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Abstract 
One of the major problems in adaptive filtering is the problem of system identification. It has been 

studied extensively due to its immense practical importance in a variety of fields. The underlying goal is to 
identify the impulse response of an unknown system. This is accomplished by placing a known system in 
parallel and feeding both systems with the same input. Due to initial disparity in their impulse responses, 
an error is generated between their outputs. This error is set to tune the impulse response of known 
system in a way that every change in impulse response reduces the magnitude of prospective error. This 
process is repeated until the error becomes negligible and the responses of both systems match. To 
specifically minimize the error, numerous adaptive algorithms are available. They are noteworthy either for 
their low computational complexity or high convergence speed. Recently, a method, known as Markov 
Chain Monte Carlo (MCMC), has gained much attention due to its remarkably low computational 
complexity. But despite this colossal advantage, properties of MCMC method have not been investigated 
for adaptive system identification problem. This article bridges this gap by providing a complete treatment 
of MCMC method in the aforementioned context. 
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1. Introduction 

System identification is one of the most important problems in adaptive filtering. Over 
the past many years, it has been studied extensively in many areas of science and engineering, 
both in theoretical and applied contexts. For example, volumes of results in this area have been 
reported for echo cancellation in acoustics [1], for channel estimation in communications [2], for 
earth-sounding in geophysics [3], for robotics and control [4], etc. More and more sophisticated 
techniques are perpetually being reported in this area [5-11]. Therefore, its importance can be 
hardly over-emphasized.  

In system identification problem, the impulse response of an unknown system is 
identified by placing a discrete-time Finite Impulse Response (FIR) system in parallel with the 
unknown system and feeding both systems with same input. The difference between the 
outputs of two systems is regarded as error and the response of the FIR system is adjusted 
minimize the error. This process is repeated until the error in the outputs of both systems 
becomes negligible. When this happens, the impulse responses of both systems match. This, in 
very general terms, is the principle behind the system identification problem [12]. 

The principal task associated with system identification problem is minimization of the 
indicated error. One way to do it is to reduce average power of the error by forming its cost 
function. This is regarded as the principle of Minimum Mean Square Error (MMSE). Average 
power of the error, also known as mean squared error, is taken as the cost of selecting a 
particular impulse response for the FIR system. The response is selected in such a way that this 
cost is minimized over a set of all possible selections provided further reduction in cost is not 
possible. Hence, the system identification problem is transformed into an optimization problem 
[13].  

There are many iterative algorithms that can search the cost function for such an 
optimal impulse response. Least Mean Squares (LMS) algorithm, Normalized LMS (NLMS), and 
Recursive Least Squares (RLS) algorithm are very famous in this regard. The distinguishing 
points for any such algorithm are its computational complexity and speed of convergence. Both 
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are generally considered as tradeoffs. For example, LMS algorithm has very low computational 
complexity but is very slow to converge. RLS algorithm, on the contrary, has rapid convergence 
properties but is computationally intensive [12]. 

Recently, a very interesting method, known by the name of Markov Chain Monte Carlo 
(MCMC) method, has emerged in the computing literature for the solution linear algebraic 
equations [14]. Though the history of the MCMC method can be traced as far back as 1950s 
[15], it has gained much attention over recent years due to the availability of powerful computing 
devices. This method employs random number generators for the solution of practical problems 
where a closed form or analytical solution is not possible. However, this method has also been 
studied lately for conventional problems due to its very low computational complexity [16-19]. 

This feature also makes it an excellent choice for the study of system identification 
problem in adaptive filtering. So far as can be ascertained, MCMC method and its properties 
have not been investigated in this context. This article aims to fill this gap and, hence, provides 
a complete treatment of MCMC method for adaptive system identification problem. 
 
 
2. Nomenclature 

Consider the system identification problem depicted in Figure 1. 
 

