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 This research aims to address challenges in distributed computing, focusing 
on the ray framework, which has potential for efficient parallel and 

distributed task execution. While methods such as model-checkers and 
fuzzing have been applied to detect bugs, both have limitations in handling 
the complexity of distributed computing, particularly in dealing with issues 
like state-space explosion and identifying rare bugs. This study proposes an 
alternative approach through experimental analysis and bug abstraction 
methods to discover, identify, and classify bugs in the ray framework. 
Experimental analysis involves isolating and re-testing bugs in a controlled 
environment to understand their characteristics, while bug abstraction 

analyzes the factors causing bugs to identify common patterns and 
characteristics. The results of this research successfully identified three main 
categories of bugs: crash, performance, and inaccurate status, and revealed 
bug characteristics that do not depend on actor instance multiplicity, actor 
type, specific event sequences, or particular configurations. This research 
makes a significant contribution to the development of more effective and 
efficient bug detection methods in distributed computing, particularly in the 
ray framework, and paves the way for further research to enhance the 

reliability of distributed systems.  
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1. INTRODUCTION  
In the rapidly evolving digital era, distributed computing plays a crucial role in connecting 

numerous computers and large-scale internet infrastructures, facilitating collaboration and communication 

among computers or devices [1]. This technology enables computational processes to be distributed across 

multiple locations rather than being confined to a single centralized system. Distributed computing is a 

concept in which computing components are spread across different locations instead of being concentrated 

in one place. These components work simultaneously to solve complex tasks, breaking down large workloads 

into smaller ones that can be executed in parallel [2]. This parallelism significantly improves efficiency and 

processing speed [3]. Moreover, distributed computing enhances system reliability, as failures in one 

component can be mitigated by other components taking over the workload, thereby minimizing downtime. 

As data processing techniques continue to evolve, distributed computing has become a widely 

adopted and essential method for handling large-scale computational tasks. However, several key challenges 
in distributed computing have been identified, including compatibility issues, domain constraints, 

heterogeneity, and security concerns [2]. Addressing these challenges is crucial to optimizing the 

performance and robustness of distributed systems. One of the significant challenges in distributed 

https://creativecommons.org/licenses/by-sa/4.0/
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computing is the straggler effect, where communication and computation processes among nodes become 

unsynchronized, leading to performance degradation. Research by Sun et al. titled "Coded computation 

across shared heterogeneous workers with communication delay" explores methods to mitigate this effect by 

improving efficiency in distributed computing [4]. Ensuring synchronization among distributed nodes 

remains a critical factor in enhancing system performance.  

Another fundamental issue in distributed computing is the presence of bugs, which refer to errors or 

malfunctions in software programs [5]. Research in TaxDC categorizes bugs in distributed systems based on 
non-deterministic concurrency (DC) errors. This study analyzed 104 DC-related bugs across four large-scale 

distributed data processing systems: Cassandra, Hadoop MapReduce, HBase, and ZooKeeper [6]. Similarly, 

the network error analysis tool (NEAT) study focuses on network partition failures in cloud systems. When a 

network partition occurs, devices within the affected network lose communication, causing disruptions. Their 

study documented 136 system failures due to network partition errors across 25 distributed systems [7]. 

Lastly, the Agamotto study classifies bugs in persistent memory (PM) applications, a type of memory that 

retains data even after power loss, eliminating the need for file systems. This research identifies two primary 

categories of bugs: missing bug flush/fence and extra bug flush/fence, both of which impact data consistency 

and reliability in PM systems [8]. 

To address these challenges, many researchers have proposed solutions such as using model-checker 

methods. A model-checker is a tool used to verify whether a system meets specific requirements by 

exhaustively exploring all possible states. However, when applied to large workloads, this method encounters 
a problem known as state-space explosion, where the number of potential system states becomes 

unmanageably large [9], [10]. Additionally, automated testing techniques like fuzzing have been employed to 

detect bugs. Fuzzing involves injecting large amounts of random or unexpected input data into a system to 

uncover errors that might not be detected through conventional testing. However, this approach struggles 

with identifying rare bugs, as most inputs fail to trigger meaningful errors, making the process inefficient 

[11]. Consequently, there is a pressing need for more effective and efficient methods for identifying and 

addressing bugs in distributed computing systems. 

