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 Blockchain technology allows decentralized cryptocurrencies to change 
digital finances by providing secure, pseudonymous transactions to users. 
Since blockchain ledgers operate in a public environment, users can face 
potential privacy risks due to the exposure of their transaction patterns. 
Conventional cryptocurrency systems use block generation for transaction 
confirmation, yet this process produces latency and impacts the real-time 
efficiency of transactions. This paper develops a proxy-assisted 

cryptocurrency payment system that employs blind signature principles to 
achieve better system privacy and enhanced speed. The core functionality of 
this proposed system aims to protect transaction secrecy as it speeds up 
confirmation processes. A proxy node handles transaction requests through 
blind signature protocols that guarantee data confidentiality as part of the 
methodology. The proposed system utilizes deep learning tools, which 
include recurrent neural networks (RNN), graph neural networks (GNN), 
and reinforcement learning (RL) to forecast confirmation results, identify 

scams, and control proxy functions dynamically. Research indicates that the 
introduced method substantially boosts privacy features, decreases 
transaction latencies, and enhances the security of all transactions by 
providing an encouraging roadmap for secure cryptocurrency systems that 
preserve privacy. 
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1. INTRODUCTION 

Cryptocurrency, a product of the rapid advancement of modern computer communication 

technology, represents the evolution of money as a means of payment. Cryptocurrencies leverage 

cryptographic techniques to ensure the security and efficiency of digital currencies, greatly enhancing 

convenience in people's daily lives. Among the various forms of cryptocurrencies, those based on blockchain 

technology have become the most popular. The implementation of lightweight simplified payment 
verification (SPV) clients [1], [2] makes these decentralized cryptocurrencies even more practical. 

Decentralized cryptocurrencies were proposed in 2015 [3] and saw their first transaction in May 2014 [2]. 

The decentralized nature of these cryptocurrencies means that their issuance and transactions do not rely on 

any central financial authority but instead follow a peer-to-peer model. They use a public ledger, or 

blockchain, to record transactions, which prevents double-spending, while currency issuance is managed 

through network nodes' computations. This approach provides cryptocurrencies with good monetary 

performance, similar to gold, and fundamentally addresses inflation issues. The blockchain is maintained by 

https://creativecommons.org/licenses/by-sa/4.0/
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anonymous participants, known as miners, who sustain and extend the blockchain by executing a consensus 

protocol. The protocol's execution involves creating new blocks, a process that requires miners to solve 

complex mathematical problems known as proof of work (PoW). Each time a miner generates a new block, 

they receive a reward, which results in the creation of new currency. The blockchain system automatically 

adjusts the difficulty of these mathematical problems to ensure that a new block is generated approximately 

every 10 minutes, containing legitimate transaction information verified by the miners. Once a transaction is 

published on the blockchain and k additional blocks are generated thereafter, it is considered valid [4], 
effectively preventing an attacker from engaging in double-spending [5]. Specifically, if an attacker attempts 

to alter a transaction record, they must recalculate the solution to the mathematical problem for the affected 

block. Furthermore, any change in the hash value of this block would necessitate recalculating the solutions 

for all subsequent blocks. To have the tampered chain accepted by most miners, the attacker must generate a 

chain at least as long as the legitimate chain, which would require at least 51% of the network's 

computational power [6]. As k increases, the probability of a successful double-spend attack decreases 

exponentially. Generally, a transaction is considered valid when k = 6 [3]. 

While secure, blockchain technology introduces inherent transaction delays due to its structural 

properties. To validate a payment securely, at least six blocks must be generated, resulting in a minimum 

confirmation time of about one hour, as each block requires approximately 10 minutes to be created. This 

delay is significant for users seeking faster transactions. Additionally, using blockchain as a public ledger, 

while beneficial for transparency, raises privacy concerns. Although users operate under pseudonyms, with 
public key accounts not directly tied to personal identities, this pseudonymity is limited. An attacker could 

trace users' IP addresses or analyze transaction patterns and network topology on the blockchain to infer 

identities, potentially compromising user privacy (as noted in sources [7]-[9]). As blockchain networks grow, 

so does the amount of publicly accessible transaction data, making de-anonymization and privacy risks even 

greater. To address these challenges, this paper proposes introducing a proxy as an intermediary for 

cryptocurrency payments, a solution that not only mitigates transaction delays but also strengthens privacy. 

The proxy acts as a trusted intermediary with its own public key address, significantly reducing transaction 

confirmation times by facilitating faster exchanges. Furthermore, privacy is reinforced through the use of 

partially blind signature algorithms and one-time public key addresses, which protect user identities by making 

it harder to trace transactions back to individuals. This proxy-based model is designed to seamlessly integrate 

with existing blockchain protocols, preserving full compatibility while enhancing user privacy and efficiency. 
The approach leverages the proxy to handle payment processing without altering the underlying blockchain 

protocol, offering a practical solution that maintains the blockchain's integrity and security features. 

Integrating deep learning algorithms can greatly improve the overall effectiveness of this approach 

by providing enhanced capabilities for detecting privacy breaches and fraudulent activities through advanced 

data analysis. Deep learning models can process blockchain data more efficiently, identifying complex 

patterns that might indicate potential security risks. Specifically, recurrent neural networks (RNNs) and graph 

neural networks (GNNs) are well-suited for analyzing sequential and relational data, respectively. These 

models can track transaction patterns, identify irregular behaviors, and even predict anomalous activities, as 

demonstrated by Johnson et al. [10]. Additionally, reinforcement learning techniques can be applied to 

optimize the proxy mechanism dynamically, adjusting parameters in real time to improve both transaction 

speed and security. This approach is supported by research from Hu et al. [11], which highlights the potential 
of reinforcement learning to make systems more adaptive and responsive. By integrating deep learning and 

reinforcement learning with the proposed proxy-based model, the cryptocurrency payment system could 

become significantly more secure, efficient, and privacy-preserving. This combination of advanced 

technologies 

 

 

2. BACKGROUND KNOWLEDGE 

2.1.  Fundamental principles 

In this section, we lay the groundwork for understanding the fundamental principles crucial to the 

topic. We begin by exploring the essential concepts, terminologies, and frameworks that underpin this area of 

study, establishing a basis for the methodologies and systems analyzed in the following sections. These 

foundational principles are central to developing and evaluating effective solutions within the field.  
Cryptocurrencies that rely on blockchain technology involve three primary components: transaction 

construction, consensus protocols, and a communication network. Each of these components plays a critical 

role in ensuring the security, efficiency, and scalability of cryptocurrency systems, and each leverages 

cryptographic algorithms and, increasingly, advanced techniques like deep learning algorithms.  

Transaction construction: Transaction construction employs cryptographic algorithms such as the 

elliptic curve digital signature algorithm (ECDSA) and SHA-256. Each transaction comprises inputs, outputs, 
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and related parameters. The input is the public key address of the sender, while the output is the public key 

address of the recipient (which is essentially a hashed value of the public key). The amount of currency in the 

input must be greater than or equal to the amount in the output; the difference is considered the transaction 

fee, which is awarded to the miner. The signature in the transaction is created by the sender using their 

private key, which serves as one of the bases for verifying the legality of the transaction.  For instance,  

Figure 1 illustrates a basic transaction structure. On the left side, transaction A represents the payment 
address, while B and C are the recipient addresses, with σA being the signature of A's owner. On the right 

side, B serves as both a payment and a recipient address, D is a recipient address, and σB represents B's 

owner's signature. 

