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 A new design of privacy computing gateway stands as the solution to secure 
efficient interoperability between heterogeneous platforms. The growing 

importance of data privacy, along with rising collaborative data analysis 
operations, creates an immediate need for standardized privacy-preserving 
frameworks that are adaptable to diverse situations. A three-layered 
architecture consisting of application protocol and communication layers 
receives support from an Adaptation mechanism designed for compatibility 
between separate privacy computing systems. Testing of the framework uses 
standard machine learning methods together with horizontal and vertical 
federated learning using diverse data quantities and feature distribution 
patterns. The gateway achieves satisfactory model performance and protects 

data privacy integrity in combination with platform interoperability. area 
under the curve (AUC) along with F1 score metrics, proves that the 
proposed system reaches performance equivalence with centralized models 
when operating within privacy-limited environments. The research 
introduces an effective solution for securing cross-platform data sharing that 
will enable secure inter-sector collaboration in finance, healthcare, and 
government applications. 
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1. INTRODUCTION 

The rapid advancement of privacy-preserving computation technologies is largely driven by an 

increasing need for secure, privacy-compliant data-sharing solutions across sectors such as finance, 

healthcare, and government. These technologies empower “data usability without visibility,” allowing users 

to derive valuable insights without directly accessing sensitive information. Key methods include federated 

learning, secure multiparty computation (SMPC), homomorphic encryption, and differential privacy [1]-[3]. 

For example, in healthcare, federated learning enables multiple hospitals to collaboratively train machine 

learning models on shared patient data while strictly adhering to privacy regulations. This collaborative 

approach drives advancements in diagnostics and treatment recommendations, facilitating improvements in 

patient care without compromising data privacy. However, while each privacy-preserving technology offers 
unique strengths, they are often developed on isolated architectures with distinct algorithmic frameworks, 

resulting in limited interoperability. This lack of seamless communication among systems leads to “data 

archipelagos”—broad clusters of isolated data that exacerbate existing “data silo” issues. In critical fields that 

depend on cross-institutional data collaboration, such as finance and healthcare, this fragmentation forces 

organizations to adopt multiple platforms to achieve cross-provider data sharing. Consequently, operational 
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complexity rises, and infrastructure costs grow as institutions are required to invest in various platforms and 

compatibility solutions [4]. To address these limitations, researchers are actively exploring standardization 

frameworks and interoperability protocols aimed at bridging these disparate systems. Recent efforts have 

focused on developing modular, open-source privacy-preserving solutions that promote cross-platform 

functionality, enabling smoother and more efficient data sharing [5], [6]. Despite these advancements, 

achieving scalable and robust interoperability solutions that preserve privacy and security across diverse 

ecosystems remains a challenging task. Significant research and development efforts are essential to address 
these interoperability barriers, which currently stand as a major obstacle to the widespread adoption of 

privacy-preserving computation. By overcoming these challenges, industries could unlock the full potential 

of privacy-preserving technologies, fostering collaborative data initiatives that maintain strong privacy 

safeguards. 

 

 

2. DEVELOPMENT OF INTEROPERABILITY 

Privacy computing refers to a class of information technologies that enable data analysis and 

computation while ensuring data is not leaked. It spans multiple fields, including data science, cryptography, 

and artificial intelligence [7]-[9]. As privacy computing technology continues to evolve, the issue of 

interoperability between privacy computing platforms has become increasingly prominent. Interoperability in 

privacy computing means enabling the interaction and collaboration of data, algorithms, and computing 
power across different systems through standardized interfaces and interaction protocols, allowing users to 

jointly complete the same privacy computing tasks. 

The progression of interoperability in privacy computing platforms has evolved through three 

distinct stages, each reflecting significant advancements in cross-platform compatibility and the development 

of industry-wide standards. The first stage focuses on the foundational technologies that enable different 

platforms to interact, addressing basic compatibility issues and ensuring that privacy computing systems can 

communicate with one another. The second stage marks the introduction of more sophisticated protocols and 

interfaces that facilitate seamless data exchange and privacy-preserving computations across platforms, 

allowing for greater flexibility and efficiency. In the third and final stage, industry-wide standardization 

efforts take place, leading to the establishment of universal protocols and frameworks that enable wide-scale 

adoption and collaboration across various platforms, ensuring interoperability without compromising privacy. 
These stages reflect the ongoing evolution of privacy computing and its role in enabling secure, privacy-

preserving collaboration in the digital world [10]. 