Given these challenges, this research applies experimental analysis and bug abstraction methods to 

detect and categorize bugs in the ray framework. Ray is a distributed computing framework designed for 

efficient execution of parallel and distributed tasks [12]. Unlike model-checkers and fuzzing, which have 

limitations in handling complex distributed environments, our approach focuses on systematically re-
examining previously observed bugs to understand their characteristics and categorize them accordingly. 

Experimental analysis involves executing and isolating bug occurrences in a controlled environment to 

investigate their root causes, while bug abstraction systematically analyzes contributing factors to identify 

recurring patterns in bug behavior. 

The choice of ray as the testing platform is motivated by its capabilities in executing distributed 

tasks across multiple locations while efficiently handling large-scale data processing [12]. Ray’s architecture 

consists of three primary layers: Ray AI Libraries, Ray Core, and Ray cloud. This research focuses on the 

Ray Core layer, which enables developers to build scalable Python applications and accelerate machine 

learning workloads. The Ray Core layer is responsible for task distribution, scheduling, and inter-node 

communication, making it crucial for achieving high performance and scalability in distributed computing 

[13]. Other distributed computing frameworks, such as Hadoop, Spark, and Storm, offer distinct advantages 
in different scenarios. Hadoop is optimized for offline batch data processing but is relatively slow. Spark 

provides faster large-scale data processing, making it preferable for real-time analytics. Meanwhile, Storm 

specializes in real-time stream processing, enabling efficient handling of continuous data flows [14]. Each of 

these frameworks serves specific use cases, but research on bug detection in ray remains limited, highlighting 

the need for further investigation. 

The strengths and weaknesses of the ray framework have been analyzed in studies such as "Ray-

based Elastic Distributed Data Parallel Framework with Distributed Data Cache" by Lin et al. and "Boost the 

Performance of Model Training with the Ray Framework for Emerging AI Applications" by Ruan et al. [14], 

[15]. The advantages of ray framework include fault tolerance (Ray can recover from failures without 

significant data loss), scalability (users can adjust the number of training processes dynamically), high 

performance (optimized for high-performance distributed execution), and flexibility (supports various 

programming models). However, ray also has setup complexity (users must understand multiple concepts and 
configurations) and resource management challenges (proper resource allocation is necessary to avoid 

bottlenecks). 

The decision to focus on the ray framework for testing stems from the limited research conducted to 

analyze bugs in this computing framework. Previous studies highlight ray’s advantages in increasing 

efficiency. For example, research by Lin et al. demonstrated that Ray improved data processing efficiency by 

up to twice the speed of PyTorch’s dataloader on a 10-Gigabit Ethernet cluster [15]. Similarly, Ruan et al. 
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found that ray reduced model training time by up to 50% without compromising accuracy [16]. Additionally, 

Sheikh et al. showed that ray accelerated training for knowledge graph embedding models by a factor of 

twelve while maintaining evaluation metrics [17]. These studies emphasize ray’s performance benefits, but 

none focus on systematically identifying and analyzing its software bugs. 

Experimental research is a well-established method for examining cause-and-effect relationships, 

including scientific and engineering challenges. According to Sylwester et al. in "Experimental Design and 
Biometric Research: Toward Innovations", experimentation plays a crucial role in addressing contemporary 

scientific issues, including sustainable development, through well-defined problem statements and causal 

analysis [18]. In distributed computing, experimental research often requires simulations or controlled test 

environments. For instance, McKevett applied brief experimental analysis (BEA) to diagnose learning 

difficulties in mathematics and match interventions to specific student needs [19]. Similarly, Mellott used 

BEA to improve students' multiplication skills, demonstrating its effectiveness in tailoring solutions to 

specific problems [20]. These examples underscore the relevance of experimental analysis in identifying and 

mitigating issues in distributed computing systems. Furthermore, abstraction is a fundamental principle in 

computational research. According to Beren Millidge in "Towards a Mathematical Theory of Abstraction", 

abstraction involves creating simplified representations of complex systems that retain essential 

characteristics while omitting irrelevant details. This process enables researchers to focus on key aspects, 

improving analytical efficiency and decision-making [21]. 
In conclusion, this research differs from previous studies by applying experimental analysis and bug 

abstraction to systematically identify and categorize bugs within the ray framework. While prior research 

focused on improving ray’s performance and efficiency, this study aims to deepen the understanding of its 

software bugs, ultimately contributing to the enhancement of distributed computing reliability. 