 

 

 
 

Figure 1. Transaction structure 

 

 

Consensus protocol: In blockchain systems, the consensus protocol is a fundamental set of rules that 
miners follow to validate, maintain, and extend the blockchain. The process begins when network nodes 

create and broadcast transactions, which miners then collect and verify for authenticity. This verification 

includes checking the correctness of digital signatures, ensuring that transaction input addresses are 

legitimate, and confirming that the currency amounts are valid. Once validated, miners assemble these 

verified transactions into a data block, creating what is known as a candidate block. To secure the candidate 

block, miners undertake extensive computational work to solve a cryptographic puzzle, typically by 

calculating a specific hash function to find the correct "Nonce" value. Once a miner successfully discovers 

this Nonce value, the candidate block is broadcast to the entire network for validation. Other miners then 

examine the block’s Nonce and related data to confirm its validity. If verified, the block is accepted and 

added to the blockchain as the latest link in the chain, becoming the "parent" block for subsequent candidate 

blocks. This decentralized verification and extension of the blockchain by miners ensures both the integrity 

and security of blockchain records. 
Communication network: In blockchain systems, both transactions and blocks are broadcast through 

a decentralized, peer-to-peer (P2P) communication network. This network consists of equal-status nodes 

operating without a central authority, and it employs a randomized network topology to distribute data evenly 

across nodes. At the core of the network's communication strategy is a flooding algorithm, which allows each 

node to relay messages to its peers. This process enables all nodes to receive updates within seconds, 

ensuring that the blockchain remains synchronized and resilient. The efficiency and security of this 

communication network can be significantly enhanced by incorporating advanced deep-learning techniques. 

For example, reinforcement learning algorithms have shown potential in optimizing consensus protocols. By 

dynamically adjusting network parameters and node behaviors, reinforcement learning can help minimize 

latency and improve the reliability of consensus processes, as evidenced in studies such as those by [1] and 

[12]. Similarly, adversarial learning has proven effective in detecting and mitigating threats from malicious 
nodes. By identifying suspicious activity patterns or irregular network behaviors, adversarial learning 

algorithms help strengthen network defenses against attacks, as demonstrated in the research by [3] and [13]. 

Integrating these machine learning approaches into the blockchain’s communication network enables nodes 

to not only react to potential threats but also adapt to them proactively. Consequently, this synergy between 

decentralized network architecture and deep learning algorithms creates a robust framework that supports 
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more efficient, secure, and resilient blockchain operations, ultimately enhancing the performance and 

trustworthiness of the entire ecosystem. 

 

2.2.  Elliptic curve digital signature algorithm (ECDSA) 

The elliptic curve digital signature algorithm (ECDSA) is a cryptographic algorithm employed to 

ensure the integrity and authenticity of transactions in blockchain networks. ECDSA involves four crucial 

steps: parameter generation, key generation, signature generation, and signature verification. In the 
blockchain context, the ECDSA typically utilizes the secp256k1 elliptic curve, known for its efficiency and 

security, with specific parameters detailed in [12]. During the parameter generation phase, elliptic curve 

parameters are established, including the curve's base point and modulus, ensuring the cryptographic 

operations are robust and secure. The key generation process involves selecting a private key from a 

predefined set of integers, which is then used to generate the corresponding public key through elliptic curve 

point multiplication. In the signature generation step, a user signs a transaction by applying their private key 

to a cryptographic hash of the transaction data, producing a digital signature composed of two values, 'r' and 

's.' Finally, during signature verification, the recipient uses the sender’s public key to confirm the validity of 

the signature by performing elliptic curve calculations that validate the authenticity of the transaction. This 

process ensures that transactions are secure, verifiable, and resistant to tampering, making ECDSA a 

foundational element in blockchain security protocols. 

The setup begins with generating system parameters, yielding public parameters (𝑞, 𝑝, 𝐹𝑞 , 𝑎, 𝑏, 𝐺, 𝑛), 

where a and b define the elliptic curve, 𝐹𝑞 is the finite field, 𝐺 the base point, and 𝑛 the order of𝐺.. In 

Key𝐺𝑒𝑛(𝑑, 𝑝𝑝), a random integer 𝑑 ∈  [1, 𝑛 −  1] is selected to compute𝑄 =  𝑑𝐺, where Q is the public key 

and d is the private key, producing a public-private key pair using the public parameters pp and integer d. 

𝑆𝑖𝑔(𝑑, 𝑚), the signature generation algorithm uses the private key d and message m as inputs to output a 

signature for the message m. The Verify(𝑄, 𝑆𝑖𝑔(𝑑, 𝑚)) algorithm then takes the public key Q and the 

signature of m as inputs, outputs 1 if the signature is valid and 0 if not. 

 

2.3.  Partial blind signature algorithm 

The partial blind signature algorithm [13] consists of four main algorithms: system generation, key 
generation, signature issuance, and signature verification. The signature issuance algorithm, in particular, 

involves four steps: message blinding, consensus message generation, signing, and unblinding. It is an 

interactive protocol between the message owner and the signer. The steps and symbols for the signature 

issuance and verification algorithms are as follows: 

𝐵𝑙𝑖𝑛𝑑(𝑚), is the message blinding algorithm. It takes a message m to be signed as input and 

produce a blinded message 𝑚∗ as output. This blinding process ensures that the signer cannot see the original 

message, preserving the privacy of the content being signed. 

𝜏(𝑐) refers to the consensus message generation algorithm. This consensus message generation 

algorithm is denoted as 𝜏(𝑐), plays a crucial role in ensuring that participants in a network reach an 
agreement on a particular transaction or data. It takes as input a parameter, c, which can represent transaction 

details or other consensus-related information that needs to be validated within the system. Once the 

algorithm processes the input, it outputs a consensus message, 𝜏(𝑐), which signifies that the signer has 

confirmed their agreement with the content and context of the message. This process is essential for 

maintaining consistency and trust across decentralized systems or networks. By ensuring that all participants 

are in agreement, the algorithm facilitates secure and reliable transactions in blockchain and distributed 

ledger systems. 

𝐵𝑙𝑑𝑆𝑖𝑔(𝑠𝑘, 𝜏(𝑐), 𝑚 ∗): Signature generation algorithm. This algorithm takes the private key 𝑠𝑘, the 

consensus message 𝜏(𝑐), and the blinded message 𝑚∗ as inputs. Using these inputs, it generates a partial 

blind signature𝜎∗, which is a cryptographic signature that binds the message to the consensus while keeping 

the original content hidden. 

1/𝐵𝑙𝑖𝑛𝑑(𝜎∗): Unblinding algorithm: This algorithm is an unblinding process that reverses the 

blinding applied to a message in the earlier stages of the protocol. It takes a partially blinded signature 𝜎∗ as 

its input, which was generated during the initial signing process. The algorithm then removes the blinding 

factor, effectively returning the original signature 𝜎 for the message 𝑚. This final signature can be used for 

verification purposes, ensuring the integrity and authenticity of the signed content. Despite revealing the 

signature, the unblinding process preserves the anonymity of the original message, maintaining privacy while 

allowing for secure verification. 

𝑅𝑙(𝑚, 𝜏(𝑐)): The relation function plays a critical role in ensuring the integrity of signatures within 

a consensus-based system. It takes two inputs: the message m and the consensus message 𝜏(𝑐), both of which 

are necessary to generate a valid signature. The function produces a signature, 𝜎, which confirms that it is the 
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correct signature for the given message m in the context of the consensus message 𝜏(𝑐). This relationship 

between the message and the consensus context is crucial for validating the authenticity of the signature. 

Essentially, the function guarantees that the signature is not only valid for the message but also aligns with 

the broader consensus agreement, ensuring both integrity and trust within the system. 

𝐵𝑙𝑑𝑉𝑒𝑟(𝑝𝑘, (𝜎)): Signature verification algorithm takes the public key 𝑝𝑘 and the signature 𝜎 as 
inputs, the algorithm checks the validity of the signature; if the signature is correct and valid, it outputs 1, 

confirming the authenticity of the message and signature. Otherwise, it outputs 0, signaling that the signature 

is invalid. 

The combination of these algorithms creates a powerful system designed to facilitate blind signing, 

which ensures that sensitive information remains private while maintaining the integrity of the signature. By 

utilizing blind signing, the system allows for the authentication of transactions without exposing the 

underlying data, ensuring that privacy is preserved throughout the process. This method is especially 

beneficial in blockchain environments where anonymity is crucial, as it enables secure, verifiable 

transactions without compromising user confidentiality. The consensus-based framework ensures that all 

participants in the system agree on the validity of the signature, adding an extra layer of trust and security. 

Ultimately, these algorithms provide a secure way to conduct transactions, ensuring both privacy and 
authenticity while protecting sensitive data in decentralized applications. 

 

2.4.  Anonymity techniques 

Blockchain, being a public ledger, is open and transparent, making it susceptible to privacy issues. 

As anyone can access the data on the blockchain, sensitive information such as transaction details and user 

identities could be exposed. To mitigate these privacy concerns, two main strategies have emerged to 

enhance anonymity: altcoin-based methods and coin-mixing techniques. 