Stage 1: Basic Interoperability Among Platforms from Different Vendors 

In the initial stages of privacy computing, data providers typically implemented privacy-preserving 

systems tailored to client-specific requirements, often based on existing or emerging platforms. To achieve basic 

interoperability, vendors engaged in one-to-one technical integrations, creating custom configurations to ensure 

compatibility. This phase required unified management of nodes and resources, alongside the design of 

specialized algorithms and workflows to coordinate platform interactions. Although these integrations were 

individually customized and allowed one vendor to take the lead, they were effective at meeting immediate 

business needs by establishing compatibility through mutual agreements on shared algorithms. 

Stage 2: Advanced Interoperability Among Platforms from Different Vendors 
As privacy computing platforms expanded in scope and scale, vendors encountered heightened 

interoperability challenges. The one-on-one integration model, though initially sufficient, began to struggle 

under the complexity of multi-party interactions, resource management, and a lack of standardization in 

communication processes. Consequently, vendors sought more sophisticated interoperability approaches, 

focusing on establishing advanced interoperability standards. This included creating communication 

protocols, message formats, and standardized encryption methods to enable seamless, higher-level 

interactions among diverse platforms. The goal of this stage was to support more scalable, systematic cross-

platform functionality as client demands for privacy-preserving data sharing grew. 

Stage 3: Industry-Wide Interoperability Standards 

With a proliferation of independent privacy computing architectures, “data silos” emerged as 

isolated, non-communicating systems, inhibiting the seamless flow of data across platforms. As privacy 

computing gained traction across various industries, the limitations imposed by this fragmented landscape 
became apparent. Establishing unified industry-wide standards for interoperability thus became a critical 

goal, enabling broader integration across privacy platforms. By defining standardized communication 

protocols, message formats, and encryption mechanisms, the industry aimed to foster collaboration among 

different privacy computing platforms. This stage of interoperability would enable privacy-preserving data 

sharing on a much larger scale, providing the foundation for cohesive, industry-wide privacy computing 

ecosystems. 
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3. CHALLENGES OF INTEROPERABILITY 

Privacy computing involves intricate principles and diverse platform architectures, making 

interoperability a challenging goal. To achieve seamless compatibility among different privacy computing 

platforms, it is essential to bridge architectural differences while preserving each platform’s unique 

functionality and ensuring compatibility across systems [11]-[14]. This level of integration presents 

substantial challenges due to the underlying complexity of privacy-preserving technologies. A key obstacle 
stems from the diversity of fundamental principles that shape each platform. Each provider of privacy 

computing technologies has its own proprietary methods and algorithms, which are central to the 

computation and exchange of data. These differences in algorithmic design create unique data processing and 

interaction models, complicating communication between platforms with disparate computational logic. This 

variation in algorithmic structures means that platforms cannot easily “speak the same language,” making 

interoperability a complex task to address. Further complicating matters, privacy computing platforms vary 

significantly in their functional components, such as communication modules, encryption protocols, resource 

and task management systems, model management frameworks, node management, and authorization 

protocols. These differences reflect each provider's unique technological approach and the specific 

application environments they prioritize [15], [16].  

Such diversity in platform architectures creates a multifaceted landscape where integration requires 

overcoming the distinct implementations within each system, which becomes the first major hurdle for 
interoperability. Another layer of complexity arises from vendor-related differences. With numerous 

providers offering privacy computing solutions, each with its own set of standards, achieving interoperability 

across multiple platforms is increasingly challenging. The sheer volume of variations across platforms 

amplifies the difficulty of building a cohesive, interoperable environment that can function seamlessly while 

maintaining each platform's proprietary standards. 