 
 

Figure 1. Nomenclature for system identification problem 
 
 
Let there be a discrete-time Linear Time Invariant (LTI) system with a finite impulse response ࢎ 
of length ܰ. 

ࢎ   ൌ ሾ݄ ݄ଵ … ݄ேିଵሿ் (1)

 of equal length is placed ࢝ is unknown. To identify it, a Finite Impulse Response (FIR) filter ࢎ
parallel to the unknown system. 

࢝   ൌ ሾݓ ଵݓ … ேିଵሿ் (2)ݓ

 A Wide Sense Stationary (WSS) random sequence ࢞ is applied to the input of both systems.  

࢞   ൌ ሾݔ ଵݔ … ேିଵሿ் (3)ݔ

  .has following properties ࢞

ሽݔሼܧ   ൌ 0 (4)

And, 

ଶሽݔሼܧ   ൌ ௫ଶ (5)ߪ

 .It is generally normalized to unity .࢞ ௫ଶ is the power of the input sequenceߪ

௫ଶߪ   ൌ 1 (6)
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For the given input ࢞, the unknown system generates an output ࢞ࢀࢎ and the FIR filter generates 
an output ࢞ࢀ࢝. Former is termed as the desired input ݀.  

  ݀ ൌ (7) ࢞ࢀࢎ

Difference between the desired output and the filter output is termed as error ݁. 

  ݁ ൌ ݀ െ (8) ࢞ࢀ࢝

 
3. Derivation of Wiener-Hopf Equation 

Derivation of Wiener-Hopf Equation can be a two step process. In first step, a cost 
function of the error is formed by squaring it and then taking its expected value. 

ሼ݁ଶሽܧ   ൌ ݀ଶ െ ሽ݀࢞ሼܧࢀ࢝2  (9) ࢝ሽࢀ࢞࢞ሼܧࢀ࢝

Or, 

ߦ   ൌ ݀ଶ െ ࢈ࢀ࢝2  (10) ࢝ࡾࢀ࢝

-represents the cross 	.is the cost function. It represents the Mean Square Error (MSE) ߦ
correlation vector. 

࢈   ൌ ሾܾ ܾଵ … ܾேିଵሿ் (11)

 .is the auto-correlation matrix ࡾ

ࡾ   ൌ ൦

ݎ ଵݎ … ሺேିଵሻݎ
ଵݎ ଵଵݎ … ଵሺேିଵሻݎ
⋮ ⋮ ⋱ ⋮

ሺேିଵሻݎ ሺேିଵሻଵݎ … ሺேିଵሻሺேିଵሻݎ

൪ (12)

Since ࢞ is WSS, ࡾ is a symmetric Toeplitz matrix [13].  

ݎ   ൌ ି (13)ݎ

And, 

ିݎ   ൌ ି (14)ݎ

So, 

ࡾ   ൌ ൦

ݎ ଵݎ … ሺேିଵሻݎ
ଵݎ ݎ … ሺேିଶሻݎ
⋮ ⋮ ⋱ ⋮

ሺேିଵሻݎ ሺேିଶሻݎ … ݎ

൪ (15)

In second step, the cost function in Eq. (10) is minimized by taking its gradient with respect to ࢝ 
and then setting the gradient to zero. 

  0 ൌ െ2࢈  (16) ࢝ࡾ2

Or, 

࢝ࡾ   ൌ (17) ࢈
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Equation (17) represents the famous Weiner-Hopf Equation. ࢝ is known as the Minimum MSE 
(MMSE) Wiener Filter. 
 