 

2.4.1. Altcoin-based methods 
Altcoin-based methods aim to improve anonymity by converting a cryptocurrency into a substitute 

coin, known as an altcoin, and later converting it back to the original cryptocurrency. This method hides the 
identity of the user by obscuring the transaction trail through the use of alternative cryptocurrencies. The 

Zerocoin protocol [14] and the Zerocash protocol [15] are prominent examples of such techniques. Both 

protocols leverage cryptographic techniques to ensure that transactions are untraceable and unlinkable, 

thereby providing enhanced privacy for users. While these methods are effective at strengthening anonymity, 

their integration comes with significant challenges. The introduction of substitute coins modifies the 

underlying blockchain protocol, making them incompatible with existing systems. This incompatibility 

means that these privacy-enhancing protocols require substantial changes to the blockchain's infrastructure, 

which can limit their adoption and scalability in widely used blockchain networks. 

 

2.4.2. Coin mixing without a central mixing authority 

Coin mixing without a central authority is a decentralized method designed to enhance privacy by 

allowing users to mix their coins together in a way that obscures the transaction trail. In this approach, 
multiple participants collectively generate a coin-mixing transaction. Each participant contributes their pre-

mixed coin addresses as inputs, while the outputs of the transaction correspond to the target addresses. The 

key feature of this method is that the transaction is only valid if it includes signatures from all involved 

participants, ensuring that all users are involved in the mixing process. A well-known protocol for this type 

of coin mixing is CoinJoin [16], which facilitates the creation of a single transaction that combines inputs 

from various users, thereby preventing the linkage of inputs to specific outputs and ensuring the anonymity 

of the participants. CoinJoin successfully provides anonymity by making it difficult for external observers to 

associate specific inputs with their corresponding outputs. However, despite its effectiveness, CoinJoin is 

vulnerable to Denial-of-Service (DoS) attacks. In such attacks, malicious users may disrupt the mixing 

process by either refusing to sign or participating in the mixing transaction with the intention of blocking the 

process. This vulnerability poses a threat to the reliability and efficiency of the protocol. To address this 
issue, CoinShuffle [17] was developed as an improvement to CoinJoin. CoinShuffle introduces an ordering 

protocol that enhances the mixing process by ensuring that the order in which participants contribute their 

inputs is randomized, making it harder to predict the final transaction outputs. Additionally, CoinShuffle 

incorporates an accountability protocol designed to mitigate DoS attacks. This protocol helps track the 

behavior of participants, making it possible to identify and exclude malicious actors who attempt to disrupt 

the mixing process. By enhancing the security and reliability of the coin mixing procedure, CoinShuffle 

improves upon CoinJoin, making it a more robust solution for ensuring user privacy in blockchain 

transactions. 
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2.4.3. Coin mixing with a central mixing authority 

Coin mixing with a central mixing authority is an approach that centralizes the coin-mixing process, 

relying on a trusted intermediary to handle the mixing of coins for multiple users. This method enhances the 

overall reliability and scalability of the mixing process, making it more suitable for large-scale operations. By 

utilizing a central authority, this technique provides stronger resistance to Denial-of-Service (DoS) attacks, 

which can plague decentralized mixing systems, as it can ensure the continuous availability and integrity of 

the mixing service. One of the prominent protocols that use a central mixing authority is MixCoin [17]. 
MixCoin employs multiple mixing networks to perform multi-level mixing, where coins are mixed through 

several layers, ensuring that the central authority cannot correlate user input addresses with output addresses. 

This approach increases the complexity of tracing individual transactions, thus improving user anonymity. 

The multiple layers of mixing add an additional level of security, making it more difficult for any single party 

to break the anonymity of the users. Building upon MixCoin, the BlindCoin protocol [18] further strengthens 

privacy by introducing a public ledger that ensures the reliability and transparency of the mixing center, 

helping to establish trust in the central authority. BlindCoin also utilizes blind signature algorithms, which 

prevent the mixing center from seeing the user's output address. This addition eliminates the need for multi-

level mixing, simplifying the process while maintaining a high level of security. By using blind signatures, 

BlindCoin ensures that even the central authority cannot track or associate specific user inputs with their 

corresponding outputs, further enhancing users' privacy. To improve the effectiveness and security of these 

coin-mixing techniques, deep learning algorithms can be integrated into the system. For instance, generative 
adversarial networks (GANs) [19] can be used to detect anomalies in the mixing process, identifying patterns 

that could suggest malicious activity or attempts to deanonymize users. Additionally, reinforcement learning 

[20] can be applied to optimize coin-mixing strategies, dynamically adjusting the mixing process to ensure 

maximum privacy and efficiency while preventing potential vulnerabilities. By incorporating these advanced 

techniques, the coin mixing system can provide stronger privacy protection, better performance, and 

increased resilience to attacks. 

 

 

3. MIXING SYSTEM WITH A MIXING CENTER 

The mixing system with a mixing center is based on the mixing center model in the MixCoin 

protocol. The primary aim of the MixCoin protocol is to enhance anonymity through mixing, while the core 
objective of this system is to utilize intermediaries that prevent "double spending" to improve transaction 

efficiency [21]. In this paper, we will focus on the core aspects of the MixCoin protocol and introduce a deep 

learning algorithm to further enhance efficiency while omitting unrelated details. 

 

3.1.  MixCoin system model 

The MixCoin system is designed to facilitate the anonymous transfer of cryptocurrency through a 

coin-mixing protocol. It involves two primary entities: the mixing center (S) and the user (Alice). These two 

components interact to ensure the privacy and security of transactions, preventing the correlation of a user’s 

original and destination accounts [22]. The system functions as follows: 

Mixing center (S): The mixing center, denoted as S, plays a crucial role in the MixCoin protocol. It 

is responsible for facilitating the coin-mixing process by collecting and mixing coins from various users. The 
mixing center operates with a pair of long-term signature keys, consisting of a public key and a private key. 

The public key is used to verify transactions, while the private key is used for signing transactions and 

ensuring their authenticity. The reputation of the mixing center is an important factor influencing its 

effectiveness and user trust. A reputable mixing center attracts more users, as it guarantees a higher level of 

security and privacy. Conversely, a mixing center with a poor reputation is less likely to be trusted, resulting 

in fewer users and potential difficulties in maintaining a secure and anonymous mixing environment. The 

reputation of S is often tied to its history of successfully maintaining user anonymity and preventing any 

leaks of transaction information. 

User (Alice): Alice, the user in this system, holds a certain amount of cryptocurrency in an account. 

This account may be linked to her real-world identity, which presents a risk of privacy violation. Alice’s goal 

is to transfer the cryptocurrency to a new account while ensuring that there is no way for third parties or 

attackers to trace the link between the old and new accounts. In the MixCoin system, Alice sends her 
cryptocurrency to the mixing center, which will mix her funds with those of other users to create a pool of 

transactions. Once the mixing process is complete, Alice receives an equivalent amount of cryptocurrency in 

the form of newly generated tokens, which are sent to her new account. This process ensures that the 

transaction history of Alice’s original account is obfuscated, making it difficult or impossible for attackers to 

establish a connection between the old and new accounts. 
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The MixCoin system enhances privacy in cryptocurrency transactions by combining a mixing center 

with the user’s interaction, ensuring anonymous transfers. The mixing center, which acts as a trusted central 

authority, plays a pivotal role in obscuring the origin and destination of cryptocurrency transactions. By using 

advanced cryptographic techniques such as mixing and re-routing transactions, the system ensures that users 

like Alice can send funds without exposing their identity or transaction details. This method of mixing funds 

reduces the risk of transaction tracing, making it much more difficult for third parties to track the movement 
of the funds across the network. Ultimately, the MixCoin system strengthens user privacy and security while 

preserving the efficiency and functionality of cryptocurrency transactions. 

