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A new design of privacy computing gateway stands as the solution to secure
efficient interoperability between heterogeneous platforms. The growing
importance of data privacy, along with rising collaborative data analysis
operations, creates an immediate need for standardized privacy-preserving
frameworks that are adaptable to diverse situations. A three-layered
architecture consisting of application protocol and communication layers
receives support from an Adaptation mechanism designed for compatibility
between separate privacy computing systems. Testing of the framework uses
standard machine learning methods together with horizontal and vertical
federated learning using diverse data quantities and feature distribution
patterns. The gateway achieves satisfactory model performance and protects
data privacy integrity in combination with platform interoperability. area
under the curve (AUC) along with F1 score metrics, proves that the
proposed system reaches performance equivalence with centralized models
when operating within privacy-limited environments. The research
introduces an effective solution for securing cross-platform data sharing that

will enable secure inter-sector collaboration in finance, healthcare, and
government applications.
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1. INTRODUCTION

The rapid advancement of privacy-preserving computation technologies is largely driven by an
increasing need for secure, privacy-compliant data-sharing solutions across sectors such as finance,
healthcare, and government. These technologies empower “data usability without visibility,” allowing users
to derive valuable insights without directly accessing sensitive information. Key methods include federated
learning, secure multiparty computation (SMPC), homomorphic encryption, and differential privacy [1]-[3].
For example, in healthcare, federated learning enables multiple hospitals to collaboratively train machine
learning models on shared patient data while strictly adhering to privacy regulations. This collaborative
approach drives advancements in diagnostics and treatment recommendations, facilitating improvements in
patient care without compromising data privacy. However, while each privacy-preserving technology offers
unique strengths, they are often developed on isolated architectures with distinct algorithmic frameworks,
resulting in limited interoperability. This lack of seamless communication among systems leads to “data
archipelagos”—broad clusters of isolated data that exacerbate existing “data silo” issues. In critical fields that
depend on cross-institutional data collaboration, such as finance and healthcare, this fragmentation forces
organizations to adopt multiple platforms to achieve cross-provider data sharing. Consequently, operational
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complexity rises, and infrastructure costs grow as institutions are required to invest in various platforms and
compatibility solutions [4]. To address these limitations, researchers are actively exploring standardization
frameworks and interoperability protocols aimed at bridging these disparate systems. Recent efforts have
focused on developing modular, open-source privacy-preserving solutions that promote cross-platform
functionality, enabling smoother and more efficient data sharing [5], [6]. Despite these advancements,
achieving scalable and robust interoperability solutions that preserve privacy and security across diverse
ecosystems remains a challenging task. Significant research and development efforts are essential to address
these interoperability barriers, which currently stand as a major obstacle to the widespread adoption of
privacy-preserving computation. By overcoming these challenges, industries could unlock the full potential
of privacy-preserving technologies, fostering collaborative data initiatives that maintain strong privacy
safeguards.

2. DEVELOPMENT OF INTEROPERABILITY

Privacy computing refers to a class of information technologies that enable data analysis and
computation while ensuring data is not leaked. It spans multiple fields, including data science, cryptography,
and artificial intelligence [7]-[9]. As privacy computing technology continues to evolve, the issue of
interoperability between privacy computing platforms has become increasingly prominent. Interoperability in
privacy computing means enabling the interaction and collaboration of data, algorithms, and computing
power across different systems through standardized interfaces and interaction protocols, allowing users to
jointly complete the same privacy computing tasks.

The progression of interoperability in privacy computing platforms has evolved through three
distinct stages, each reflecting significant advancements in cross-platform compatibility and the development
of industry-wide standards. The first stage focuses on the foundational technologies that enable different
platforms to interact, addressing basic compatibility issues and ensuring that privacy computing systems can
communicate with one another. The second stage marks the introduction of more sophisticated protocols and
interfaces that facilitate seamless data exchange and privacy-preserving computations across platforms,
allowing for greater flexibility and efficiency. In the third and final stage, industry-wide standardization
efforts take place, leading to the establishment of universal protocols and frameworks that enable wide-scale
adoption and collaboration across various platforms, ensuring interoperability without compromising privacy.
These stages reflect the ongoing evolution of privacy computing and its role in enabling secure, privacy-
preserving collaboration in the digital world [10].