 
4. Markov Chain Monte Carlo Solution of the Wiener-Hopf Equation 

In Equation (16), ࡾ matrix can be split as, 

ࡾ   ൌ ࡵ െ (18) ࡲ

So that, 

  ሺࡵ െ ࢝ሻࡲ ൌ (19) ࢈

Or, 

࢝   ൌ ሺࡵ െ (20) ࢈ሻିࡲ

But, 

  ሺࡵ െ ሻିࡲ ൌ ࡵ  ࡲ  ࡲ ⋯ (21)

Substituting Equation (21) in Equation (20), 

࢝   ൌ ሺࡵ  ࡲ  ࡲ ⋯ሻ(22) ࢈

Expanding Equation (22), 

࢝   ൌ ࢈  ࢈ࡲ  ࢈ࡲ ⋯ (23)

Further expanding the ࡲ matrix in Equation (22), 

ࡲ   ൌ

ۏ
ێ
ێ
ۍ ݂ ݂ଵ … ݂ሺேିଵሻ

ଵ݂ ଵ݂ଵ … ଵ݂ሺேିଵሻ

⋮ ⋮ ⋱ ⋮
ሺ݂ேିଵሻ ሺ݂ேିଵሻଵ … ሺ݂ேିଵሻሺேିଵሻے

ۑ
ۑ
ې
 (24)

Using Equation (24), (2) and (11) to expand Equation (22), 

 ൦

ݓ
ଵݓ
⋮

ேିଵݓ

൪ ൌ ൦

ܾ
ܾଵ
⋮

ܾேିଵ

൪ 

ۏ
ێ
ێ
ۍ ݂ ݂ଵ … ݂ሺேିଵሻ

ଵ݂ ଵ݂ଵ … ଵ݂ሺேିଵሻ

⋮ ⋮ ⋱ ⋮
ሺ݂ேିଵሻ ሺ݂ேିଵሻଵ … ሺ݂ேିଵሻሺேିଵሻے

ۑ
ۑ
ې
൦

ܾ
ܾଵ
⋮

ܾேିଵ

൪  ⋯ (25)

Picking the ݅-th unknown in Equation (24), 

ݓ   ൌ ܾ  ∑ ݂ܾ
ேିଵ
ୀ  ∑ ∑ ݂ ݂ܾ

ேିଵ
ୀ

ேିଵ
ୀ ⋯ (26)

Splitting ݂’s in Equation (26), 

  ݂ ൌ  (27)ݒ

Where ݒ ∈ Թ and, 
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  0    1 (28)

 ,’s represent probabilities. Substituting Equation (27) in Equation (26)

ݓ   ൌ ܾ  ∑ ܾݒ
ேିଵ
ୀ  ∑ ∑ ܾݒݒ

ேିଵ
ୀ

ேିଵ
ୀ  ⋯ (29)

Or, 

ݓ   ൌ lim→∞  (30)ݏ

 ଶ comes fromݏ ,ࡵ	ଵ term comes from the ݅-th row ofݏ . represents the sum of first ݉ termsݏ
the ݅-th rows of ࡵ and ݏ ,ࡲଷ comes from the ݅-th rows of ࡵ, ,ࡲ    . and so onࡲ
 
4.1. Analysis of the Infinite Sum 

Decomposing the ݏଵ term, 

ଵݏ   ൌ ܾ (31)

 ଵ is equal to the ݅-th value of the right-hand side in Eq. (17). We remember it as the startingݏ
position. Decomposing the ݏଶ term, 

ଶݏ   ൌ ܾ  ܾݒ  ଵܾଵݒଵ  ⋯ ሺேିଵሻܾேିଵ (32)ݒሺேିଵሻ

Let, 

   ൌ
ଵ

ே
 (33)

With ݆ ൌ 0, 1, ܰ െ 1. Substituting Equation (33) in Equation (32), 

ଶݏ   ൌ ܾ 
ଵ

ே
ܾݒ 

ଵ

ே
ଵܾଵݒ  ⋯

ଵ

ே
ሺேିଵሻܾேିଵ (34)ݒ

Re-arranging Equation (34), 

ଶݏ   ൌ ൫ܾܰ  ܾݒ  ଵܾଵݒ  ⋯ ሺேିଵሻܾேିଵ൯ݒ ܰ⁄  (35)

 ଶ term appears to be an average. To analyze it further, we move the ܰ in the denominator ofݏ
Equation (35) to left. 