 

3.2.  MixCoin protocol with deep learning enhancements 

The MixCoin protocol, designed to enhance privacy and anonymity in cryptocurrency transactions, 

has been significantly improved with the integration of deep learning algorithms. These deep learning 

optimizations aim to boost the efficiency and reliability of the protocol by automating and optimizing key 

processes such as transaction mixing, which obfuscates the origin of funds. The updated protocol utilizes 

deep learning to predict transaction patterns, detect anomalies, and dynamically adjust the mixing process to 

maintain high levels of privacy [23]. Furthermore, these algorithms enable faster and more accurate 

transaction processing, reducing delays and increasing overall system throughput. As a result, the enhanced 

MixCoin protocol provides a more robust and scalable solution for users seeking enhanced anonymity in 
their cryptocurrency transactions. The key steps of the protocol, now integrated with deep learning 

optimizations, are as follows: 

 

3.2.1. Request initiation 

The protocol begins with Alice, the user seeking anonymity, sending a mixing request to the mixer, 

S (a service that mixes the currency). The request includes several parameters:𝐾𝑖𝑛: Alice’s source address 

before the mixing process, 𝐾𝑜𝑢𝑡: Alice’s destination address after mixing, 𝑤: The amount of currency Alice 

wants to mix, 𝑡1: The deadline by which Alice must transfer the currency to 𝑆, 𝑡2: The deadline by which S 

must return the currency to Alice, 𝐾𝑒𝑠𝑐: An escrow address controlled by S for added security, 𝐷 and 𝐷′: 
System parameters that configure the transaction settings for this session. These parameters are securely sent 

to S, initiating the mixing request and setting the transaction terms for both parties. 

 

3.2.2. Request acceptance 

When 𝑆 receives Alice’s request, it evaluates the parameters using a deep learning model designed 

to predict transaction trends and potential network delays. This model helps 𝑆 make an informed decision, 

especially when evaluating factors like transaction size, timing, and current network congestion. If 𝑆 decides 

to accept the request, it confirms this by sending Alice the same parameters along with its signature 𝐾𝑆 as 

proof of acceptance. This signature confirms 𝑆’𝑠 commitment to processing the transaction under the agreed-

upon conditions. If, however, S rejects the request (due to reasons like high network congestion or risk 

factors identified by the deep learning model), both parties exit the protocol without further steps. If 𝑆 

accepts Alice's mixing request, it uses a deep learning model to predict transaction patterns and potential 

delays, optimizing its response. 𝑆 sends 𝐾𝑖𝑛 , 𝐾𝑜𝑢𝑡 , 𝑤, 𝑡1, 𝑡2, 𝐾𝑒𝑠𝑐 , 𝐷, 𝐷′ and its signature 𝐾𝑆 back to Alice. If 𝑆 

rejects the request for any reason, both parties exit the protocol. 

 

3.2.3. Payment processing 

Once the request is accepted, Alice must transfer the specified amount w to S’s account 𝐾𝑒𝑠𝑐 before 

the deadline 𝑡1. This payment is recorded on the blockchain, creating an auditable trail of the transaction. To 

further optimize this step, the deep learning model assesses real-time network conditions to predict potential 

congestion and minimize delays in confirming Alice’s payment on the blockchain. If Alice fails to make the 

payment within the deadline, S automatically exits the protocol. This protocol step ensures that only 

committed transactions are processed, enhancing security and reducing wasted resources. 

 

3.2.4. Currency return 

The final step involves S returning the equivalent amount of currency to Alice’s destination address 

𝐾𝑜𝑢𝑡 before the deadline 𝑡2. The transaction, once completed, is recorded on the blockchain to maintain 
transparency. During this process, the deep learning model optimizes the timing of S’s return transaction, 

aiming for promptness while mitigating network-related delays. This model also improves the accuracy of 

compliance by analyzing prior transactions and adjusting transaction parameters to maintain efficiency. In the 

event of a delay or if Alice does not receive the funds on time, she can reveal the signed commitment 𝐾𝑆 

from Step 2, proving her compliance with the protocol. This mechanism allows Alice to protect her funds and 

reputation while holding S accountable, as a breach could harm S’s credibility within the system. 
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The integration of deep learning in the MixCoin protocol brings significant improvements. 

Predicting network conditions: By forecasting congestion and delays, the model allows both parties to 

anticipate and manage transaction times effectively. Optimizing throughput: The model helps prioritize 

transactions, improving the speed and reliability of currency mixing. Enhanced efficiency: By predicting and 

reducing potential bottlenecks, the deep learning model enhances the protocol’s overall performance, making 

it faster and more resilient under varying network conditions. This enhanced MixCoin protocol combines 

traditional cryptographic mixing techniques with advanced deep learning models to deliver a robust, 
efficient, and user-centric solution for cryptocurrency transactions that require high levels of privacy and 

anonymity. 

 

3.3.  MixCoin protocol with deep learning enhancements 

The MixCoin protocol is a privacy-preserving solution aimed at enabling anonymous 

cryptocurrency transactions by obscuring the origin of funds through a central mixing entity referred to as the 

"mixing center." By adding deep learning algorithms, the protocol achieves an improved ability to manage 

and respond to transaction requests, providing greater efficiency, minimizing latency, and optimizing the 

mixing process for a smoother user experience [24]. This integration with deep learning adds predictive 

insights to each stage, from request initiation to fund return, thus enhancing MixCoin's core functionality. 

Below is an in-depth outline of the enhanced MixCoin protocol with its key operational steps: 

 

3.3.1. Request initiation 

Alice begins the process by sending a set of parameters to the mixing center (S). These parameters 

include her 𝐾𝑖𝑛 (the account she holds before mixing), 𝐾𝑜𝑢𝑡 (the account she wishes the funds to be sent to 

after mixing), 𝑤 (the amount of currency to be mixed), 𝑡1 (the deadline for Alice to pay the mixing center), 𝑡2 

(the deadline for S to return the funds), 𝐾𝑒𝑠𝑐 (S's receiving address), 𝐷 and 𝐷′ (system parameters). This 

initial request triggers the mixing process. The integration of deep learning models can help 𝑆 predict 

transaction patterns based on previous activity, providing insight into potential delays and optimizing the 

overall mixing timeline. 
 

3.3.2. Request acceptance 

Once S receives Alice’s request, it evaluates the details of the request and uses a deep learning 

model to predict transaction congestion, network delays, and potential bottlenecks in the processing of 

Alice’s payment and return. By analyzing historical data and real-time network conditions, the deep learning 

model helps S determine the most efficient way to process Alice’s transactions, minimizing delays. If S 

accepts the request, it responds by sending Alice the same set of parameters (𝐾𝑖𝑛 , 𝐾𝑜𝑢𝑡 , 𝑤, 𝑡1, 𝑡2, 𝐾𝑒𝑠𝑐 , 𝐷, 𝐷′) 

along with its signature 𝐾𝑆 to confirm acceptance. If, for any reason, S rejects the request (such as system 

overload or security concerns), both parties exit the protocol, ensuring that no further transactions take place 

without mutual agreement. 
 

3.3.3. Payment processing 

Alice must transfer the specified amount of cryptocurrency to the mixing center before the 𝑡1 

deadline. This payment is recorded on the blockchain for transparency and accountability. The deep learning 

algorithm embedded in the protocol monitors transaction congestion across the network and predicts the 

optimal timing for confirming the payment. By assessing blockchain block times and network traffic patterns, 

the algorithm ensures that Alice's payment is confirmed quickly, optimizing transaction processing speed. If 

Alice fails to make the payment by the deadline, S exits the protocol, and the transaction is voided, 

preventing any further actions. 
 

3.3.4. Currency return 

Upon successful payment, S is responsible for returning an equivalent amount of cryptocurrency to 

Alice before the 𝑡2 deadline. This return transaction is also recorded on the blockchain for verification. The 

deep learning model comes into play again here by optimizing the timing and accuracy of the return process. 

It analyzes blockchain conditions, predicting transaction congestion and network load, to ensure that the 

funds are returned to Alice promptly. If Alice does not receive the return payment by the agreed-upon 

deadline, she can disclose the signature obtained from Step 2, thereby proving that she fulfilled her part of the 

protocol. This acts as a safeguard, allowing Alice to damage S’s reputation if the mixing center fails to honor 

the transaction, thereby incentivizing S to fulfill its obligations. The incorporation of deep learning 

algorithms into the MixCoin protocol offers several advantages. First, it enhances the accuracy and efficiency 

of transaction prediction, allowing the mixing center to respond dynamically to network conditions and 

transaction patterns. By predicting congestion and delays, deep learning helps optimize the transaction 
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throughput and the overall mixing process. The model also facilitates better risk management by identifying 

potential failures before they occur, improving user trust and satisfaction. Additionally, the ability to 

dynamically adjust to changing conditions in real time ensures that the system can scale efficiently, even as 

the volume of transactions increases. 