Stage 1: Basic Interoperability Among Platforms from Different Vendors

In the initial stages of privacy computing, data providers typically implemented privacy-preserving
systems tailored to client-specific requirements, often based on existing or emerging platforms. To achieve basic
interoperability, vendors engaged in one-to-one technical integrations, creating custom configurations to ensure
compatibility. This phase required unified management of nodes and resources, alongside the design of
specialized algorithms and workflows to coordinate platform interactions. Although these integrations were
individually customized and allowed one vendor to take the lead, they were effective at meeting immediate
business needs by establishing compatibility through mutual agreements on shared algorithms.

Stage 2: Advanced Interoperability Among Platforms from Different Vendors

As privacy computing platforms expanded in scope and scale, vendors encountered heightened
interoperability challenges. The one-on-one integration model, though initially sufficient, began to struggle
under the complexity of multi-party interactions, resource management, and a lack of standardization in
communication processes. Consequently, vendors sought more sophisticated interoperability approaches,
focusing on establishing advanced interoperability standards. This included creating communication
protocols, message formats, and standardized encryption methods to enable seamless, higher-level
interactions among diverse platforms. The goal of this stage was to support more scalable, systematic cross-
platform functionality as client demands for privacy-preserving data sharing grew.

Stage 3: Industry-Wide Interoperability Standards

With a proliferation of independent privacy computing architectures, “data silos” emerged as
isolated, non-communicating systems, inhibiting the seamless flow of data across platforms. As privacy
computing gained traction across various industries, the limitations imposed by this fragmented landscape
became apparent. Establishing unified industry-wide standards for interoperability thus became a critical
goal, enabling broader integration across privacy platforms. By defining standardized communication
protocols, message formats, and encryption mechanisms, the industry aimed to foster collaboration among
different privacy computing platforms. This stage of interoperability would enable privacy-preserving data
sharing on a much larger scale, providing the foundation for cohesive, industry-wide privacy computing
ecosystems.

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1011-1022



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 O 1013

3. CHALLENGES OF INTEROPERABILITY

Privacy computing involves intricate principles and diverse platform architectures, making
interoperability a challenging goal. To achieve seamless compatibility among different privacy computing
platforms, it is essential to bridge architectural differences while preserving each platform’s unique
functionality and ensuring compatibility across systems [11]-[14]. This level of integration presents
substantial challenges due to the underlying complexity of privacy-preserving technologies. A key obstacle
stems from the diversity of fundamental principles that shape each platform. Each provider of privacy
computing technologies has its own proprietary methods and algorithms, which are central to the
computation and exchange of data. These differences in algorithmic design create unique data processing and
interaction models, complicating communication between platforms with disparate computational logic. This
variation in algorithmic structures means that platforms cannot easily “speak the same language,” making
interoperability a complex task to address. Further complicating matters, privacy computing platforms vary
significantly in their functional components, such as communication modules, encryption protocols, resource
and task management systems, model management frameworks, node management, and authorization
protocols. These differences reflect each provider's unique technological approach and the specific
application environments they prioritize [15], [16].

Such diversity in platform architectures creates a multifaceted landscape where integration requires
overcoming the distinct implementations within each system, which becomes the first major hurdle for
interoperability. Another layer of complexity arises from vendor-related differences. With numerous
providers offering privacy computing solutions, each with its own set of standards, achieving interoperability
across multiple platforms is increasingly challenging. The sheer volume of variations across platforms
amplifies the difficulty of building a cohesive, interoperable environment that can function seamlessly while
maintaining each platform's proprietary standards.

4. PATHWAYS TO ACHIEVING INTEROPERABILITY

Privacy computing serves as a vital technology to balance the flow of data with the need for privacy
protection. As the large-scale application of privacy computing grows, achieving interoperability between
platforms becomes essential for cross-platform functionality and efficiency. This section discusses
interoperability pathways from a platform architecture standpoint, classifying privacy computing platforms
into three key layers: the application layer, algorithm layer, and primitive layer. Each layer fulfills distinct
functions within privacy computing, and effective interoperability solutions must address each level
separately. Consequently, interoperability in privacy computing is categorized into three types: application
layer interoperability, algorithm layer interoperability, and primitive layer interoperability.