 

 

2. RESEARCH METHOD  

The research method, as described in Figure 1, is structured into three key stages, such as 

preparation, experimental analysis, and bug abstraction. Each stage plays a vital role in the overall research 

process, beginning with the preparation phase, which ensures a solid foundation for the experiments. The 

details of each process are explained in the following subsections.  
 

2.1.  Preparation 

This phase involves several critical steps to lay a solid foundation for the research, ensuring that the 

experimental process is thorough and consistent. The details of these steps are as follows,  

 

2.1.1. Collect bug dataset 

The collection of the bug dataset for the ray framework involves a multi-step process. Initially, 

researchers access the public GitHub repository of the ray framework. Within this repository, the "Issues" 

section is selected to identify relevant bug reports. Issues are filtered to include numbers from #20000 to 

#40000, targeting reports from late 2021 or early 2022 up to the end of 2023 to ensure relevance and recency. 

The dataset is further refined using filters, such as “is:closed” to select only resolved issues, “is:bug” to focus 
on actual bugs rather than feature requests or documentation updates, and “is:core” to ensure that the issues 

pertain to the core components of the ray framework. Issues are then examined for those with associated pull 

requests and reproduction scripts, as these provide valuable insights into the components causing the bugs 

and the conditions under which they occur.  

 

2.1.2. Build testing environment 

The creation of the testing environment, as shown in Algorithm 1, is executed through Docker, 

which provides a containerized setup for isolating and managing dependencies. The process begins by 

selecting a suitable base Linux image for the Docker container. The system is then updated, and Git is 

installed to facilitate the cloning of the ray framework repository. Once the repository is cloned, the working 

directory is set to the project folder, and a specific commit related to the bug is checked out. Further system 

updates are performed, and essential packages such as Python3, ca-certificates, and others are installed. A 
virtual Python environment is created and activated to segregate Python dependencies from the main system. 

Additional libraries and tools, including Node.js, Bazel, and various build essentials, are installed. The final 

steps involve copying the necessary bug reproduction scripts into the container and configuring the entry 

point to bash, which provides an interactive shell when the container is running. This setup ensures that the 

testing environment accurately mirrors the conditions needed to reproduce and analyze the bugs.  
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Algorithm 1. Testing docker enviroment 
FROM ubuntu:22.04 

 

RUN apt-get update && \ 

 apt-get upgrade -y && \ 

 apt-get install -y git 

 

RUN git clone https://github.com/ray-project/ray.git 

 

WORKDIR ray 

  

# checkout at parent commit version bug and set to BUG_VERSION value 

RUN git checkout BUG_VERSION  

 

RUN apt-get update && apt-get install -y \ 

 python3 \ 

 python3-pip \ 

 ca-certificates \ 

 nano 

 

RUN apt install -y python3.10-venv 

 

RUN echo 'alias python="python3"' >> ~/.bashrc 

RUN echo 'alias pip="pip3"' >> ~/.bashrc 

 

SHELL ["/bin/bash", "-c"] 

RUN python3 -m venv venv 

 

ENV VIRTUAL_ENV=venv 

ENV PATH="$VIRTUAL_ENV/bin:$PATH" 

 

#RUN pip3 install -U https://s3-us-west-2.amazonaws.com/ray-wheels/latest/ray-3.0.0.dev0-

cp310-cp310-manylinux2014_x86_64.whl 

 

RUN apt-get install -y software-properties-common 

RUN add-apt-repository -y ppa:ubuntu-toolchain-r/test 

RUN apt-get install -y build-essential curl gcc-9 g++-9 pkg-config psmisc unzip 

RUN update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 90 \ 

 --slave /usr/bin/g++ g++ /usr/bin/g++-9 \ 

 --slave /usr/bin/gcov gcov /usr/bin/gcov-9 

 

RUN echo "insecure" >> ~/.curlrc 

 

RUN source venv/bin/activate && ci/env/install-bazel.sh 

 