 

 

4. SYSTEM DESCRIPTION 

The proxy-based cryptocurrency payment system is designed to enhance transaction privacy, 

security, and efficiency for users, with the participation of three main entities: the proxy M (a trusted 

intermediary), the User (individual making the payment), and the Vendor (merchant receiving the payment) 

[25]. The system architecture is depicted in Figure 2, and the core components of the system are organized 

into two main phases: the system setup phase and the deposit agreement phase. Each phase contains steps to 

secure communication, establish user anonymity, and ensure compliance with the protocol. 
 

 

 
 

Figure 2. System structure 

 
 

4.1.  System setup 

In the initial setup phase, each participant, including the user and the merchant, generates their own 

cryptographic keys, which are essential for enabling secure transactions within the system. These 

cryptographic keys consist of public-private key pairs, which ensure that communication and transactions are 

encrypted and secure. The process also involves generating one-time addresses, which are temporary public 

keys used to facilitate anonymous transactions, ensuring that the identities of the participants are not easily 

traceable. Additionally, participants implement signing protocols that protect the integrity and authenticity of 

transactions, preventing unauthorized modifications. This phase serves as the foundation for building a 

secure and private ecosystem for conducting transactions while maintaining confidentiality and trust among 

the parties involved. 

- Proxy 𝑀 key generation: (1) Long-term public key: M selects a unique long-term public key address, 

which will be used as a permanent point of reference for future transactions with users. (2) Public-Private 

Key Pair Generation: Using a partial blind signature scheme, M generates a cryptographic public-private 

key pair (𝑝𝑘, 𝑠𝑘), where 𝑝𝑘 is the public key for verification, and sk is the private signing key. (3) 

Signature Key Pair: Additionally, 𝑀 generates a dedicated pair of signing keys (𝑝𝑢𝑏𝑀, 𝑝𝑟𝑣𝑀) to sign 

transactions, ensuring that all communications can be verified as authentic. 

- Vendor key generation: (1) Key pairs for one-time addresses: The vendor generates two pairs of long-

term public-private keys, (𝑝𝑘𝑎, 𝑠𝑘𝑎) and (𝑝𝑘𝑏, 𝑠𝑘𝑏). These key pairs are used to create one-time public 

addresses for each payment transaction. (2) Purpose of One-Time Addresses: Each one-time public key 

address, generated uniquely for every transaction, provides the necessary anonymity for the User while 

acting as an accountable payment receipt for the vendor. 

- User public key selection: In the user public key selection process, the user begins by generating and 

selecting a unique public key address, referred to as 𝑢𝑝𝑘𝑣 , specifically for deposit purposes. This address 

will be used by the user to deposit funds with the merchant 𝑀 for future transactions, ensuring that the 

process remains secure and private. The 𝑢𝑝𝑘𝑣 public key address acts as a secure point of interaction 

between the user and the merchant, allowing for transactions to be conducted without exposing sensitive 

information. By selecting this dedicated deposit key, the user enhances their privacy, as it isolates the 

funds for specific transactions and minimizes the exposure of other financial details. This step is crucial 

for enabling trust and confidentiality in the transaction process between the user and the merchant. 
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4.2.  Deposit agreement 

The deposit agreement phase establishes a secure framework for the transaction between the User 

and the Merchant 𝑀, ensuring that both parties' actions are well-documented and protected. During this 

phase, the User initiates a deposit request by sending relevant details such as the deposit amount, their public 

key address, and the deadline for deposit confirmation. Upon receiving this request, the Merchant generates a 

commitment signature, confirming their acceptance of the deposit and sending it back to the User. This 
commitment, once verified, allows the User to complete the transaction on the blockchain, with the Merchant 

then confirming receipt of the funds by generating a final signature. This process ensures that all actions are 

auditable and verifiable on the blockchain, enhancing security and accountability for both the User’s funds 

and the Merchant’s obligations. 

- Deposit request initiation: user deposit request: the user initiates the deposit process by sending a request 

to the merchant. 𝑀, containing essential transaction details. This request includes the deposit amount 𝑤𝑡, 

which specifies the funds the user intends to deposit and the user’s public key address 𝑢𝑝𝑘𝑣 , which will 

be used to transfer funds. Additionally, the user specifies a deadline 𝑡1, indicating the latest time by which 

the merchant must acknowledge the deposit. The inclusion of this deadline ensures timely processing and 

provides a clear window for the merchant to confirm or reject the deposit request. The deposit request 

serves as the initial step in securing the transaction and triggering the subsequent stages of the deposit 

agreement. 

- Commitment generation by 𝑀: deposit commitment: If 𝑀 accepts the deposit request, it creates a deposit 

commitment signature 𝜎𝐶 = 𝑆𝑖𝑔𝑀(𝑤𝑡, 𝑢𝑝𝑘𝑣 , 𝑡𝑝𝑘𝑣), where 𝑡𝑝𝑘𝑣 represents the target public key address 

associated with the transaction. This signature acts as proof of commitment from 𝑀 to honor the 

transaction. commitment transmission: 𝑀 sends 𝜎𝐶 back to the User, which allows the User to proceed 
with creating the actual deposit transaction. This step ensures both parties have mutual proof of the 

deposit terms. 

- Upon receiving the deposit commitment signature 𝜎𝐶 from the merchant, the user proceeds to create a 

transaction on the blockchain. In this transaction, the user sets their public key address 𝑢𝑝𝑘𝑣 as the input 

and the merchant’s temporary public key address 𝑡𝑝𝑘𝑣 as the output. The transaction specifies the deposit 

amount and ensures that the funds are transferred to the designated temporary address. By recording the 

transaction on the blockchain, the user establishes an immutable and transparent record of the deposit, 

ensuring that the transaction cannot be altered or tampered with. This step serves as an essential part of 

the deposit process, providing verifiable evidence of the user’s payment for future reference. 

- Upon receiving the payment from the user, the merchant 𝑀 first verifies whether the transaction has been 

completed before the specified deadline, denoted as 𝑡1. If the payment is confirmed within the given time 

frame, 𝑀 generates a confirmation signature, denoted as 𝜎𝑀 =  𝑆𝑖𝑔𝑀(𝑢𝑝𝑘𝑣 , 𝑤𝑡, 𝑇), where T includes a 

unique transaction identifier, such as a timestamp or transaction ID. This signature serves as an official 

record of the payment and verifies that the funds have been received correctly. Once the signature is 

generated, 𝑀 sends 𝜎𝑀 to the user as proof of payment, confirming that the transaction has been 

successfully processed. The signature is also logged on the blockchain, providing transparency and 

ensuring the transaction can be publicly verified by any participant in the network. 

- fallback mechanism for user protection: verification of commitment: if the User does not receive 𝜎𝑀 from 

𝑀 (indicating that 𝑀 has not acknowledged the payment), the User has the right to disclose 𝜎𝐶 to prove 

compliance with the initial agreement. Public Verification: Since σ_C is a verifiable signature from 𝑀, 

anyone can verify the validity of 𝜎𝐶 on the blockchain. This mechanism provides the User with a means 

to safeguard their transaction, as it serves as public proof that the User fulfilled their part of the 

agreement. 

 

4.3.  Order submission 

User's initial step: the user begins the order submission process by selecting a random value rrr 

within the range [1, 𝑛 − 1].They then calculate 𝑅 = 𝑟𝐺, where 𝐺 is a generator point on an elliptic curve, and 

𝑟𝐺 is a derived point that provides cryptographic security through randomness. Using the one-time public 

key generation formula, the user calculates an address 𝑃 for the transaction. The formula is 𝑃 =  𝑝𝑘𝑎 +
 𝐻(𝑟, 𝑣) ⋅  𝐺, where𝑝𝑘𝑎 is the user’s permanent public key, 𝐻(𝑟, 𝑣) is a cryptographic hash of 𝑟 and 

transaction details 𝑣, which adds uniqueness. The user then sends 𝑅 ∥ 𝑚𝑠𝑔 to the merchant, where 𝑚𝑠𝑔 

contains comprehensive order information.  