ଶݏܰ   ൌ ܾܰ  ܾݒ  ଵܾଵݒ  ⋯ ሺேିଵሻܾேିଵ (36)ݒ

Decomposing Equation (36) into ܰ equations, 

 

ଶݏ  ൌ ܾ   ܾݒ
ଶݏ  ൌ ܾ   ଵܾଵݒ
 ⋮ 
ଶݏ  ൌ ܾ   ሺேିଵሻܾேିଵݒ

(37)

These ܰ equations represent ܰ one-step random walks taken by the ݅-th particle. In first 
equation for example, the particle starts from state-݅ (characterized by ܾ), moves to state-0 
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(characterized by ܾ), and then comes to a halt. There are ܰ one-step terminating points ݒܾ. 
Hence,  ݏଵ is an average of ܰ one-step random walks of the ݅-th particle to ܰ one-step 
terminating points ݒܾ when it starts from state-݅. In the light of this discussion, we analyze the 
term ݏଷ. 

ଷݏ   ൌ ଶݏ  ∑ ∑ ܾݒݒ
ேିଵ
ୀ

ேିଵ
ୀ  (38)

Let, 

   ൌ  ൌ
ଵ

ே
 (39)

For ∀	݆, ݇. Substituting Equation (39) in Equation (38), 

ଷݏ   ൌ ଶݏ  ∑ ∑ ଵ

ேమ
ܾݒݒ

ேିଵ
ୀ

ேିଵ
ୀ  (40)

 ଶ. This extra termݏ ଷ contains an additional double summation term when compared toݏ
represents two-step random walks of the ݅-th particle to two-step terminating points ݒݒܾ 
before it comes to a halt. There will be ܰଶ such random walks. Hence, ݏଷ is an average of ܰଶ 
two-step random walks of the ݅-th particle to ܰଶ two-step terminating points ݒݒܾ when it 
starts from state-݅. We can show in a similar way that ݏସ is an average of ܰଷ three-step random 
walks to ܰଷ three-step terminating points ݒݒݒܾ. Continuing in a similar manner, ݏ is an 
average of ܰିଵ ሺ݉ െ 1ሻ-step random walks to ܰିଵ terminating points. 
 
4.2. Random Walks with Arbitrary Probabilities 

In Equation (32), we assumed, 

  ൌ
1
ܰ

 (Repeat)

With ݇ ൌ 0, 1, … , ܰ െ 1. This means when a particle is in state-݅, it is equally likely to transit to 
any of the ܰ one-step terminating points with a probability 1/ܰ. This implies that ܰ one-step 
terminating points will be covered in at least ܰ random walks, ܰଶ two-step terminating points will 
be covered in at least ܰଶ random walks, ܰଷ three-step terminating points will be covered in at 
least ܰଷ random walks, and so on. But if the probabilities are not equally likely, this will not be 
the case. We will have to define another variable ܯሺሻ to indicate the number of minimum 
random walks that will at least be required to cover ݅-step terminating points. In one-step 
terminating points, ܯሺଵሻ will be inversely proportional to the smallest transition probability among 
all the one-step transition probabilities from state-݅ to all one-step terminating points. This 
probability is then rounded off upwards to the nearest possible integer. 

ሺଵሻܯ   ൌ ቔ
ଵ

୫୧୬∀ ೖ ೖ
ቕ (41)

With ݇ ൌ 0, 1, … , ܰ െ 1. Equation (41) means that ݇-th one-step terminating point with the 
smallest transition probability  will be covered in at least 1/ random walks. Similarly, ܯሺଶሻ 
will be equal to the smallest transition probability, rounded upwards to the nearest possible 
integer, among all the two-step transition probabilities from state-݅ to all two-step terminating 
points. 