 

 

4. PATHWAYS TO ACHIEVING INTEROPERABILITY 

Privacy computing serves as a vital technology to balance the flow of data with the need for privacy 

protection. As the large-scale application of privacy computing grows, achieving interoperability between 

platforms becomes essential for cross-platform functionality and efficiency. This section discusses 
interoperability pathways from a platform architecture standpoint, classifying privacy computing platforms 

into three key layers: the application layer, algorithm layer, and primitive layer. Each layer fulfills distinct 

functions within privacy computing, and effective interoperability solutions must address each level 

separately. Consequently, interoperability in privacy computing is categorized into three types: application 

layer interoperability, algorithm layer interoperability, and primitive layer interoperability.  

Application Layer Interoperability enables seamless communication between platforms at the 

application level. This level facilitates system management functions such as node discovery and resource 

allocation, allowing for business-level integration across platforms. By standardizing interactions and 

management processes, application-layer interoperability allows privacy-preserving computations to function 

smoothly across different system interfaces. Algorithm Layer Interoperability focuses on creating 

standardized algorithmic frameworks applicable across various platforms. Here, the algorithms' design 
principles are transparent and shared among providers, enabling different vendors to implement the same 

algorithms with consistent interaction processes. This layer allows for flexible interoperability by making 

algorithms interoperable despite differences in the underlying technology stacks. Primitive Layer 

Interoperability addresses the most granular level, where the smallest components, or computational 

primitives, form the basis of privacy-preserving protocols. For example, in secure multi-party computation 

(MPC) with the ABY3 protocol, platforms need to adhere to fundamental principles like data encryption and 

partitioning to ensure secure, distributed computation. By defining these primitives, different platforms can 

independently implement protocol steps, ensuring compatibility at the most foundational level. Through 

abstraction and standardization at the primitive layer, platforms achieve compatibility in core functions, 

allowing for mid-layer algorithms and application-layer services to interoperate seamlessly. To achieve full 

interoperability across these three layers, protocol processes and code implementations must be standardized.  

Given that platforms often vary in openness and come from different providers, three main 
strategies facilitate this goal: protocol-level interoperability, SDK-level interoperability, and client-level 

interoperability. This paper introduces an innovative adaptation mechanism to foster interoperability across the 

application and algorithm layers for heterogeneous privacy computing platforms. This mechanism ensures that 

privacy computing platforms, regardless of underlying architectural differences, can work together effectively, 

advancing both privacy protection and efficient data sharing in a broad range of industries. 
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5. SYSTEM DESIGN 

5.1.  Design objectives 

The core objective of this system design is to address the interoperability challenges between 

heterogeneous privacy computing platforms at both the application and algorithm layers, thereby facilitating 

collaborative gains across federated learning platforms. The adaptation mechanism within the TrustGate 

gateway aims to achieve this by utilizing an Adaptation module that leverages an adapter mechanism for 

application-layer adaptation and a mapping engine and algorithm management for interoperability at the 
algorithm layer. Ultimately, this approach integrates heterogeneous privacy computing platforms such as 

FATE and SecretFlow within the TrustGate gateway, achieving seamless interoperability at both the 

application and algorithm layers. 

 

5.2.  Architectural design 

The structure of the interoperability Adaptation module, illustrated in Figure 1, highlights its role 

within the TrustGate gateway in establishing seamless interactions between diverse privacy computing 

platforms [17]. This section outlines the core principles and functionalities of the Adaptation mechanism. The 

Adaptation module consists of several essential components, including adapter management, a mapping 

engine, algorithm management, a computation engine, data interfaces, data measurement, and system 

management. Through adapter management, the module enables configurations for clients across multiple 

privacy computing platforms. By leveraging various adapters, the Adaptation module achieves application-
layer interoperability, allowing diverse privacy computing clients to communicate and manage resources 

effectively. This modular approach also ensures algorithm-layer interoperability, with the mapping engine 

synchronizing algorithm parameters across platforms, enabling cross-platform functionality. The design 

underscores key aspects such as security, control, and measurability while maintaining flexibility for 

expansion and integration. Application-Layer Interoperability: At this layer, the Adaptation module includes 

multiple adapters designed to interface with other privacy computing platforms. This setup enables cross-

platform interoperability and centralized resource management. Adapter management functions facilitate 

node and resource management, promoting efficient utilization across heterogeneous platforms [18], [19]. 