RUN curl --silent -o- https://raw.githubusercontent.com/creationix/nvm/v0.39.0/install.sh 

| bash 

ENV NODE_VERSION=14.21.3 

ENV NVM_DIR=/root/.nvm 

RUN . "$NVM_DIR/nvm.sh" && nvm install ${NODE_VERSION} 

RUN . "$NVM_DIR/nvm.sh" && nvm use v${NODE_VERSION} 

RUN . "$NVM_DIR/nvm.sh" && nvm alias default v${NODE_VERSION} 

ENV PATH="/root/.nvm/versions/node/v${NODE_VERSION}/bin/:${PATH}" 

ENV NODE_PATH="$NVM_DIR/v$NODE_VERSION/lib/node_modules:${NODE_PATH}" 

WORKDIR dashboard/client 

RUN npm ci 

RUN npm run build 

 

 

WORKDIR ../../python 

RUN source ../venv/bin/activate && pip3 install -e . --verbose 

 

WORKDIR .. 

 

RUN apt-get install -y vim 

 

RUN pip install pytest 

RUN pip install psutil 

RUN pip install six  

 

COPY ./script.sh / 

COPY ./recreate.py / 

 

ENTRYPOINT /bin/bash 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Experimental analysis and bug abstraction for distributed computation … (Arnaldo Marulitua Sinaga) 

793 

2.1.3. Create reproduction and shell scripts 

In this step, the focus is on developing scripts necessary for bug reproduction and testing. 

Researchers start by accessing one of the selected issues from the bug dataset. A reproduction script, named 

recreate.py, is created based on the details provided in the issue description. This script is designed to 

replicate the bug under controlled conditions, ensuring that the experiment mirrors the issues reported. 

Alongside this, a shell script named script.sh is developed to facilitate the execution of the reproduction script 
as outlined in Algorithm 2. This shell script automates the process of activating the Python virtual 

environment and running the reproduction script within a Unix/Linux environment, thereby streamlining the 

testing procedure and ensuring consistent execution across different trials. 

 

Algorithm 2. Shell Script 
source /ray/venv/bin/activate && python recreate.py 

 

2.1.4. Build docker image and container 

The construction of the Docker image and container involves several detailed steps. First, a Docker 

image is created using a Dockerfile, which specifies the necessary components, such as code, runtime, 
libraries, and dependencies, required for the application. The command “docker build -t image_name.” is 

utilized to build the image, where “-t image_name” tags the image with a name, and. indicates that Docker 

should look for the Dockerfile in the current directory. After successfully building the image, the next step is 

to create and run a container from this image using the command “docker run -it --name container_name 

image_name”. This command initiates a new container in interactive mode, allowing users to interact with 

the container through the terminal. The “-it” option ensures the container runs interactively, with “--name 

container_name” assigning a specific name to the container, and “image_name” refers to the Docker image 

used for container creation. This process ensures that the application runs in a consistent and isolated 

environment, facilitating accurate testing and analysis. 

 

2.2.  Experimental analysis 
The experimental analysis phase is crucial for identifying and understanding the bugs within the 

system. It involves several steps bug discovery, identification, and isolation. The initial step involves running 

the shell script, which activates the testing environment, initiates the reproduction script, and ensures all 

necessary dependencies are present. This script helps maintain a consistent testing environment and verifies 

that all components are functioning as expected. Following the script execution, the log output is reviewed. 

This output contains detailed information about the execution process, including error messages and 

warnings, which are essential for detecting the presence of bugs. The next step is to compare the actual 

results obtained from the log with the expected outcomes. Discrepancies between these results indicate the 

presence of a bug. A thorough analysis is then conducted to identify the specific components within the 

system responsible for the bug, involving code examination and understanding the interactions between 

various system components. Once the bug is identified, the next step is to isolate it by examining the 

symptoms and conducting a root cause analysis. This process involves a detailed investigation of the 
observed symptoms and identifying the specific conditions that trigger the bug. By isolating the bug, 

researchers can determine its category and develop strategies for addressing and fixing it, thereby enhancing 

the overall reliability and performance of the system. 

 

2.3.  Bug abstraction 

Following the application of experimental analysis, the bug abstraction method is employed to 

categorize bugs based on their key characteristics. This method leverages the findings from experimental 

analysis to systematically extract these characteristics. The abstraction process involves a series of targeted 

questions designed to illuminate the bug's core attributes. By systematically addressing each question, a 

comprehensive understanding of the bug's characteristic is established. The specific questions employed in 

this process are explained in detail below,  

 Do we need multiple instances of a certain actor for the bug to happen? 