ሺଶሻܯ   ൌ ඌ
ଵ

୫୧୬∀	ೕ,ೖ ೕೕೖ
ඐ (42)
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With ݆, ݇ ൌ 0, 1, … , ܰ െ 1. Similarly, ܯሺሻ can be written as, 

ሺሻܯ   ൌ ඌ
ଵ

୫୧୬∀	ೕ,,…,ೖ ೕೕ…ೖ
ඐ (43)

With ݆, ݄, … , ݈, ,ݍ ݇ ൌ 0, 1, … ,ܰ െ 1. 
 
5. Analysis of Convergence 

Our entire analysis started from Equation (21) which represents an infinite matrix series. 

ࡵ    ࡲ  ࡲ ⋯ ൌ ∑ ∞ࡲ
ୀ ൌ ∑∞→ܕܑܔ ࡲ

ୀ ൌ (44) ࢁ∞→ܕܑܔ

Where, 

ࢁ   ൌ ∑ ࡲ
ୀ  (45)

Let there be a solution ࢁ to which ࢁ will converge in limit 

ࢁ   ൌ (46) ࢁ∞→ܕܑܔ

But, 

ࢁ   ൌ ∑ ିࡲ
ୀ  ࡲ ൌ ିࢁ  (47) ࡲ

Or, 

ࡲ   ൌ ࢁ െ  (48)ିࢁ

Applying the limit, 

∞→ܕܑܔ   ࡲ ൌ ࢁ∞→ܕܑܔ െ ିࢁ∞→ܕܑܔ ൌ ࢁ െ ࢁ ൌ  (49)

Or, 

∞→ܕܑܔ   ࡲ ൌ  (50)

Equation (50) implies that, 

‖ࡲ‖   ൏ 1 (51)

Therefore, a canonical norm of ࡲ matrix should be less than unity for the convergence of the 
MCMC method to a unique solution. Presence of a unique solution will in turn guarantee the 
stability of the method by Lax’s Theorem [20]. 
 
6. Limitations of the Method  

Equation (51) imposes a restriction on	ࡲ matrix. One way to analyze this restriction is to 
look at the eigenvalues of ࡲ matrix. They should lie inside the following interval to meet this 
restriction. 

  െ1 ൏ ߣ
ࡲ ൏ 1 (52)



TELKOMNIKA  ISSN: 2302-4046  

Adaptive System Identification using Markov Chain Monte Carlo (Muhammad Ali Raza Anjum) 

131

Complex eigenvalues can equally meet the condition described in Equation (52). But we 
will focus our attention on real eigenvalues because ࡲ has real eigenvalues. It is related to ࡾ 
matrix by Equation (17). As ࡾ is a symmetric matrix [13], it will have real eigenvalues by 
fundamental theorem of linear algebra [21]. Hence, ࡲ will also be a symmetric matrix with real 
eigenvalues. By the relation described by Equation (17), condition on eigenvalues of ࡲ matrix 
translates directly to the following condition on eigenvalues of ࡾ matrix. 

  0 ൏ ߣ
ࡾ ൏ 2 (53)

Equation (53) means that all eigenvalues of ࡾ should be real, positive, and inside the 
interval ሾ0,2ሿ. For ࡾ matrix, first two conditions hold automatically. ࡾ is a symmetric matrix so its 
eigenvalues are real. ࡾ is positive definite so all its eigenvalues are positive [13]. Finally, to 
prove that ࡾ meets the third constraint as well, we employ Gershgorin’s theorem [22]. This 
theorem states that ݅-th eigenvalue of a matrix  ൌ ሼܽሽ lies inside a circle, 

,൫ܽܥ   ∑ หܽหஷ ൯ (54)

Such that ܽ is the centre and ∑ หܽหஷ  is the radius of corresponding circle. There will be ܰ 
such circles for an ܰ ൈ ܰ matrix. Since  ࡾ is a finite symmetric Toeplitz matrix, all the 
Gershgorin’s circles will overlap such that, 