 

 

 
 

Figure 1. Interoperability adaptation module 

 

 

Node management: This functionality handles the creation, modification, and deletion of nodes 

across platforms, maintaining critical node data (e.g., name, description, port, platform) and offering detailed 

display and search functionalities. This approach ensures organized and accessible node information across 
systems. Resource Management: This component focuses on resource allocation, supporting the sharing and 

coordination of various assets among platforms at the application level. Algorithm-Layer Interoperability: At 

the algorithm layer, the adaptation module employs a mapping engine and algorithm management to 

synchronize algorithm parameters and facilitate communication between platforms with different 

architectures. Key processes include adapting platforms, enabling different privacy computing systems to 

exchange data, and achieving interoperability. Routing and synchronizing algorithm data: coordinating data 

and parameter exchanges across systems, ensuring consistent algorithm behavior. Task Synchronization: 
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Ensuring task progress and status updates are shared across platforms. Together, these capabilities allow the 

Adaptation module to achieve interoperability at both the application and algorithm layers. By integrating 

heterogeneous platforms like FATE and SecretFlow, the module leverages adapter management, a mapping 

engine, and algorithm management to ensure compatibility and efficient resource sharing across diverse 

privacy computing ecosystems. This integration framework provides a foundation for flexible, scalable 

interoperability across the privacy computing landscape, enhancing system compatibility and data-sharing 
capabilities in a secure, measurable manner. 

 

 

6. SYSTEM IMPLEMENTATION 
6.1.  Implementation architecture 

This paper proposes a multi-layer, loosely coupled system architecture, as illustrated in Figure 2. 

This architecture integrates technologies from federated learning, blockchain, and big data platforms  

[20]-[22]. The platform is built on a big data infrastructure, leveraging the computational power, storage, and 

network resources of the big data platform. Data is stored on HDFS and processed using Spark resources. 
The platform consists of four main components: TrustGate, SecretFlow, FATEClient, and WebManager. 

 TrustGate: TrustGate serves as the entry point for external systems interacting with the privacy 

computing platform, managing secure connections and trust verification with external networks. A 

critical part of TrustGate is its Adaptation Module, which ensures seamless interoperability between 

various heterogeneous platforms involved in privacy computing. This module is responsible for 

adapting protocols, data formats, and communication standards to enable secure and trustworthy 

interactions. TrustGate also generates trustworthy evidence, maintaining an audit trail that supports 

accountability and verification of all operations. 

 SecretFlow: SecretFlow is the core component responsible for privacy-preserving operations within the 

system. It handles Secure MPC, which enables multiple parties to jointly compute a function over their 

inputs without revealing the inputs to each other. This module incorporates a variety of encryption 
algorithms, secure intersection techniques, and feature engineering tools that are essential for enabling 

secure federated learning. SecretFlow also supports a range of cryptographic protocols that enhance 

data confidentiality, protecting sensitive information from unauthorized access. 

 FATEClient: FATEClient is responsible for managing the integration and transformation of FATE 

protocols (Federated AI Technology Enabler), a popular framework for federated learning. This 

component facilitates connectivity with FATE-based nodes across the network, allowing nodes to 

participate in federated learning while preserving data privacy. FATEClient ensures that data is 

prepared, processed, and exchanged according to FATE protocols, supporting collaborative 

computation without compromising data ownership or privacy. 

 WebManager: WebManager oversees system management and user interaction, providing a web-based 

interface for monitoring and control. This component manages the storage of management data, such as 

logs, metadata, and process states, and supports process management to streamline operations and 
workflows within the platform. It includes visualization tools that present key metrics, workflow 

statuses, and computation results to users in an accessible and intuitive manner. 

Overall, this architecture provides a robust and scalable platform for privacy-preserving federated 

learning applications. By building on big data infrastructure, such as HDFS for distributed storage and Spark 

for high-performance processing, the system can handle large datasets and complex computations efficiently. 

This multi-layer design, combined with the distinct roles of each component, ensures flexibility, security, and 

interoperability, making it well-suited for modern privacy computing environments. 