Merchant's calculation: upon receiving 𝑅 ∥ 𝑚𝑠𝑔 from the user, the merchant calculates the 

transaction receipt address, represented by 𝑃 = 𝑝𝑘𝑎 + 𝐻(𝑟, 𝑣) ⋅  𝐺, matching the user’s generated address. 

The merchant computer has a corresponding private key 𝑠 =  𝑠𝑘𝑎 +  𝐻(𝑟, 𝑣) ⋅  𝑣, which they will use for 

signing the transaction. Finally, the merchant generates a transaction commitment signature 𝜎𝑉𝑒𝑛𝑑𝑒𝑟  =
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 𝑆𝑖𝑔𝑣 (𝑅, 𝑚𝑠𝑔) and sends it to the user, thereby confirming receipt of the order and establishing a transaction 

commitment. 

 

4.4.  Payment commitment 

User’s commitment: to secure the payment, the user blinds the one-time public key address PPP by 

calculating 𝑃∗  =  𝐵𝑙𝑖𝑛𝑑(𝑃), where blinding adds a layer of security. They then create a blinded payment 

signature 𝜎𝑈𝑠𝑒𝑟
∗  =  𝑆𝑖𝑔𝑠𝑘𝑣

 (𝑃∗, 𝑤), with 𝑠𝑘𝑣 as the user’s private signing key. The user sends 𝜎𝑈𝑠𝑒𝑟
∗ ∥ 𝜎𝑀 to 

the merchant. Merchant's Verification: Upon receipt, the merchant verifies the validity of 𝜎𝑈𝑠𝑒𝑟
∗ . If valid, they 

confirm that𝑢𝑝𝑘𝑣 , the user’s public key is legitimate. To optimize this process, the merchant leverages a deep 

learning model trained on past transaction patterns to predict validity and identify anomalies, reducing 

manual verification time and expediting processing. Next, the merchant checks if 𝜎𝑀 is unique by referencing 

its timestamp. If 𝜎𝑀 is new and the account balance is sufficient, the merchant calculates the consensus 

parameter 𝑠 = 𝜏(𝑤) and generates a blinded signature 𝜎𝑃𝑎𝑦
∗  =  𝐵𝑙𝑑𝑆𝑖𝑔𝑠𝑘(𝑠, 𝑃∗), incorporating the 

consensus parameter 𝑠.The merchant updates the balance by computing the latest account balance signature 

𝜎𝑀
′  = 𝑆𝑔𝑣(𝑢𝑝𝑘𝑣 , 𝑤, 𝑇) and sends 𝜎𝑃𝑎𝑦

∗ ∥  𝜎𝑀
′  to the user. 

 

4.5.  Payment agreement 

User’s De-Blinding: The user de-blends𝜎𝑃𝑎𝑦
∗  to obtain 𝜎𝑃𝑎𝑦and sends it to the merchant using an 

anonymous channel, such as Tor, to maintain privacy. Merchant's verification and payment processing: The 

merchant verifies 𝜎𝑃𝑎𝑦 for authenticity [26]. If valid and it is the initial use, the merchant processes the 

payment to the one-time public key address 𝑃, setting up a transaction with 𝑡𝑝𝑘𝑣(transaction public key for 

verification) as the input and 𝑃 as the output, transferring the specified amount 𝑤. Advanced deep learning 

algorithms support the merchant by monitoring for anomalies in transaction behavior, thus verifying the 

authenticity of the transaction more effectively. 

 

4.6.  Transaction success 

Upon observing the payment on the blockchain from the merchant to the one-time public key 

address 𝑃, the merchant promptly fulfills the transaction commitment, such as shipping the purchased goods, 

without waiting for additional block confirmations. Once the goods are received, the user utilizes the original 

random number 𝑟 (used in generating 𝑅) as a private key to sign a receipt 𝜎𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 =  𝑆𝑖𝑔𝑟(𝑚𝑠𝑔), which 

they send to the merchant as proof of receipt. 

 

4.7.  Accountability protocol 

Addressing malicious behavior by the merchant: If the merchant fails to fulfill their commitment, 

the user can send the transaction commitment signature 𝜎𝑉𝑒𝑛𝑑𝑒𝑟  =  𝑆𝑖𝑔𝑣 (𝑅, 𝑚𝑠𝑔) to an arbitrating proxy. 

The proxy verifies 𝜎𝑉𝑒𝑛𝑑𝑒𝑟 and recalculates 𝑃 =  𝑝𝑘𝑎 +  𝐻(𝑟, 𝑣) ⋅  𝐺alongside𝑅′ =  𝑟𝐺. If 𝑅 = 𝑅′, it 

confirms that 𝑃 matches the agreed-upon one-time public key address. Evidence of a transaction using 𝑃 as 

input on the blockchain would conclusively prove the user's payment. 

Addressing malicious claims by the user: If a user falsely claims that the merchant did not fulfill the 

commitment, the merchant can reveal 𝜎𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟, with the verification process confirming whether 𝜎𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟,  

proves the user’s receipt of goods. Incorporating deep learning algorithms into this accountability protocol 

enhances the system's efficiency in detecting fraud and validating transactions. This ultimately improves the 

cryptocurrency payment system's reliability and performance. 

 

 

5. DETAILED IMPLEMENTATION PLAN 

This implementation plan outlines key steps for setting up the system and ensuring secure and 

private transaction handling. The process begins with selecting long-term public key addresses and 

generating corresponding public-private key pairs for the user, merchant, and the system. A deposit 
agreement is initiated by the user, who requests a deposit by sending details, including the deposit amount, 

the user’s public key address, and a deadline [27]. The merchant then calculates a deposit commitment and 

sends a signature to confirm the commitment to accept the deposit. If the user receives the signature and 

completes the transaction on the blockchain, the merchant verifies the payment and sends a final 

confirmation signature. The user, in turn, can disclose the commitment signature to prove the agreement if 

needed. For order submission, the user calculates a random number and creates a one-time public key 

address, which is then used to send order information to the merchant. The system integrates cryptographic 

operations and deep learning techniques to ensure security, privacy, and transaction accountability 

throughout the process. 
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5.1.  System setup 

Long-term key selection by merchant (M): M generates a long-term public key address for receiving 

and verifying deposits. M selects and uses a key generation algorithm based on a partial blind signature 

scheme to create a pair of long-term keys: a public key 𝑝𝑘 and a private key 𝑠𝑘. Merchant’s Signing Keys: 𝑀 

generates a long-term signature key pair (𝑝𝑢𝑏𝑀, 𝑝𝑟𝑣𝑀), where 𝑝𝑢𝑏𝑀 is the public signing key and 𝑝𝑟𝑣𝑀  is 

the private signing key. These keys will be used to sign transaction commitments, thereby securing 
transaction authenticity and providing verifiable proof of commitment. Vender’s Key Pairs for generating 

one-time addresses: The vendor (an entity acting on behalf of 𝑀 to facilitate transactions) generates two sets 

of long-term public-private key pairs: (𝑝𝑘𝑎, 𝑠𝑘𝑎) and (𝑝𝑘𝑏, 𝑠𝑘𝑏). These key pairs are used to generate one-

time public key addresses, which add privacy to the transactions by creating unique payment addresses for 

each user. User’s deposit key selection: The user selects a public key address 𝑢𝑝𝑘𝑣 , which will serve as their 

unique deposit address for making payments to 𝑀. This address will be used to receive and verify the 

completion of deposit transactions, contributing to user identity privacy. 