This question explores whether the bug occurs only when there are multiple instances of a certain actor 

operating simultaneously. Where, instances of an actor means various copies or objects of the actor 

running the same task. This helps in identifying whether the bug is related to concurrency or resource 

management issues. 

 Do we need multiple types of actors for the bug to happen? 

This question focuses on the need to determine how many and different types of actors are involved 

when a bug arises. It is important to identify whether the bug is related to specific interactions between 

components or tasks in the system. 

 Does it happen after a failure, or can it happen without a failure? 
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This question asks whether the bug arises as a direct result of a failure of the system or another 

component, or whether the bug can occur independently. It is important to understand whether the bug 

is reactive to a specific failure condition or can occur without a prior failure. 

 Does it require a specific order of events to occur?  

This question aims to find out if the bug only appears when there is a specific order of events that must 

occur, which is not always guaranteed to happen. This suggests that the bug may be related to 

concurrency and execution order issues in the system. By understanding whether a specific sequence is 
required, it can help in identifying bugs caused by race conditions. 

 Does it happen only for a specific configuration, or can it happen with any configuration? 

This question aims to find out if the bug only appears in a specific system configuration or can occur in 

various configurations. This is important to determine whether the bug is an environment-specific 

problem or a broader problem. 
 
 

 
 

Figure 1. Main research procedure 
 
 

3. RESULTS AND DISCUSSION 

This section presents the results of the study and provides a discussion of the findings obtained 

through the implementation of the experimental analysis and bug abstraction methods. The discussion is 

structured to offer a comprehensive interpretation of the findings, comparisons with prior research, and 
implications for future studies.  

 

3.1.  Bug symptom categorization 

The process of collecting bug datasets using the defined bug dataset collection method resulted in a 

dataset comprising 91 bugs. The experimental setup, which included test environment creation, reproduction 

and shell scripts, Docker image and container deployment, and the application of the experimental analysis 

and bug abstraction methods, allowed for the classification of bug symptoms and the determination of their 

frequency. Figure 2 illustrates the distribution of bug occurrences by category. The histogram presents the 

number of occurrences of each bug category, with the horizontal axis representing frequency and the vertical 

axis listing different bug categories. Each bar corresponds to the number of cases recorded for a given 

category. The following is an explanation of the bug categorization results that have been found,  
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 Crash (27 issues): This category includes bugs that cause an application or system to abruptly stop 

functioning. These issues are high priority due to their critical impact on users. 

 Performance (14 issues): Performance bugs reduce application speed or responsiveness, often caused by 

inefficient algorithms, excessive resource usage, or concurrency problems. 

 Inaccurate Status (11 issues): These bugs lead to inconsistencies between displayed information and 

actual system states, potentially resulting in user confusion. 

 Semantic (9 issues): Semantic bugs are logical errors that cause incorrect behavior, even if the 

application does not crash. 

 Hang (7 issues): This category includes bugs that make the system unresponsive due to deadlocks, 

infinite loops, or thread management issues. 

 Resource Leak (6 issues): These bugs occur when applications fail to release resources properly, leading 

to performance degradation or crashes. 

 Other Categories: Additional issues such as memory leaks, false positives, and overflow errors were 

also identified, though less frequently. 

 

 

 
 

Figure 2. Bug symptom categorization 

 

 

The results of the implementation of classification categorization based on bug symptoms in ray 

framework obtained several bug categories based on the number of occurrences that appear most often. The 

bug categories with more than ten occurrences are “Crash,” “Performance”, and “Inaccurate Status”. Based 

on the results of the study “A Comprehensive Study of WebAssembly Runtime Bugs” by Yue Wang, there is 

validation of the results of the implementation of bug symptom categorization in the ray framework, 
especially for the “Crash” category as one of the categories with the highest frequency. This study found that 

the most common symptom of bugs in WebAssembly runtime is “Crash”, which accounts for 56.86% of all 

WebAssembly runtime bugs [22]. This finding is in line with the results of the implementation of bug 

symptom categorization in ray framework, where the “Crash” category is one of the categories with the 

highest frequency of bug occurrence. This similarity can be explained by the fundamental nature of the 

runtime system, both WebAssembly and ray framework, which is responsible for executing and managing 

tasks or applications that run on it. Errors in the runtime system can cause failures or crashes in the executed 

applications or tasks, thus making “Crash” a common bug symptom. 