 

6.2.  Cross-platform architecture analysis 

To facilitate interoperability within privacy computing, a three-layer system architecture can be 

adopted and structured to address the complexities of cross-platform integration. The first layer, the 
communication layer, focuses on establishing secure and efficient data transfer mechanisms between 

different systems, ensuring compatibility across platforms. The second layer, the protocol layer or interaction 

layer, is responsible for defining the rules and standards for how systems communicate, ensuring that data 

can be exchanged accurately and securely between platforms. The third layer, the application layer, operates 

at a higher level, integrating the various functionalities needed for specific applications, such as privacy-

preserving data analytics or secure computations. This layered approach enables scalable and efficient 

interoperability, supporting the development of advanced privacy computing systems that can function 

seamlessly across different environments and platforms. 
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Figure 2. Network structure of the adaptive pilot design algorithm based on dueling DQN 

 

 

6.2.1. Application layer 
The application layer defines the essential communication requirements and the interoperability 

protocol stack. This involves establishing a collaborative framework for cross-platform privacy computing, 
which includes management processes and protocols. At this layer, task orchestration, scheduling, execution, 

monitoring, and evidence storage are unified through standardized rules, ensuring that all platforms involved 

can coordinate seamlessly. Clear definitions for each type of computing task’s implementation processes 

ensure that interactions meet predefined interoperability standards, regardless of platform differences. 

 

6.2.2. Protocol layer (interaction layer) 

The protocol or interaction layer establishes standard procedures and requirements for each phase of 

cross-platform interactions. Organized across nodes, resources, and algorithm execution, this layer provides 

normative processes for critical interaction components such as discovery, authentication, application, and 

authorization. Detailed requirements for connection invocation further strengthen protocol layer 

functionality, ensuring that cross-platform engagements meet high standards for security and compatibility. 

This structure enables different systems to communicate in a consistent, secure manner without 
compromising each platform’s unique characteristics. 

 

6.2.3. Communication layer 
The communication layer is the foundation of interoperability, providing standardized guidelines for 

all cross-platform data exchanges. This layer includes selecting communication frameworks, defining 

interfaces, standardizing data formats, and creating transmission protocols to handle inter-platform 

communication. These elements enable consistent data transmission and management, facilitating real-time 

integration. Importantly, the Adaptation module within the TrustGate gateway oversees these standards, 

serving as the coordinator that facilitates inter-platform communication. By centralizing adaptation 

processes, the communication layer enhances efficiency and reliability in cross-platform interoperability for 

privacy computing. Overall, this three-layered architecture—coordinated by the Adaptation module within 
TrustGate—provides a robust framework for achieving cross-platform interoperability in privacy computing 

systems, ensuring scalable, secure integration across platforms with diverse infrastructures. 

 

6.3.  Function verification 
This study integrates the TrustGate gateway with the FATE and SecretFlow privacy computing 

platforms to validate interoperability. The validation process focuses on a “single migration and integration” 

business scenario, leveraging joint model training and federated learning to assess model performance. A 
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binary classification model is built using federated learning algorithms to predict potential single migration 

and integration users. 

a) Feature selection: Feature selection involves identifying crucial user attributes that enhance predictive 

model accuracy by focusing on key behavioral and value metrics. This process examines basic user 

information, such as interaction patterns on the platform, to gain insights into engagement. Additionally, 

metrics like purchasing habits and engagement levels help in refining prediction outcomes. The type of 
device users interact with, whether mobile or desktop, is also considered to identify relevant features. 

Social connections are further analyzed to understand user relationships and influence, which enhances 

the model’s ability to predict behaviors accurately. 

b) Model training: Model training in this system is designed to be secure and iterative, aiming to enhance 

model accuracy while preserving data privacy. Initially, data samples are divided to represent two 

collaborating parties, with RSA encryption applied to establish secure intersections between the 

datasets, ensuring confidentiality. For algorithm selection, the Vertical Logistic Regression (LR) 

algorithm is compared against SecureBoost, with SecureBoost selected due to its superior performance 

in this application. To optimize the model, key parameters such as tree depth and the number of child 

nodes are carefully adjusted, which enhances the model’s effectiveness and accuracy. 

c) Performance comparison: Performance comparison in this system is assessed by evaluating predictive 

accuracy and model results under varying sample sizes and feature counts. For sample size testing, data 
samples are split horizontally, allowing performance to be compared across different data volumes to 

see how sample size impacts accuracy. Similarly, feature count testing is performed by vertically 

splitting data samples, introducing additional features incrementally to observe their effect on model 

performance. This approach provides insight into how both the amount of data and the complexity of 

features contribute to the model’s predictive power. Ultimately, the performance metrics from these 

comparisons help determine the optimal balance of data volume and feature complexity for achieving 

high accuracy. 