,ݎሺܥ   ∑ |ݎ|
ேିଵ
ୀଵ ሻ (55)

  is its valueݎ .࢞  represents the autocorrelation sequence of the input random processݎ
at zero delay. This is equivalent to the energy of the random process ࢞ which can be normalized 
to unity. So the Gershgorin’s circles for ࡾ will be centered at unity. As to the remaining values of 
 , its monotonically decreasing nature will ensure that the remaining values lie inside a certainݎ
region [23]. For convergence, this region must be bounded by Eq. (55). For example, if the 
samples of ࢞ are independent and identically distributed (IID) with zero mean and unity 
variance, then, 

ൟݎݎ൛ܧ   ൌ ൜
1	 											݅ ൌ ݆
0 										݅ ് ݆  (56)

There will be ܰ overlapping Gershgorin’s circles ܥሺ1,0ሻ. These will essentially be ܰ 
points centered at 1. So, there will be ܰ  eigenvalues equal to 1. This is true because by 
Equation (17), ࡾ will be equivalent to an identity matrix which has all eigenvalues equal to 1. In 
this case, the starting positions of the ܰ-particles, which are represented by ࢈, will be the 
solution to the system identification problem.  

࢝   ൌ (57) ࢈

This once again is true because when ࡾ is an identity matrix, ࢝ ൌ  .࢈
 
 
7. Analysis of Error 

We begin with the infinite series described by Equation (30). 

ݓ   ൌ lim→∞  (Repeat)ݏ

For ݉ ൌ   . will be equal to the first term in the infinite seriesݓ ,1

ݓ   ൌ ଵݏ ൌ ܾ (Repeat)
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This will be the starting value of the particle. So error in the estimate at the beginning of 
the random walk will be equal to, 

  ݁ ൌ ݓ െ ଵݏ ൌ lim→∞ ݏ െ ଵ (58)ݏ

0 indicates that no random walks have been initiated yet. For ݉ ൌ   will be equal to the sumݓ ,2
of first two term in the infinite series.  

ݓ   ൌ ଶݏ ൌ ܾ  ∑ ܾݒ
ேିଵ
ୀ  (Repeat)

This represents all one-step terminating points. A minimum of ܯሺଵሻ random walks will be 
required to cover all these points. So the error after ܯሺଵሻ random walks will be, 

  ݁ெሺభሻ  lim→∞ ݏ െ ଶ (59)ݏ

For ݉ ൌ 3, 

ݓ   ൌ ଷݏ ൌ ܾ  ∑ ܾݒ
ேିଵ
ୀ  ∑ ∑ ܾݒݒ

ேିଵ
ୀ

ேିଵ
ୀ  (Repeat)

This represents all two-step terminating points. A minimum of ܯሺଶሻ random walks will be 
required to cover all these points. So the error after ܯሺଶሻ random walks will be, 

  ݁ெሺమሻ  lim→∞ ݏ െ ଷ (60)ݏ

Similarly, the error after ܯሺሻ random walks will be, 

 ݁ெሺೕሻ  lim
→∞

ݏ െ  (61)ݏ

݁ெሺೕሻ represents the lower bound on error. In general, the error in the estimate after ܯሺሻ 
random walks will be greater than ݁ெሺೕሻ. This is due to the law of large numbers which dictates 
that ܯሺሻ → ∞ for the equality to hold in Equation (61). Also, 

  ݁  ݁ெሺభሻ  ݁ெሺమሻ …  ݁ெሺೕሻ (62)

When ݆ → ∞, 

  ݁ெሺ∞ሻ ൌ lim→∞ ݏ െ lim→∞ ݏ ൌ 0 (63)

Hence, infinite random walks will be required to take the error in the estimate equal to zero.  
 
 
8. Construction of Algorithm 

In this section, we focus our attention on the construction of an algorithm to compute an 
iterative MCMC solution to Wiener-Hopf Equation. 
 