Application Layer Interoperability enables seamless communication between platforms at the
application level. This level facilitates system management functions such as node discovery and resource
allocation, allowing for business-level integration across platforms. By standardizing interactions and
management processes, application-layer interoperability allows privacy-preserving computations to function
smoothly across different system interfaces. Algorithm Layer Interoperability focuses on creating
standardized algorithmic frameworks applicable across various platforms. Here, the algorithms' design
principles are transparent and shared among providers, enabling different vendors to implement the same
algorithms with consistent interaction processes. This layer allows for flexible interoperability by making
algorithms interoperable despite differences in the underlying technology stacks. Primitive Layer
Interoperability addresses the most granular level, where the smallest components, or computational
primitives, form the basis of privacy-preserving protocols. For example, in secure multi-party computation
(MPC) with the ABY3 protocol, platforms need to adhere to fundamental principles like data encryption and
partitioning to ensure secure, distributed computation. By defining these primitives, different platforms can
independently implement protocol steps, ensuring compatibility at the most foundational level. Through
abstraction and standardization at the primitive layer, platforms achieve compatibility in core functions,
allowing for mid-layer algorithms and application-layer services to interoperate seamlessly. To achieve full
interoperability across these three layers, protocol processes and code implementations must be standardized.

Given that platforms often vary in openness and come from different providers, three main
strategies facilitate this goal: protocol-level interoperability, SDK-level interoperability, and client-level
interoperability. This paper introduces an innovative adaptation mechanism to foster interoperability across the
application and algorithm layers for heterogeneous privacy computing platforms. This mechanism ensures that
privacy computing platforms, regardless of underlying architectural differences, can work together effectively,
advancing both privacy protection and efficient data sharing in a broad range of industries.
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5. SYSTEM DESIGN
5.1. Design objectives

The core objective of this system design is to address the interoperability challenges between
heterogeneous privacy computing platforms at both the application and algorithm layers, thereby facilitating
collaborative gains across federated learning platforms. The adaptation mechanism within the TrustGate
gateway aims to achieve this by utilizing an Adaptation module that leverages an adapter mechanism for
application-layer adaptation and a mapping engine and algorithm management for interoperability at the
algorithm layer. Ultimately, this approach integrates heterogeneous privacy computing platforms such as
FATE and SecretFlow within the TrustGate gateway, achieving seamless interoperability at both the
application and algorithm layers.

5.2. Architectural design

The structure of the interoperability Adaptation module, illustrated in Figure 1, highlights its role
within the TrustGate gateway in establishing seamless interactions between diverse privacy computing
platforms [17]. This section outlines the core principles and functionalities of the Adaptation mechanism. The
Adaptation module consists of several essential components, including adapter management, a mapping
engine, algorithm management, a computation engine, data interfaces, data measurement, and system
management. Through adapter management, the module enables configurations for clients across multiple
privacy computing platforms. By leveraging various adapters, the Adaptation module achieves application-
layer interoperability, allowing diverse privacy computing clients to communicate and manage resources
effectively. This modular approach also ensures algorithm-layer interoperability, with the mapping engine
synchronizing algorithm parameters across platforms, enabling cross-platform functionality. The design
underscores key aspects such as security, control, and measurability while maintaining flexibility for
expansion and integration. Application-Layer Interoperability: At this layer, the Adaptation module includes
multiple adapters designed to interface with other privacy computing platforms. This setup enables cross-
platform interoperability and centralized resource management. Adapter management functions facilitate
node and resource management, promoting efficient utilization across heterogeneous platforms [18], [19].