The TrustGate gateway, when integrated with federated learning platforms like FATE and 

SecretFlow, enables seamless interoperability across complex data-sharing environments. By leveraging 

TrustGate's secure communication framework, sensitive data can be processed without direct exposure, 

ensuring privacy-preserving operations. The integration of FATE and SecretFlow allows for decentralized 
machine learning, where models are trained on distributed data while maintaining data confidentiality. This 

combined functionality demonstrates superior performance in tasks such as predicting user migration 

patterns, as it can effectively handle large datasets while preserving user privacy. The approach not only 

streamlines the data-sharing process but also ensures that privacy is safeguarded throughout, making it highly 

suitable for applications that require secure and scalable data analysis. 

 

6.3.1. Horizontal federated scenarios 

The experimental results for horizontal federated learning with the TrustGate interoperability 

gateway are shown in Table 1. The F1 score shows no significant trend with changes in data volume, while 

the area under the curve (AUC) increases with larger data volumes [23]-[26]. As illustrated, the fitted curve 

reflects the actual situation, with the AUC increasing as the number of data points grows from 500,000, 
although the rate of increase diminishes. 

 

 

Table 1. Experimental results of the privacy computing platform with integrated TrustGate interoperability 

gateway 
Sample size 

(number of records 

per side) 

Number of features on 

host side/important 

features 

Number of features on 

host side/important 

features 

AUC Precision Recall F1 

Score 

Threshold 

(best metric) 

1,000,000 

(500,000) 

35/30 38/32 0.810324 0.5604 0.240 0.352 0.75 

2,000,000 

(1,000,000) 

36/28 39/34 0.812556 0.5902 0.250 0.360 0.73 

4,000,000 

(2,000,000) 

37/29 40/35 0.814789 0.5801 0.255 0.365 0.72 

5,000,000 

(2,500,000) 

38/31 41/36 0.817432 0.6005 0.245 0.370 0.70 

 

 

6.3.2. Vertical federated scenarios 

The study assesses the performance of vertical federated learning on a TrustGate-integrated 

platform, exploring how different conditions, including variations in data volume, feature dimensions, and 

the distribution of crucial features, affect the learning process. It analyzes how these factors influence the 
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model’s ability to accurately classify and predict outcomes in federated settings, where data is distributed 

across different parties. To evaluate the effectiveness of the learning process, the study uses key performance 

metrics such as the AUC and the F1 score, which measure the model's precision, recall, and overall ability to 

make correct predictions. The impact of changing feature distributions, including the concentration of 

important features, is closely examined to understand how these factors affect the model's accuracy and 

generalization. Ultimately, the study provides insights into optimizing vertical federated learning for 

improved performance in real-world applications. 
a) Vertical federated learning with varying data volumes 

Table 2 presents the results of vertical federated learning with progressively increasing data 

volumes. On the TrustGate interoperability gateway, as the number of training samples grows, both AUC and 

F1 scores show improvement. This trend aligns with conventional machine learning, where model 

performance typically benefits from a larger dataset. The conclusion indicates that the TrustGate-integrated 

platform leverages increased data volume effectively, enhancing model accuracy and robustness. 

 

 

Table 2. Results of vertical federated learning with varying data volumes 
Number of samples AUC Precision Recall F1 Score 

500,000training/ 5 million validation 0.7950 0.590 0.210 0.3100 

2 million training/ 5 million validation 0.8020 0.560 0.230 0.3300 

5 million training/ 5 million validation 0.8100 0.610 0.250 0.3500 

 

 

b) Vertical federated learning with increasing feature dimensions 

Results for vertical federated learning with rising feature dimensions are detailed in Table 3. With 

an increase in the number of feature dimensions, the model's AUC and F1 scores also show notable 

improvement. This outcome suggests that, similar to traditional machine learning, vertical federated learning 

on the TrustGate-integrated platform becomes more effective as additional feature dimensions are 

introduced, providing the model with richer data inputs that improve predictive power. 