8.1. The Matter of Absorbing State 

From an algorithmic viewpoint, there is one essential point to consider. For that 
purpose, let us analyze the second random walk in Equation (37). The particle starts from state-
݅, moves to state-1 in next step and then the random walk suddenly comes to an end. So in 
addition to the existing ܰ states, there must be another state, a no-return state. We term this 
extra state as the absorbing state. A particle cannot return from absorbing state. 
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  ∑ ே
ேିଵ
ୀଵ ൌ 0 (64)

And once the particle encounters the absorbing state, it stays there. 

ேே   ൌ 1 (65)

Hence for a single unknown, there are a total of ሺܰ  1ሻ states. Associated with these states are 
ሺܰ  1ሻ state transition probabilities.  
 
8.2. Formation of the State Transition Matrix 

Each unknown has ܰ  1 state transition probabilities associated with it. As there are ܰ 
unknowns in the system, we can construct an ܰ ൈ ሺܰ  1ሻ state transition matrix ࡼ. 

ࡼ   ൌ ൦

 ଵ … ሺேିଵሻ ே
ଵ ଵଵ ଵଶ ଵሺேିଵሻ ଵே
⋮ ⋮ ⋮ ⋮ ⋮

ሺேିଵሻ ሺேିଵሻଵ … ሺேିଵሻሺேିଵሻ ሺேିଵሻே

൪ (66)

Probabilities associated with absorbing state are called absorption probabilities, i.e., 
݅	∀	ே ൌ 0,1, … , ܰ െ 1. We add an extra row to ࡼ in order to meet the conditions laid down in 
Equation (64) and (65) for the absorbing state. 

ࡼ   ൌ

ۏ
ێ
ێ
ێ
ۍ
 ଵ … ሺேିଵሻ ே
ଵ ଵଵ ଵଶ ଵሺேିଵሻ ଵே
⋮ ⋮ ⋮ ⋮ ⋮

ሺேିଵሻ ሺேିଵሻଵ … ሺேିଵሻሺேିଵሻ ሺேିଵሻே
0 0 0 0 1 ے

ۑ
ۑ
ۑ
ې

 (67)

The dimensions of the ࡼ matrix now change to ሺܰ  1ሻ ൈ ሺܰ  1ሻ. The absorption 
probabilities will not be available directly. In order to obtain them, we should ensure during 
splitting process in Equation (27) that, 

  ∑ 
ேିଵ
ୀ ൏ 1 (68)

∀	݅ ൌ 0,1, … , ܰ െ 1. By fundamental theorem of probability [24], 

  ∑ 
ே
ୀ ൌ 1 (69)

From Equation (69), absorption probabilities can be computed in the following manner. 

ே   ൌ 1 െ ∑ 
ேିଵ
ୀ  (70)

∀	݅ ൌ 0,1, … , ܰ െ 1. 
 
8.3. Formation of State Transition Rules 

Once the state transition matrix is complete, state transition rules for the ݅-th unknown 
  . can be defined according to Table 1ݓ

 
 
 
 
 
 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 13, No. 1, January 2015 :  124 – 136 

134

Table 1. State transition rules for ݅-th unknown 
Probability value State 

 ൏   State-0

   ൏ ሺ   ଵሻ State-1

⋮ ⋮ 



ேିଵ

ୀ

  ܰ-State 

 
 
 .is a random number drawn from a uniform distribution over the interval ሾ0,1ሿ 
 
8.4. Algorithm 

Now we present an iterative algorithm to compute an arbitrary unknown according to 
MCMC method.  