Adapter Management
Adapter . - -
. . . Privacy Computing
Mapping Engine l . ] A Platform
Algorithm Management Adapter . ':." .
RS L | Privacy Computing
Compute Engine | ol B Platform
Data Interface Adapter .
| *v| Privacy Computing
Data Metering C Platform
Adapter
System Management

Figure 1. Interoperability adaptation module

Node management: This functionality handles the creation, modification, and deletion of nodes
across platforms, maintaining critical node data (e.g., name, description, port, platform) and offering detailed
display and search functionalities. This approach ensures organized and accessible node information across
systems. Resource Management: This component focuses on resource allocation, supporting the sharing and
coordination of various assets among platforms at the application level. Algorithm-Layer Interoperability: At
the algorithm layer, the adaptation module employs a mapping engine and algorithm management to
synchronize algorithm parameters and facilitate communication between platforms with different
architectures. Key processes include adapting platforms, enabling different privacy computing systems to
exchange data, and achieving interoperability. Routing and synchronizing algorithm data: coordinating data
and parameter exchanges across systems, ensuring consistent algorithm behavior. Task Synchronization:
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Ensuring task progress and status updates are shared across platforms. Together, these capabilities allow the
Adaptation module to achieve interoperability at both the application and algorithm layers. By integrating
heterogeneous platforms like FATE and SecretFlow, the module leverages adapter management, a mapping
engine, and algorithm management to ensure compatibility and efficient resource sharing across diverse
privacy computing ecosystems. This integration framework provides a foundation for flexible, scalable
interoperability across the privacy computing landscape, enhancing system compatibility and data-sharing
capabilities in a secure, measurable manner.

6. SYSTEM IMPLEMENTATION

6.1. Implementation architecture

This paper proposes a multi-layer, loosely coupled system architecture, as illustrated in Figure 2.
This architecture integrates technologies from federated learning, blockchain, and big data platforms
[20]-[22]. The platform is built on a big data infrastructure, leveraging the computational power, storage, and
network resources of the big data platform. Data is stored on HDFS and processed using Spark resources.
The platform consists of four main components: TrustGate, SecretFlow, FATECIient, and WebManager.

—  TrustGate: TrustGate serves as the entry point for external systems interacting with the privacy
computing platform, managing secure connections and trust verification with external networks. A
critical part of TrustGate is its Adaptation Module, which ensures seamless interoperability between
various heterogeneous platforms involved in privacy computing. This module is responsible for
adapting protocols, data formats, and communication standards to enable secure and trustworthy
interactions. TrustGate also generates trustworthy evidence, maintaining an audit trail that supports
accountability and verification of all operations.

—  SecretFlow: SecretFlow is the core component responsible for privacy-preserving operations within the
system. It handles Secure MPC, which enables multiple parties to jointly compute a function over their
inputs without revealing the inputs to each other. This module incorporates a variety of encryption
algorithms, secure intersection techniques, and feature engineering tools that are essential for enabling
secure federated learning. SecretFlow also supports a range of cryptographic protocols that enhance
data confidentiality, protecting sensitive information from unauthorized access.

—  FATECIient: FATECIient is responsible for managing the integration and transformation of FATE
protocols (Federated Al Technology Enabler), a popular framework for federated learning. This
component facilitates connectivity with FATE-based nodes across the network, allowing nodes to
participate in federated learning while preserving data privacy. FATECIlient ensures that data is
prepared, processed, and exchanged according to FATE protocols, supporting collaborative
computation without compromising data ownership or privacy.

—  WebManager: WebManager oversees system management and user interaction, providing a web-based
interface for monitoring and control. This component manages the storage of management data, such as
logs, metadata, and process states, and supports process management to streamline operations and
workflows within the platform. It includes visualization tools that present key metrics, workflow
statuses, and computation results to users in an accessible and intuitive manner.

Overall, this architecture provides a robust and scalable platform for privacy-preserving federated
learning applications. By building on big data infrastructure, such as HDFS for distributed storage and Spark
for high-performance processing, the system can handle large datasets and complex computations efficiently.
This multi-layer design, combined with the distinct roles of each component, ensures flexibility, security, and
interoperability, making it well-suited for modern privacy computing environments.