 
 

Table 3. Results of vertical federated learning with increasing feature dimensions 
Number of samples Number of features 

(Host) 

Number of features 

(Guest) 

AUC Precision Recall F1 

Score 

5 million training/ 5 million 

validation 

8 8 0.82 0.42 0.28 0.34 

5 million training/ 5 million 

validation 

12 12 0.84 0.47 0.32 0.38 

5 million training/ 5 million 

validation 

18 18 0.86 0.49 0.35 0.41 

5 million training/ 5 million 

validation 

25 25 0.88 0.53 0.37 0.45 

 

 

c) Vertical federated learning with varying important feature distributions 

Table 4 provides results for vertical federated learning across different distributions of key features. 
In this scenario, the model's AUC and F1 scores remain stable despite variations in the distribution of 

important features. This finding suggests that on the TrustGate-integrated platform, vertical federated 

learning performance is robust to changes in the distribution of critical features. Therefore, the platform can 

handle feature distribution shifts without significant impacts on model accuracy or stability. 

 

 

Table 4. Results of vertical federated learning experiments with different distributions of important features 
Number of samples Distribution of importance features AUC Precision Recall F1 

Score 

5 million training/ 5 million 

validation 

None of the important features are with the label 

party 

0.81 0.52 0.23 0.32 

5 million training/ 5 million 

validation 

3 important features are with the label party 0.82 0.50 0.25 0.34 

5 million training/ 5 million 

validation 

6 important features are with the label party 0.83 0.55 0.27 0.36 

5 million training/ 5 million 

validation 

All important features are with the label party 0.84 0.58 0.29 0.38 
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6.4.  Performance validation 

The performance of interoperability between the FATE and SecretFlow privacy computing 

platforms, integrated with the TrustGate gateway, was tested. Following standardized performance evaluation 

procedures for privacy computing products, tests were conducted under specific hardware resources, data 

sets, algorithm requirements, and result conditions to simulate actual demand scenarios and assess the 

accuracy metrics of the privacy computing platforms. The privacy computing platforms strictly adhere to 
privacy protection principles, ensuring the confidentiality of user input data, maintaining the secrecy of 

intermediate data, and preventing the exposure of global intermediate data. In federated learning with joint 

modeling, measures are taken to protect sensitive information, such as local gradients, and to prevent 

leakage. The integrated TrustGate gateway with the FATE privacy computing platform continues to support 

differential privacy technology. Introducing noise makes individual data contributions difficult to determine, 

thus reducing the risk of data leakage during model training. FATE employs differential privacy to ensure 

model training privacy and also supports homomorphic encryption, allowing computations to be performed 

on encrypted data and thereby protecting data privacy. FATE uses homomorphic encryption to execute 

computations while maintaining data privacy. 

To meet the accuracy requirements for evaluation, real-world joint modeling scenarios related to 

single migration and integration were selected for testing. In this setup, the TrustGate gateway’s Adaptation 

module enabled seamless interoperability between the privacy computing platform and conventional machine 
learning algorithms. Modeling training was conducted using consistent datasets, feature selections, and 

training parameters. Model performance metrics, such as AUC (Area Under the Curve) and KS 

(Kolmogorov-Smirnov) values, were used to compare results from privacy-computing-based federated 

models with baseline models trained on plaintext data. The experiment was deemed successful if these 

metrics remained within a predefined error margin. The experiment involved a comparative analysis of 

traditional centralized modeling against federated learning using the TrustGate interoperability gateway's 

privacy computing capabilities. Modeling effects and prediction accuracy were examined for cases with 

identical sample features and varying feature sets, as shown in Table 5. Trends in AUC and F1 values were 

observed across different feature configurations. Modeling Results: AUC Values: Performance rankings 

observed were as follows: Traditional modeling with 20 features < Federated Learning with 41 features < 

Traditional modeling with 41 features. F1 Values: The same performance order was noted—Traditional 
modeling with 20 features < Federated Learning with 41 features < Traditional modeling with 41 features. 

The findings indicate that federated learning on the TrustGate privacy computing platform demonstrates 

performance levels comparable to traditional machine learning models trained on complete feature sets. Both 

AUC and F1 metrics showed significant improvements over models with a limited number of features, 

reflecting enhanced model accuracy and predictive power. These results underscore the effectiveness of the 

TrustGate interoperability gateway in supporting robust modeling in privacy-sensitive federated learning 

environments. 