Then another support is in the research “Performance Bug Analysis and Detection for Distributed 

Storage and Computing Systems” by Jiaxin and his team, emphasizing that bugs that cause blocking, namely 
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bugs that cause execution time to increase dramatically as workload size increases, are an important category 

of performance bugs in distributed storage and computing systems [23]. The “Performance” category 

identified in the implementation of bug symptom categorization can be supported by this study, given that 

blocking type bugs directly affect system performance. This suggests that identifying and addressing 

performance bugs, including blocking bugs, should be a priority in an effort to improve the reliability and 

performance of ray framework systems. 

Plus the research “Vicious Cycles in Distributed Software Systems” by Shangshu and his team, 
where identified vicious cycles in distributed software systems, which are mainly caused by improper error 

handling, and suggested that monitoring tools as well as the use of exponential backoff can prevent the 

occurrence of such cycles [17]. These findings can support the identification of “Inaccurate Status” and 

“Performance” issues as major bug symptoms. The use of effective monitoring and exponential back off 

strategies can help in reducing the frequency of bugs related to inaccurate status and performance issues, thus 

strengthening the argument that the development of better error handling strategies and monitoring 

mechanisms can have a significant impact on the ray framework. The identification of dominant bug 

categories suggests that the ray framework requires targeted improvements in crash mitigation, performance 

optimization, and accurate state representation. Future research should explore advanced monitoring 

techniques and automated debugging tools to reduce the frequency of these issues. 
 

3.2.  Bug main characteristics results 

This subsection explores key characteristics of the identified bugs, particularly focusing on the 

dependency between actor instances and bug occurrences within the ray framework.  
 

 

Table 1. Bug main characteristics results 
Characteristic Instance of actor Types of actors Occurrence of failure Ordering dependency Configuration dependency 

Count of yes 17 34 57 26 34 

Count of no 74 57 34 65 57 

Total  91 

 

 

3.2.1. Dependency of instance of actor in bug 
The first column of Table 1 shows that 74 out of 91 identified bugs do not require multiple actor 

instances to occur, indicating that these bugs emerge independently within isolated actor operations. 

However, 17 issues exhibit a dependency on multiple actor instances, suggesting that concurrency and 

interactions between actors contribute to the emergence of certain bugs. The primary causes of these issues 

are logic errors in actor handling, such as improper reference management, data inconsistencies, and 

insufficient error handling. 

Based on the results conducted on the ray framework, the majority of bugs do not depend on the 

instances of actors in the occurrence of bugs. Based on the results of the research “Actor concurrency bugs: a 

comprehensive study on symptoms, root causes, application programming interface (API) usages, and 

differences” by Bagherzadeh and his team, it can be validated that the majority of bugs in ray framework do 
not require the presence of multiple actor instances to appear. The study categorized actor concurrency bugs 

into five symptoms, ten root causes, and a small number of API packages. Where logic was the most 

common cause and untyped communication was the least common [24].  

These findings support the results which show that ray framework bugs can occur in independent 

actor operations, without the need for interaction with other actor instances. This is because most bugs are 

caused by logic errors in the handling and management of the actors themselves, rather than from interactions 

between actors. Logical errors, such as improper reference handling, improper data management, or 

insufficient error handling, can cause bugs in individual actors, without involving other actors. For example, 

bugs such as improper argument handling during class instantiation, use of serialization protocols that do not 

support large data sizes, or inaccurate handling of actor states can all occur to a single actor without requiring 

interaction with other actors. Therefore, the implementation results showing that the majority of bugs in ray 

framework do not require a multiplicity of actor instances to occur are supported by Bagherzadeh and his 
team's research findings which state that logic errors are the most common cause of actor concurrency bugs, 

and these bugs can occur in individual actors without involving interactions between actors.  
 