 

5.2.  Deposit agreement 

Initiating deposit request: The user initiates a deposit agreement by sending (𝑤𝑡, 𝑢𝑝𝑘𝑣 , 𝑡1) to 𝑀, 

where 𝑤𝑡 is the deposit amount,  𝑢𝑝𝑘𝑣  is the user’s deposit address, 𝑡1 is the deadline by which the deposit 

must be confirmed. Merchant’s deposit commitment: If M approves the deposit request, it calculates a 

deposit commitment signature 𝜎𝐶 = 𝑆𝑖𝑔𝑀(𝑤𝑡, 𝑢𝑝𝑘𝑣 , 𝑡𝑝𝑘𝑣), where𝑆𝑖𝑔𝑀denotes a signature created using 𝑀’𝑠 

signing key, 𝑡𝑝𝑘𝑣is a temporary public key generated specifically for this deposit, 𝑀 then sends 𝜎𝐶 to the 

user as confirmation of the commitment to accept the deposit. If 𝑀 rejects the deposit is rejected, the protocol 

terminates here. User’s payment transaction: After receiving 𝜎𝐶, the user creates a transaction on the 

blockchain, setting 𝑢𝑝𝑘𝑣 as the input and 𝑡𝑝𝑘𝑣 as the output, thus transferring 𝑤𝑡 to 𝑡𝑝𝑘𝑣.Merchant’s 

Confirmation of deposit: If 𝑀 receives and verifies the payment transaction before the deadline 𝑡1, it 

generates a final deposit confirmation signature 𝜎𝑀 = 𝑆𝑖𝑔𝑀(𝑢𝑝𝑘𝑣 , 𝑤𝑡, 𝑇), where 𝑇 includes timestamp 

details for additional verification. 𝑀 sends 𝜎𝑀 to the user as proof that the deposit has been accepted. 

Disclosure of dposit Commitment (optional): If the user does not receive 𝜎𝑀 from 𝑀, they may disclose 𝜎𝐶 as 

proof of their commitment. The validity of 𝜎𝐶 can be publicly verified, and the transaction made by the user 
can be traced on the blockchain, confirming the user’s compliance with the agreement. 

 

5.3.  Order submission 

User’s random key generation: To initiate an order, the user randomly selects rrr from the range 

[1, 𝑛 − 1] and calculates 𝑅 =  𝑟𝐺, where G is the generator point of an elliptic curve. The user then 

calculates a one-time public key address 𝑃 =  𝑝𝑘𝑎 +  𝐻(𝑟, 𝑣) ⋅  𝐺, where𝑝𝑘𝑎 is the vendor’s long-term 

public key, 𝐻(𝑟, 𝑣) is a cryptographic hash of 𝑟 and transaction-specific details 𝑣. This unique public key 

address 𝑃 will serve as the transaction receipt address, preserving the user’s anonymity. 

Order information transmission: The user sends 𝑅 ∥  𝑚𝑠𝑔 to the vendor, where R is the random 

elliptic curve point derived from 𝑟𝐺, 𝑚𝑠𝑔 contains the order information, ensuring the vendor has the 

necessary details to fulfill the transaction.Vendor’s Receipt Address and Commitment: Upon receiving 𝑅 ∥
 𝑚𝑠𝑔from the user, the vendor computes the transaction receipt address, which is 𝑃 =  𝑝𝑘𝑎 +  𝐻(𝑟, 𝑣) ⋅
 𝐺.The vendor then calculates the corresponding private key 𝑠 = 𝑠𝑘𝑎 + 𝐻(𝑟, 𝑣) ⋅ 𝑣, allowing them to sign the 

transaction. The vendor generates a transaction commitment signature 𝜎𝑉𝑒𝑛𝑑𝑒𝑟   =  𝑆𝑖𝑔𝑣(𝑅, 𝑚𝑠𝑔) to verify 

receipt of the order, which they send back to the user as proof of acceptance. 

 

5.4.  Payment commitment 

𝑈𝑠𝑒𝑟 blinds the one-time public key address 𝑃 by calculating 𝑃∗ = 𝐵𝑙𝑖𝑛𝑑(𝑃), and computes the 

blinded payment information 𝜎𝑈𝑠𝑒𝑟
∗ =  𝑆𝑖𝑔𝑣(𝑃∗, 𝑤). 𝑈𝑠𝑒𝑟 sends 𝜎𝑈𝑠𝑒𝑟

∗ ∥ 𝜎𝑀 to 𝑀, where 𝑠𝑘𝑣 is 𝑈𝑠𝑒𝑟’𝑠 

signing private key. Upon receiving the message from 𝑈𝑠𝑒𝑟, 𝑀 verifies the validity of 𝜎𝑈𝑠𝑒𝑟
∗ . If valid, 𝑀 

verifies that 𝑢𝑝𝑘𝑣 indeed belongs to 𝑈𝑠𝑒𝑟. 𝑀 then checks if 𝜎𝑀 has been used by examining the timestamp. 

If 𝜎𝑀 is new, and the account balance is sufficient, 𝑀 calculates the consensus parameter 𝑠 = 𝜏(𝑤) and 

generates a blinded signature 𝜎𝑃𝑎𝑦
∗  =  𝐵𝑙𝑑𝑆𝑖𝑔𝑠𝑘 (𝑠, 𝑃∗), which includes the consensus parameter 𝑠. 𝑀 

updates the balance by computing the latest account balance signature 𝜎𝑀
′  =  𝑆𝑖𝑔𝑣 (𝑢𝑝𝑘𝑣 , 𝑤, 𝑇), and sends 

𝜎𝑃𝑎𝑦
∗ ∥ 𝜎𝑀

′  to 𝑈𝑠𝑒𝑟. 

 

5.5.  Payment agreement 

𝑈𝑠𝑒𝑟 de-blinds 𝜎𝑃𝑎𝑦
∗  to obtain 𝜎𝑃𝑎𝑦 and sends it to 𝑀 using an anonymous identity (e.g., Tor).  

𝑀 performs verification of 𝜎𝑃𝑎𝑦. If valid and it is the first use, 𝑀 makes the payment to the one-time public 

key address 𝑃: creating a transaction with 𝑡𝑝𝑘𝑣 as the input and P as the output, transferring an amount w. 
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5.6.  Transaction success  

Once the merchant sees the payment from the user to the one-time public key address on the 

blockchain, they immediately fulfill the transaction, such as shipping the goods, without waiting for 

additional block confirmations. The user, upon receiving the goods, uses the random number r (used to 

generate the one-time public key address) as their private key to sign a message, creating a proof of receipt 

𝜎𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 =  𝑆𝑖𝑔𝑟(𝑚𝑠𝑔). This signature is sent to the merchant as confirmation that the goods have been 

received. The merchant verifies the validity of the proof using the corresponding public key, ensuring the 

transaction was completed as agreed. This process ensures secure and immediate transaction fulfillment, with 

the blockchain providing a transparent and immutable record of the transaction. 

 

5.7.  Accountability protocol 

If a malicious merchant does not fulfill their commitment, 𝑈𝑠𝑒𝑟 sends 𝜎𝑉𝑒𝑛𝑑𝑒𝑟  =  𝑆𝑖𝑔𝑣 (𝑅, 𝑚𝑠𝑔) to 

𝑀. The proxy verifies the signature. If valid, 𝑀 calculates 𝑃 =  𝑝𝑘𝑎 +  𝐻(𝑟, 𝑣) ⋅  𝐺 and 𝑅′ = 𝑟𝐺. If 𝑅 =
 𝑅′, 𝑃is indeed the agreed-upon one-time public key. A transaction with 𝑃 as input can be found on the 

blockchain, proving that 𝑈𝑠𝑒𝑟 has indeed made the payment. If a malicious user falsely claims the merchant 

did not fulfill their commitment, 𝑉𝑒𝑛𝑑𝑒𝑟 can disclose 𝜎𝑟𝑒𝑐𝑒𝑖𝑣𝑒. The signature verification algorithm will 

confirm if 𝜎𝑟𝑒𝑐𝑒𝑖𝑣𝑒 proves that 𝑈𝑠𝑒𝑟 has received the goods. 

 

 

6. SYSTEM ANALYSIS 

6.1.  Validity of one-time public key address 

When the user randomly selects r from the range [1, n-1], the one-time public key address P is 

calculated as 𝑃 =  𝑝𝑘𝑎 +  𝐻(𝑟, 𝑣) ⋅  𝐺, 𝑃′ =  𝑝𝑘𝑎 +  𝐻(𝑟, 𝑣) ⋅  𝐺. Both the user and the merchant compute 

the same public key address P, which is verified as 𝑃 =  𝑃′. The corresponding private key is derived as 

𝑠𝑎 +  𝐻(𝑟, 𝑣) ⋅  𝑏, but only the merchant holds the private key 𝒃𝒗 associated with the one-time public key. 