6.2. Cross-platform architecture analysis

To facilitate interoperability within privacy computing, a three-layer system architecture can be
adopted and structured to address the complexities of cross-platform integration. The first layer, the
communication layer, focuses on establishing secure and efficient data transfer mechanisms between
different systems, ensuring compatibility across platforms. The second layer, the protocol layer or interaction
layer, is responsible for defining the rules and standards for how systems communicate, ensuring that data
can be exchanged accurately and securely between platforms. The third layer, the application layer, operates
at a higher level, integrating the various functionalities needed for specific applications, such as privacy-
preserving data analytics or secure computations. This layered approach enables scalable and efficient
interoperability, supporting the development of advanced privacy computing systems that can function
seamlessly across different environments and platforms.
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Figure 2. Network structure of the adaptive pilot design algorithm based on dueling DQN

6.2.1. Application layer

The application layer defines the essential communication requirements and the interoperability
protocol stack. This involves establishing a collaborative framework for cross-platform privacy computing,
which includes management processes and protocols. At this layer, task orchestration, scheduling, execution,
monitoring, and evidence storage are unified through standardized rules, ensuring that all platforms involved
can coordinate seamlessly. Clear definitions for each type of computing task’s implementation processes
ensure that interactions meet predefined interoperability standards, regardless of platform differences.

6.2.2. Protocol layer (interaction layer)

The protocol or interaction layer establishes standard procedures and requirements for each phase of
cross-platform interactions. Organized across nodes, resources, and algorithm execution, this layer provides
normative processes for critical interaction components such as discovery, authentication, application, and
authorization. Detailed requirements for connection invocation further strengthen protocol layer
functionality, ensuring that cross-platform engagements meet high standards for security and compatibility.
This structure enables different systems to communicate in a consistent, secure manner without
compromising each platform’s unique characteristics.

6.2.3. Communication layer

The communication layer is the foundation of interoperability, providing standardized guidelines for
all cross-platform data exchanges. This layer includes selecting communication frameworks, defining
interfaces, standardizing data formats, and creating transmission protocols to handle inter-platform
communication. These elements enable consistent data transmission and management, facilitating real-time
integration. Importantly, the Adaptation module within the TrustGate gateway oversees these standards,
serving as the coordinator that facilitates inter-platform communication. By centralizing adaptation
processes, the communication layer enhances efficiency and reliability in cross-platform interoperability for
privacy computing. Overall, this three-layered architecture—coordinated by the Adaptation module within
TrustGate—provides a robust framework for achieving cross-platform interoperability in privacy computing
systems, ensuring scalable, secure integration across platforms with diverse infrastructures.

6.3. Function verification

This study integrates the TrustGate gateway with the FATE and SecretFlow privacy computing
platforms to validate interoperability. The validation process focuses on a “single migration and integration”
business scenario, leveraging joint model training and federated learning to assess model performance. A
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binary classification model is built using federated learning algorithms to predict potential single migration

and integration users.

a) Feature selection: Feature selection involves identifying crucial user attributes that enhance predictive
model accuracy by focusing on key behavioral and value metrics. This process examines basic user
information, such as interaction patterns on the platform, to gain insights into engagement. Additionally,
metrics like purchasing habits and engagement levels help in refining prediction outcomes. The type of
device users interact with, whether mobile or desktop, is also considered to identify relevant features.
Social connections are further analyzed to understand user relationships and influence, which enhances
the model’s ability to predict behaviors accurately.

b) Model training: Model training in this system is designed to be secure and iterative, aiming to enhance
model accuracy while preserving data privacy. Initially, data samples are divided to represent two
collaborating parties, with RSA encryption applied to establish secure intersections between the
datasets, ensuring confidentiality. For algorithm selection, the Vertical Logistic Regression (LR)
algorithm is compared against SecureBoost, with SecureBoost selected due to its superior performance
in this application. To optimize the model, key parameters such as tree depth and the number of child
nodes are carefully adjusted, which enhances the model’s effectiveness and accuracy.

c) Performance comparison: Performance comparison in this system is assessed by evaluating predictive
accuracy and model results under varying sample sizes and feature counts. For sample size testing, data
samples are split horizontally, allowing performance to be compared across different data volumes to
see how sample size impacts accuracy. Similarly, feature count testing is performed by vertically
splitting data samples, introducing additional features incrementally to observe their effect on model
performance. This approach provides insight into how both the amount of data and the complexity of
features contribute to the model’s predictive power. Ultimately, the performance metrics from these
comparisons help determine the optimal balance of data volume and feature complexity for achieving
high accuracy.