 

 

Table 5. Comparison of modeling effectiveness between federated learning on the trustgate interconnection 

gateway privacy computing platform and centralized machine learning experimental results 
Comparison item Sample size Number of 

features 

AUC Precision Recall F1 Score 

Privacy Computing Platform 

(Interconnection Gateway) 

2 million training/ 5 

million validation 

41 0.792 0.502 0.225 0.311 

Traditional Modeling (All Features) 2 million training/ 5 

million validation 

41 0.796 0.536 0.223 0.315 

Traditional Modeling (Partial Features) 2 million training/ 5 

million validation 

20 0.779 0.452 0.184 0.241 

 

 

6.5.  Experimental conclusions 

The experimental results provide strong evidence of the successful integration and validation of the 

interoperability platform, which combines the TrustGate gateway with the FATE and SecretFlow privacy 

computing frameworks. This integration has proven effective in both functional and performance aspects, 

with the TrustGate gateway enabling seamless communication between the two privacy computing 

platforms. Through this integration, the system was able to conduct both horizontal and vertical federated 

learning experiments within the "single migration and integration" scenario, showcasing its ability to support 

diverse federated learning operations. 

Performance and Federated Learning Validation: The performance of the federated learning models 
was found to be comparable to that of traditional model training methods, provided that the same sample size 

was used in both cases. This indicates that the integration of the TrustGate gateway with the FATE and 
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SecretFlow platforms does not compromise the performance of federated learning compared to centralized 

training models. Additionally, as the feature dimensions of the models were increased, the effectiveness of 

federated model training showed noticeable improvements. This progression highlights that the TrustGate-

enabled platform can scale with the complexity of data, enhancing model performance as more features are 

incorporated. 

Validation of Privacy and Security Features: The validation experiment was conducted using the 

FATE framework integrated with the TrustGate gateway, confirming several critical aspects related to 
privacy and security in privacy-preserving computations. Specifically, the experimental results validated the 

following aspects: Data Invisibility: The system ensured that sensitive data remained invisible during the 

federated learning process, effectively preserving privacy; Data Trustworthiness: The system demonstrated 

that the data used for training and analysis could be trusted, as it was securely processed through the 

federated learning framework without direct access to sensitive data; Data Measurability: The ability to 

accurately measure the performance of federated learning models, while maintaining privacy, was confirmed, 

indicating that data metrics could be reliably used to assess model effectiveness without compromising 

privacy; Achieving Interoperability: A key component of the experimental validation was the introduction of 

the Adaptation framework, which played a pivotal role in enabling interoperability between heterogeneous 

federated learning platforms, such as FATE and SecretFlow. This framework allowed for the smooth 

exchange of data and model parameters between the different platforms, achieving interoperability in 

federated learning scenarios. Some specific experiments focused on this interoperability yielded positive 
results, meeting the expected outcomes in terms of system performance and integration between the 

platforms. 

Our research both validates previous proof of federated learning efficiency through its new 

capability of seamless operation between various privacy platforms. The implemented integration solves one 

of the main deployment challenges in existing privacy-preserving machine learning by enabling 

heterogeneous system functionality. The research established that using TrustGate in a federated learning 

system enables both performance standards and privacy requirements to be achieved. The system delivers 

cooperative machine learning for various distributed networks while maintaining full data security, together 

with precise model performance. The findings demonstrate potential applications in analytic processes 

involving sensitive data that belong to finance organizations and healthcare and telecommunications sectors. 

 
 

6. CONCLUSION 

Privacy computing is becoming essential for secure collaboration in sectors like finance, healthcare, 

and government. To unlock its full potential, future work must focus on making different systems work 

together seamlessly and on creating shared global standards. These efforts will make it easier for 

organizations to collaborate while protecting sensitive data. Technologies like TrustGate show that secure 

and effective cross-platform learning is possible without sacrificing data privacy or performance. Moving 

forward, research should aim to deploy such solutions in real-world settings, support a wider range of data 

types, and align with international data protection laws. This will help build a safer, more connected digital 

environment where privacy and innovation go hand in hand. 
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