3.2.2. Dependency on types of actors in bugs 

The second column of Table 1 reveals that 57 out of 91 bugs in the ray framework are independent 
of actor type diversity. These bugs occur in the execution of a single actor without requiring interaction with 

actors of different types. However, 34 issues exhibit dependencies on multiple actor types, indicating that 

interactions between distinct actor roles can trigger complex bug conditions.  
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The results highlighting the dependence on types of actors in the emergence of bugs in the ray 

framework, show that the majority of bugs do not depend on the diversity of actor types. This result is 

supported by the results of the study “A Comprehensive Study on Bugs in Actor Systems” by Hedden and his 

team, where it can be validated that the majority of bugs in ray framework do not depend on the diversity of 

actor types. The study analyzed a total of 126 actor-related bugs, and found that 57.5% of the bugs were 

common logic errors, while communication-related bugs were only 20.5% and coordination between actors 
was 22% [25]. These findings support the implementation results which show that bugs in ray framework can 

occur in a single execution of a particular actor, without requiring interaction with other actors. The majority 

of bugs are caused by general logic errors, such as null pointers, buffer optimization issues, or the system not 

terminating properly, which are not specifically related to communication or coordination between actors. 

Although this study also identified bugs related to communication and coordination between actors, 

the percentage is smaller than the general logic errors. It can be concluded that this shows that most of the 

bugs in the ray framework can occur in individual actors, without involving interaction with other actors. For 

example, bugs such as improper reference handling, incorrect data management, or inadequate error handling 

can all occur on a single actor without requiring interaction with other actors. These bugs are mostly caused 

by logical errors in the handling and management of the actor itself, not from interactions with other actors. 

 

3.2.3. Occurrence of failure in bug occurrence 
The third column of Table 1 shows that 57 out of 91 bugs are reactive, meaning they arise as a direct 

response to system failures. These bugs are triggered by pre-existing errors or malfunctions. Conversely, 34 

bugs occur independently of system failures, implying they stem from inherent implementation flaws rather 

than system breakdowns. 

The results show that the occurrence of bugs in ray framework is influenced by system failure 

dependencies. This result is supported by the results of the research “Bug characteristics in open source 

software” by Lin Tan, where it can be validated that the majority of bugs in ray framework appear as a direct 

response to a system failure. This study found that semantic bugs are the dominant root cause in open source 

software, and most security bugs are caused by semantic bugs [26]. 

This finding supports the results which show that bugs in the ray framework are reactive, where they 

arise as a direct consequence of a failure or error that has occurred in the system. Semantic bugs, such as 
logic errors, improper data handling, or insufficient error handling, tend to appear in response to failure or 

error conditions that occur in the system. For example, bugs such as improper handling when actors are 

deleted, inadequate error handling by GCS when actors are deleted, or lack of synchronization between status 

and error messages, all of which arise in direct response to a failure condition or error occurring in the 

system. 

These bugs are reactive in that they arise as a result of a pre-existing failure or error condition, such 

as an actor failure, node failure, or error in data management. The system then reacts to those failure 

conditions or errors in an incorrect way, causing semantic bugs to appear. Therefore, the implementation 

results showing that the majority of bugs in ray framework arise as a direct response to a system failure are 

supported by Lin Tan's research findings which state that semantic bugs are the dominant root cause in open 

source software, and these bugs tend to arise in response to failure conditions or errors in the system. 
 

3.2.4. Ordering dependency in bug occurrence 

The fourth column of Table 1 indicates that 65 out of 91 bugs are independent of event sequence. 

These bugs arise from general logic errors rather than specific concurrency or timing conditions. However, 

26 bugs exhibit a dependency on event order, meaning that a precise sequence of interactions is necessary to 

trigger them. 

The results show that bug occurrence in ray framework does not always require a specific sequence 

of events. Based on the results of the research “A Method and Tool for Finding Concurrency Bugs Involving 

Multiple Variables with Application to Modern Distributed Systems” by Zhuo Sun, there is a rejection of the 

implementation results which state that the majority of bugs in ray framework do not require a specific 

sequence of events to occur. The research states that distributed concurrency bugs often have simple causes 

and can be caught by simple tests, but are very difficult to trace and detect due to their complex non-
deterministic nature [27].  

This research focuses on atomicity violation, which is the most common type of distributed 

concurrency bug, and presents a model checking-based tool to predict distributed concurrency atomicity 

violation bugs in modern microservice-based distributed systems. The findings reject implementation results 

that state that the majority of bugs in the ray framework are generic and not related to specific concurrency or 

timing scenarios. Instead, this study emphasizes that distributed concurrency bugs, such as atomicity 

violations, are highly dependent on the sequence of events and the non-deterministic nature of the distributed 
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system. Therefore, the results of this study reject the implementation result that the majority of bugs in ray 

framework do not require a specific sequence of events and are general. 
 