The TrustGate gateway, when integrated with federated learning platforms like FATE and
SecretFlow, enables seamless interoperability across complex data-sharing environments. By leveraging
TrustGate's secure communication framework, sensitive data can be processed without direct exposure,
ensuring privacy-preserving operations. The integration of FATE and SecretFlow allows for decentralized
machine learning, where models are trained on distributed data while maintaining data confidentiality. This
combined functionality demonstrates superior performance in tasks such as predicting user migration
patterns, as it can effectively handle large datasets while preserving user privacy. The approach not only
streamlines the data-sharing process but also ensures that privacy is safeguarded throughout, making it highly
suitable for applications that require secure and scalable data analysis.

6.3.1. Horizontal federated scenarios

The experimental results for horizontal federated learning with the TrustGate interoperability
gateway are shown in Table 1. The F1 score shows no significant trend with changes in data volume, while
the area under the curve (AUC) increases with larger data volumes [23]-[26]. As illustrated, the fitted curve
reflects the actual situation, with the AUC increasing as the number of data points grows from 500,000,
although the rate of increase diminishes.

Table 1. Experimental results of the privacy computing platform with integrated TrustGate interoperability

gateway

Sample size Number of features on Number of features on AUC Precision  Recall F1 Threshold
(number of records host side/important host side/important Score  (best metric)

per side) features features

1,000,000 35/30 38/32 0.810324  0.5604 0.240 0352 0.75

(500,000)

2,000,000 36/28 39/34 0.812556  0.5902 0.250  0.360 0.73

(1,000,000)

4,000,000 37/29 40/35 0.814789  0.5801 0.255  0.365 0.72

(2,000,000)

5,000,000 38/31 41/36 0.817432  0.6005 0.245 0370 0.70

(2,500,000)

6.3.2. Vertical federated scenarios

The study assesses the performance of vertical federated learning on a TrustGate-integrated
platform, exploring how different conditions, including variations in data volume, feature dimensions, and
the distribution of crucial features, affect the learning process. It analyzes how these factors influence the
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model’s ability to accurately classify and predict outcomes in federated settings, where data is distributed
across different parties. To evaluate the effectiveness of the learning process, the study uses key performance
metrics such as the AUC and the F1 score, which measure the model's precision, recall, and overall ability to
make correct predictions. The impact of changing feature distributions, including the concentration of
important features, is closely examined to understand how these factors affect the model's accuracy and
generalization. Ultimately, the study provides insights into optimizing vertical federated learning for
improved performance in real-world applications.
a) Vertical federated learning with varying data volumes

Table 2 presents the results of vertical federated learning with progressively increasing data
volumes. On the TrustGate interoperability gateway, as the number of training samples grows, both AUC and
F1 scores show improvement. This trend aligns with conventional machine learning, where model
performance typically benefits from a larger dataset. The conclusion indicates that the TrustGate-integrated
platform leverages increased data volume effectively, enhancing model accuracy and robustness.

Table 2. Results of vertical federated learning with varying data volumes
Number of samples AUC  Precision  Recall F1 Score
500,000training/ 5 million validation 0.7950 0.590 0.210  0.3100
2 million training/ 5 million validation  0.8020  0.560 0.230  0.3300
5 million training/ 5 million validation  0.8100  0.610 0.250  0.3500

b)  Vertical federated learning with increasing feature dimensions

Results for vertical federated learning with rising feature dimensions are detailed in Table 3. With
an increase in the number of feature dimensions, the model's AUC and F1 scores also show notable
improvement. This outcome suggests that, similar to traditional machine learning, vertical federated learning
on the TrustGate-integrated platform becomes more effective as additional feature dimensions are
introduced, providing the model with richer data inputs that improve predictive power.