1) Split ࡾ into ሺࡵ െ  .ሻ according to Eq. (18)ࡲ
2) Split ݂’s according to Eq. (27). 
3) Form the state transition matrix ࡼ according to Eqs. (66)-(70). 
4) Select the unknown to be computed. 
5) Define the state transition rules for that unknown according to Table 1. 
6) Start random walks by drawing random numbers from a uniform probability 

distribution over ሾ0,1ሿ.  
7) Follow state transition rules to assign values to the unknown according to Table 1. 
8) Return to step six and keep iterating until a given number of iterations is met. 
9) Compute the average of all the random walks.  
The average will provide the estimated value of the selected unknown. Similar 

procedure can be repeated to compute the estimates of remaining unknowns. 
 
 
9. Computational Complexity of the Algorithm 

In this section, we analyze the computational complexity of the algorithm. One way to 
measure the computational complexity of an iterative algorithm is to compute the number of 
multiplications required by the algorithm in a single iteration [2]. The MCMC algorithm requires 
one multiplication per iteration for the computation of a single unknown, .i.e., multiplication of ܾ’s 
with ݒ’s as indicated by Equation (27) and (29). Since the algorithm is iterative, the multiplication 
of ܾ’s with ݒ’s in each step will be carried on to the next step. The next step will again require a 
single similar multiplication and so on. To compute all the ܰ unknowns in the unknown vector ࢝, 
ܰ multiplications per iteration will be required. Hence, the order of complexity of the algorithm is 
proportional to ܰ. Table 1 compares the computational complexity of the MCMC algorithm with 
state of the art algorithms available in literature for iterative solution of Wiener-Hopf equation 
[12]. As can be observed from the table, MCMC algorithm has the lowest computation 
complexity among all its competitors.  

 
 

Table 2. Comparison of the computational complexity of the Monte Carlo algorithm 

Algorithm Complexity 

MCMC ܰ 
LMS 2ܰ  1 

NLMS 3ܯ  2 
Kaczmarz 3ܯ  2 

RLS ܰଶ 
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10. Simulation Results and Conclusion 
Now we present the simulation results of the MCMC algorithm and compare them with 

the results obtained for LMS, NLMS, and RLS algorithms [13]. For this purpose, a two tap 
system identification problem is selected with a moving average input of first order, i.e., MA(1) 
[23]. In this case, ܰ will be equal to 2. There will be two unknowns, two transient states and one 
absorbing state for this problem. This will lead to a 3 ൈ 3 probability transition matrix with two 
tables of transition rules defined for the two unknowns according to Table 1. Following these 
transition rules, the MCMC algorithm is run for a certain number iterations to generate the 
simulation results in terms of second norm of the error in the estimate. These results are 
summarized in Table 3 for comparison with LMS, NLMS, and RLS algorithms. According to 
Table 3, the MCMC algorithm yields much lower error than LMS algorithm but much higher error 
than NLMS and RLS algorithms for a give number of iterations. This indicates that the MCMC 
algorithm has faster convergence than the LMS algorithm but relatively slower convergence 
than the NLMS and RLS algorithms. This has been expected from error analysis in section 7. 
The slow convergence of the MCMC algorithm can be attributed to its heavy dependence on the 
averaging process inherent to the method. Such a process should be repeated a large number 
of times before it converges to an analytical solution according to the law of large numbers [24]. 
However, this tardiness in the convergence of MCMC method is offset by its nominal 
computational complexity. Hence, the MCMC method can be recommended for practical 
situations where a rough estimate of the unknown system is desired due to limited power or 
computing resources. 

 
 

Table 3. Comparison of simulation results 

Iterations 
MCMC 

LMS 
ࣆ ൌ .  

NLMS RLS 

 ‖ࢋ‖ ‖ࢋ‖ ‖ࢋ‖ ‖ࢋ‖
02 0.0839 1.3424 0.5000 0.5000 
04 0.0768 1.3402 0.2023 0.0549 
08 0.0596 1.2761 0.0607 9.4485e-004 
16 0.0613 1.2461 3.3428e-004 5.6911e-009 
32 0.0558 1.1123 9.6127e-013 1.6012e-015 
64 0.0576 0.9160 0 0 
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