3.2.5. Configuration dependency in bug occurrence 

The last column of Table 1 reveals that 62 out of 91 bugs are independent of specific configuration 

settings. These bugs arise due to implementation flaws rather than variations in system configuration. 

However, 29 bugs demonstrate a dependency on configuration settings, implying that specific system 

parameters can influence bug manifestations. 

The results show that the emergence of bugs in ray framework does not always require special 
configuration. Based on the results of the research “Understanding and discovering software configuration 

dependencies in cloud and datacenter systems” by Qingrong Chen, there is a rejection of the implementation 

results which state that the majority of bugs in ray framework do not depend on certain configurations. This 

research presents a study of configuration dependencies in software and tools for discovering these 

dependencies [28].  

This research defines five types of configuration dependencies and identifies common code patterns 

associated with these dependencies. The findings of this study show that configuration dependencies are very 

common and diverse in software, and prove that configuration dependencies can be discovered automatically. 

In addition, this study found 448 previously undocumented configuration dependencies, indicating that 

configuration dependencies are an important issue to consider in software engineering. Therefore, the results 

of this study reject the implementation results which state that the majority of bugs in ray framework do not 

depend on specific configurations. 
Although the results state that the majority of bugs in ray framework do not depend on specific 

configurations, the findings of this study indicate that configuration dependency is a common and significant 

issue in software. Therefore, it is necessary to properly analyze and manage configuration dependencies to 

avoid potential bugs and ensure reliability and proper functionality in software systems. 
 

3.3.  Threats to validity 

This subsection identifies potential threats to the validity of the study’s findings, particularly in 

analyzing bugs within the ray framework using experimental analysis and bug abstraction methods. 

Addressing these threats is essential to accurately interpret and generalize the research results. The identified 

threats are as follows,  

 The study focuses exclusively on the ray framework, which may limit the generalizability of the 

findings. The results could differ if applied to other distributed computing frameworks, such as faust or 

scalable concurrent operations in Python (SCOOP). The conclusions may not be universally applicable 

across all distributed systems.  

 The formulation of questions for identifying bug characteristics is based on researchers’ interpretations. 

Alternative methodologies for bug characterization may yield different results, indicating that subjective 

judgment could influence the research outcomes. 

 The use of experimental analysis and bug abstraction as research methods may impact the study’s 

validity. Different methodological approaches, such as case studies or statistical analyses, might 

produce varying insights, suggesting that the choice of methodology could affect the findings. 

 The experiments were conducted in a predefined environment using Docker containers. While this setup 

ensures consistency, it may not fully reflect variations encountered in real-world deployments. 

Consequently, the results may not entirely represent performance in production environments. 

 The dataset of bugs was compiled using specific selection criteria, such as closed issues and core bugs 

within the ray framework. This filtering process may introduce bias, potentially omitting certain types 
of bugs or issues that exist within the framework but were not included in the dataset. 

By acknowledging these threats, the study provides a clearer perspective on its limitations, helping 

to contextualize the research findings and inform future studies seeking to enhance the reliability and 

applicability of bug analysis in distributed computing frameworks. 
 
 

4. CONCLUSION 

This study successfully classifies major bug categories and identifies key characteristics of bugs 

within the ray framework through experimental analysis and bug abstraction. Specifically, the classification 

of bug categories based on symptoms in the ray framework identified three primary categories from a dataset 

of 91 frequently occurring bugs: "Crash," "Performance," and "Inaccurate Status." This classification 

provides a structured understanding of common issues and serves as a foundation for developing targeted 

debugging strategies. Furthermore, the key characteristics of bugs were analyzed using bug abstraction. The 
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findings indicate that most bugs are not dependent on factors such as the number of actor instances, 

variations in actor types, event sequences, or specific configurations. Instead, these bugs predominantly arise 

as reactive responses to system failures, suggesting that their root causes are not directly linked to specific 

actor properties. This insight is crucial for improving debugging approaches and enhancing the robustness of 

the ray framework.  
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