 900 W/m?, as shown in Figure 4(b). In accordance with this shading
pattern, the efficacy of various PV array configurations, including S-P, B-L, H-C, and the newly proposed
TCT, was comprehensively assessed in Table 2. The P-V characteristic curves illustrated in Figure 5 clearly
indicate that the TCT configuration yields the highest power output of 16,066 W, surpassing the outputs of S-
P (15,285 W), B-L (15,476 W), and H-C (15,438 W). This indicates a more effective energy harnessing
capacity even when parts of the array are shaded. The TCT layout also exhibits the lowest mismatch loss at
3,134 W, which is significantly less than those of the other configurations, showcasing its strength in
minimizing power losses due to non-uniform irradiance.

Correspondingly, the power loss percentage was lowest for the TCT configuration at 16.32%,
compared to 20.39% for S-P, 19.39% for B-L, and 19.59% for H-C which is indicating better energy
retention and reduced wastage. Furthermore, the ER, which gauges both effectiveness and operational
reliability, also peaked at 0.836 for the TCT configuration. This underscores its resilience and consistent
performance under challenging environmental conditions.
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5.3. During long-narrow (LN) shading conditions

The shading pattern uses four distinct irradiation profiles: (900, 700, 400, and 300) W/m?, as shown
in Figure 4(c). The TCT PV array setup exhibits the highest efficiency and reliability under this shading
pattern. As shown in Figure 6, TCT achieves a peak power output of 15,450 W, outperforming S-P at 14,572
W, B-L at 15,035 W, and H-C at 14,863 W. This indicates TCT’s superior capability to harness solar energy
in shaded conditions. Additionally, TCT has the lowest mismatch loss at 3,750 W, significantly better than S-
P (4,628 W), B-L (4,165 W), and HC (4,337 W). Lower mismatch loss translates directly to more consistent
and stable power generation under PS conditions. Furthermore, the TCT configuration has the highest FF of
0.804, indicating greater efficiency in converting available solar energy into usable electricity. It also shows
the lowest power loss percentage (19.53%), further affirming its effectiveness in reducing energy waste.
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Figure 6. PV characteristics under LN and center pattern

5.4. During center shading conditions

The shading area has a consistent irradiance of 900 W/m2 in the first and last two rows. The 3" and
6™ rows receive 600 W/m2 and 900 W/m?2, respectively, while the 4th and 5th rows experience 400 W/m?2 and
900 W/m2, as shown in Figure 4(d). The TCT PV array setup demonstrates the best performance under this
shading pattern, achieving a peak power output of 15,450 W, which exceeds S-P’s 14,572 W, B-L’s 15,035
W, and H-C’s 14,863 W. This indicates TCT’s superior capability to harness solar energy in shaded
conditions. Additionally, TCT has the lowest mismatch loss at 3,750 W, outperforming S-P (4,628 W), B-L
(4,165 W), and H-C (4,337 W). Lower mismatch loss results in more reliable power generation during PS.
The TCT setup boasts the highest FF of 0.804, indicating greater efficiency in converting solar energy to
electricity, along with the lowest power loss percentage of 19.53%, highlighting its effectiveness in reducing
energy waste.

6. CONCLUSION

The TCT method was introduced in this paper as a new strategy to boost PV array efficiency under
PS. Findings revealed that the TCT layout outperformed traditional configurations like S-P, B-L, and H-C in
power generation, mismatch loss, power loss percentage, FF, and ER. This highlights the TCT
configuration’s ability to ensure efficient energy output and reliability in fluctuating irradiance without the
need for complex adjustments or extra hardware. Future research may explore intelligent MPPT techniques,
real-time validation, and scalability assessments to enhance the practicality of TCT systems in larger solar
installations.
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