This ensures that only the merchant can access the private key and complete transactions. To enhance the 

efficiency of the key generation process, deep learning algorithms are applied, optimizing computation speed. 

These algorithms also improve the security of the system by ensuring quicker and stronger key generation. 

 

6.2.  Reliability 
Reliability of M: The reliability of M (the mixing center) is a key aspect of the system, and it refers 

to the user's ability to prove M's dishonesty if M engages in fraudulent behavior. In the context of this 

system, the reliability of M is safeguarded by a mechanism that allows users to disclose M's signature and 
associated transaction details on the blockchain should M behave dishonestly. This transparent and traceable 

process enhances the trustworthiness of the mixing center. To further strengthen the reliability of the system, 

deep learning algorithms are employed to continuously monitor transaction patterns and detect any 

anomalous behavior from M. These algorithms analyze blockchain transactions for signs of inconsistency or 

fraud, such as suspicious timing, unusually large transactions, or deviations from normal behavior. By 

identifying such anomalies in real time, deep learning models can help prevent dishonest actions from M, 

ensuring that the system remains reliable and secure for users. 

Non-forgery: The non-forgery property of the signature algorithm is crucial for ensuring the 

integrity and authenticity of transactions. This property guarantees that once a signature is generated for a 

transaction, the user cannot alter the transaction details—such as the account balance or the payment 

information—without invalidating the signature. Essentially, only the holder of the private key associated 

with the public key used in the transaction can generate a valid signature that includes payment details. To 
further protect against fraud, even if an attacker manages to steal a legitimate signature with payment details 

and attempts to submit it to M, the system ensures that M will only transfer the corresponding cryptocurrency 

to the public key address included in the signature. 

Since the attacker does not possess the corresponding private key, they will be unable to use or 

access the cryptocurrency, rendering the stolen signature useless. To enhance this non-forgery property, deep 

learning techniques are integrated into the system to detect and prevent counterfeit signatures. These 

algorithms analyze patterns in signatures and transactions to identify potential forgeries. By training on large 

datasets of legitimate signatures and transactions, deep learning models can spot subtle discrepancies or 

anomalies that may indicate a forged signature. This proactive approach to signature validation strengthens 

the overall security of the system, ensuring that only authorized users can perform legitimate transactions and 

preventing malicious actors from exploiting vulnerabilities in the signature process. 
 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1023-1039 

1036 

6.3.  Anonymity 
Passive attacks: The system is designed to be resistant to passive attacks, ensuring that attackers 

cannot passively monitor or intercept users' information without detection. In line with methods used in 

previous research [17], the system prevents passive attackers from linking a user's deposit account to the one-

time public key address used for transactions, effectively safeguarding additional payment privacy. The 

system’s anonymity level improves as more honest users engage with the mixing service (denoted as M), as 

the larger number of participants increases the complexity of tracking and correlating transactions. This 
growth in participants directly correlates with M's available resources, making the task of linking transactions 

more difficult. To enhance this protection, deep learning models are integrated into the system. These models 

continuously monitor user behaviors and transaction patterns to detect any unusual activity that might 

indicate attempts to breach anonymity. By analyzing trends and emerging threats, these models improve the 

system’s ability to mitigate passive threats, enhancing the overall privacy protection for users. 

Active attacks: While the system is robust against passive attacks, it cannot fully defend against 

active attacks. Active attackers may attempt to manipulate the network to reduce the perceived number of 

anonymous users, making it easier for them to identify individual participants. These attackers may deploy 

various network-based attacks [20] to disrupt or obscure the anonymity of users. To combat such threats, the 

system incorporates deep learning-based anomaly detection techniques that analyze network traffic and user 

behavior for signs of manipulation or malicious activity. By using these advanced algorithms, the system 

increases the cost and complexity of executing successful active attacks. The deep learning models can 
identify irregular patterns and flag potential attacks in real time, raising the difficulty for adversaries trying to 

break the anonymity protocol. 

Attacks by M: Although the system is well-protected against attacks from passive and active 

attackers, it can also defend against attacks originating from the mixing center (M). The partial blind 

signature algorithm plays a critical role in maintaining user anonymity by ensuring that M cannot link a 

user’s deposit address with the one-time public key address used for the transaction. Moreover, M does not 

have any knowledge of which merchant the one-time address belongs to, preserving transaction 

confidentiality. However, the system is still vulnerable to timing attacks, where M might deduce the user’s 

identity by analyzing the timing of transactions. For instance, if M signs the user’s blinded payment 

information when the number of users is very low and the user then quickly sends the de-blinded payment 

information back to M, there is a higher likelihood that M could link the user to the one-time public key 
address. To address this vulnerability, advanced deep learning algorithms are implemented to detect and 

mitigate timing attacks. These algorithms monitor transaction timing and sequence patterns, identifying 

potential risks associated with rapid de-blinding and sending of payment information. By analyzing 

transaction behaviors, the deep learning models can flag suspicious activities that may indicate an attempt to 

exploit the timing gap. This proactive approach enables the system to detect and counteract timing attacks 

more effectively, ensuring that the anonymity of users is upheld. 

 

6.4.  Effectiveness 
Fairness: The system is designed to ensure fairness for all parties involved in the transaction. From 

the merchant’s standpoint, payment confirmation is a prerequisite for shipping goods, thus protecting their 

interests by guaranteeing that no goods are shipped without proper payment. On the other hand, from the 
user’s perspective, once the payment is completed and confirmed, the merchant is unable to deny the 

transaction, ensuring that the user is not left at a disadvantage. This mutual assurance fosters trust between 

both parties and promotes fairness in the transaction process. 

Timeliness: Initialization phase: The time-consuming processes in this phase mainly involve the 

execution of the signature algorithm, transaction creation, and the initial confirmation. However, these steps 

need to be performed only once during the initialization of the system, which does not have a significant 

impact on the time required for subsequent payments. Transaction start phase: This phase involves two key 

steps: executing the signature algorithm and creating the transaction. While these operations consume time, 

the overall time required is minimal, thanks to the optimized execution of the signature algorithm. 

Transaction completion phase: The final phase mainly focuses on generating the receipt signature, which is 

necessary for confirming the transaction's completion. Though this step contributes to some time 

consumption, it is streamlined for efficiency. Overall, the system employs the signature algorithm three times 
per transaction. By leveraging efficient, short signature algorithms and incorporating deep learning 

techniques for optimizing signature processing, the system significantly reduces the time required for 

transaction confirmation. In comparison to traditional systems, which often require up to 60 minutes for 

confirmation, this approach enhances the overall transaction speed, improving efficiency and reducing 

delays. 
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Compatibility: One of the key strengths of this system is its ability to integrate with existing 

blockchain technologies without altering the underlying protocol. This ensures that the new system is fully 

compatible with current blockchain systems, allowing for easy adoption and integration. The addition of deep 

learning algorithms further enhances the system’s performance by optimizing processes such as transaction 

verification, signature generation, and network congestion management, all while maintaining full 

compatibility with existing protocols. This compatibility makes it possible to adopt these advanced features 
without disrupting the overall blockchain ecosystem. 

 

 

7. CONCLUSION 

The decentralized structure of blockchain technology, while offering significant advantages such as 

enhanced security and transparency, also presents several challenges that hinder the practical adoption of 

blockchain-based cryptocurrencies. Among these challenges are payment delays and potential privacy 

vulnerabilities, which can complicate the seamless execution of transactions. This paper proposes a solution 

to address these issues by introducing a proxy as a payment intermediary, along with the integration of 

advanced deep learning algorithms to further optimize the system's performance. The proxy acts as an 

intermediary, reducing the time required to confirm transactions and improving user privacy by obfuscating 

direct links between transaction parties. This approach not only alleviates payment delays but also enhances 
the overall efficiency of the blockchain-based payment system. Importantly, the use of the proxy does not 

compromise the decentralized or deflationary nature of the blockchain, ensuring that currency generation 

remains consistent with its original principles.  

By leveraging deep learning models, the system is able to dynamically optimize various aspects of 

the payment process, including predicting network congestion, reducing transaction confirmation times, and 

mitigating potential privacy breaches. These innovations result in a more efficient, secure, and privacy-

preserving cryptocurrency payment system, making it more viable for widespread adoption in practical 

applications. 
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