Table 3. Results of vertical federated learning with increasing feature dimensions

Number of samples Number of features Number of features AUC  Precision  Recall F1

(Host) (Guest) Score

5 million training/ 5 million 8 8 0.82 0.42 0.28 0.34
validation

5 million training/ 5 million 12 12 0.84 0.47 0.32 0.38
validation

5 million training/ 5 million 18 18 0.86 0.49 0.35 0.41
validation

5 million training/ 5 million 25 25 0.88 0.53 0.37 0.45
validation

c) Vertical federated learning with varying important feature distributions

Table 4 provides results for vertical federated learning across different distributions of key features.
In this scenario, the model's AUC and F1 scores remain stable despite variations in the distribution of
important features. This finding suggests that on the TrustGate-integrated platform, vertical federated
learning performance is robust to changes in the distribution of critical features. Therefore, the platform can
handle feature distribution shifts without significant impacts on model accuracy or stability.

Table 4. Results of vertical federated learning experiments with different distributions of important features

Number of samples Distribution of importance features AUC  Precision Recall F1
Score
5 million training/ 5 million None of the important features are with the label ~ 0.81 0.52 0.23 0.32
validation party
5 million training/ 5 million 3 important features are with the label party 0.82 0.50 0.25 0.34
validation
5 million training/ 5 million 6 important features are with the label party 0.83 0.55 0.27 0.36
validation
5 million training/ 5 million All important features are with the label party 0.84 0.58 0.29 0.38
validation

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 1011-1022



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 O 1019

6.4. Performance validation

The performance of interoperability between the FATE and SecretFlow privacy computing
platforms, integrated with the TrustGate gateway, was tested. Following standardized performance evaluation
procedures for privacy computing products, tests were conducted under specific hardware resources, data
sets, algorithm requirements, and result conditions to simulate actual demand scenarios and assess the
accuracy metrics of the privacy computing platforms. The privacy computing platforms strictly adhere to
privacy protection principles, ensuring the confidentiality of user input data, maintaining the secrecy of
intermediate data, and preventing the exposure of global intermediate data. In federated learning with joint
modeling, measures are taken to protect sensitive information, such as local gradients, and to prevent
leakage. The integrated TrustGate gateway with the FATE privacy computing platform continues to support
differential privacy technology. Introducing noise makes individual data contributions difficult to determine,
thus reducing the risk of data leakage during model training. FATE employs differential privacy to ensure
model training privacy and also supports homomorphic encryption, allowing computations to be performed
on encrypted data and thereby protecting data privacy. FATE uses homomorphic encryption to execute
computations while maintaining data privacy.

To meet the accuracy requirements for evaluation, real-world joint modeling scenarios related to
single migration and integration were selected for testing. In this setup, the TrustGate gateway’s Adaptation
module enabled seamless interoperability between the privacy computing platform and conventional machine
learning algorithms. Modeling training was conducted using consistent datasets, feature selections, and
training parameters. Model performance metrics, such as AUC (Area Under the Curve) and KS
(Kolmogorov-Smirnov) values, were used to compare results from privacy-computing-based federated
models with baseline models trained on plaintext data. The experiment was deemed successful if these
metrics remained within a predefined error margin. The experiment involved a comparative analysis of
traditional centralized modeling against federated learning using the TrustGate interoperability gateway's
privacy computing capabilities. Modeling effects and prediction accuracy were examined for cases with
identical sample features and varying feature sets, as shown in Table 5. Trends in AUC and F1 values were
observed across different feature configurations. Modeling Results: AUC Values: Performance rankings
observed were as follows: Traditional modeling with 20 features < Federated Learning with 41 features <
Traditional modeling with 41 features. F1 Values: The same performance order was noted—Traditional
modeling with 20 features < Federated Learning with 41 features < Traditional modeling with 41 features.
The findings indicate that federated learning on the TrustGate privacy computing platform demonstrates
performance levels comparable to traditional machine learning models trained on complete feature sets. Both
AUC and F1 metrics showed significant improvements over models with a limited number of features,
reflecting enhanced model accuracy and predictive power. These results underscore the effectiveness of the
TrustGate interoperability gateway in supporting robust modeling in privacy-sensitive federated learning
environments.

Table 5. Comparison of modeling effectiveness between federated learning on the trustgate interconnection
gateway privacy computing platform and centralized machine learning experimental results

Comparison item Sample size Number of AUC  Precision Recall F1 Score
features
Privacy Computing Platform 2 million training/ 5 41 0.792 0.502 0.225 0.311
(Interconnection Gateway) million validation
Traditional Modeling (All Features) 2 million training/ 5 41 0.796 0.536 0.223 0.315
million validation
Traditional Modeling (Partial Features) 2 million training/ 5 20 0.779 0.452 0.184 0.241

million validation

6.5. Experimental conclusions

The experimental results provide strong evidence of the successful integration and validation of the
interoperability platform, which combines the TrustGate gateway with the FATE and SecretFlow privacy
computing frameworks. This integration has proven effective in both functional and performance aspects,
with the TrustGate gateway enabling seamless communication between the two privacy computing
platforms. Through this integration, the system was able to conduct both horizontal and vertical federated
learning experiments within the "single migration and integration" scenario, showcasing its ability to support
diverse federated learning operations.

Performance and Federated Learning Validation: The performance of the federated learning models
was found to be comparable to that of traditional model training methods, provided that the same sample size
was used in both cases. This indicates that the integration of the TrustGate gateway with the FATE and
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SecretFlow platforms does not compromise the performance of federated learning compared to centralized
training models. Additionally, as the feature dimensions of the models were increased, the effectiveness of
federated model training showed noticeable improvements. This progression highlights that the TrustGate-
enabled platform can scale with the complexity of data, enhancing model performance as more features are
incorporated.

Validation of Privacy and Security Features: The validation experiment was conducted using the
FATE framework integrated with the TrustGate gateway, confirming several critical aspects related to
privacy and security in privacy-preserving computations. Specifically, the experimental results validated the
following aspects: Data Invisibility: The system ensured that sensitive data remained invisible during the
federated learning process, effectively preserving privacy; Data Trustworthiness: The system demonstrated
that the data used for training and analysis could be trusted, as it was securely processed through the
federated learning framework without direct access to sensitive data; Data Measurability: The ability to
accurately measure the performance of federated learning models, while maintaining privacy, was confirmed,
indicating that data metrics could be reliably used to assess model effectiveness without compromising
privacy; Achieving Interoperability: A key component of the experimental validation was the introduction of
the Adaptation framework, which played a pivotal role in enabling interoperability between heterogeneous
federated learning platforms, such as FATE and SecretFlow. This framework allowed for the smooth
exchange of data and model parameters between the different platforms, achieving interoperability in
federated learning scenarios. Some specific experiments focused on this interoperability yielded positive
results, meeting the expected outcomes in terms of system performance and integration between the
platforms.

Our research both validates previous proof of federated learning efficiency through its new
capability of seamless operation between various privacy platforms. The implemented integration solves one
of the main deployment challenges in existing privacy-preserving machine learning by enabling
heterogeneous system functionality. The research established that using TrustGate in a federated learning
system enables both performance standards and privacy requirements to be achieved. The system delivers
cooperative machine learning for various distributed networks while maintaining full data security, together
with precise model performance. The findings demonstrate potential applications in analytic processes
involving sensitive data that belong to finance organizations and healthcare and telecommunications sectors.

6. CONCLUSION

Privacy computing is becoming essential for secure collaboration in sectors like finance, healthcare,
and government. To unlock its full potential, future work must focus on making different systems work
together seamlessly and on creating shared global standards. These efforts will make it easier for
organizations to collaborate while protecting sensitive data. Technologies like TrustGate show that secure
and effective cross-platform learning is possible without sacrificing data privacy or performance. Moving
forward, research should aim to deploy such solutions in real-world settings, support a wider range of data
types, and align with international data protection laws. This will help build a safer, more connected digital
environment where privacy and innovation go hand in hand.
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