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Breast cancer stands as one of the top causes of death around the globe,
making the accurate interpretation of breast ultrasound reports vital for early
diagnosis and treatment. Unfortunately, key findings in these reports are
often buried in unstructured text, complicating automated extraction. This
study presents a deep learning-based natural language processing (NLP)
approach to extract breast imaging reporting and data system (BI-RADS)
categories from breast ultrasound data. We trained a recurrent neural
network (RNN) model, specifically using a BiLSTM architecture, on a
dataset of reports that were manually annotated from a hospital in Saudi
Avrabia. Our approach also incorporates uncertainty estimation techniques to
tackle ambiguous cases and uses data augmentation to boost model
performance. The experimental results indicate that our deep learning
method surpasses traditional rule-based and machine-learning techniques,
achieving impressive accuracy in classification tasks. This research plays a
significant role in automating radiology reporting, aiding clinical decision-

making, and pushing forward the field of breast cancer research.
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1. INTRODUCTION

Breast cancer continues to be one of the most widespread cancers globally, posing a substantial
burden on both individual patients and public health systems [1]. Early detection is crucial in reducing
mortality rates and alleviating financial strain. Consequently, medical guidelines advocate for routine
mammography screening to assess breast cancer risk [2]. To minimize discrepancies and standardize
radiologists’ reporting of mammaographic results, the American College of Radiology (ACR) introduced the
breast imaging reporting and data system (BI-RADS) [3]. This system provides a standardized lexicon for
reporting mammographic findings and a six-category classification framework to assess malignancy risk as
shown in Table 1 [4]. Although BI-RADS was initially designed for mammography, it has since been
adapted for other imaging modalities, such as magnetic resonance imaging (MRI) and breast ultrasound.
Nevertheless, these essential radiology discoveries are frequently recorded in unstructured narrative formats,
rendering them unavailable to computational systems dependent on organized data. Numerous investigations
have utilized natural language processing (NLP) strategies to extract BI-RADS findings and final assessment
categories from diverse English-language breast radiography reports, encompassing mammograms and breast
ultrasound data. Early approaches were predominantly rule-based [5], such as MedLEE, one of the
pioneering clinical NLP systems developed for extracting abnormal findings from mammography reports [6].
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Table 1. A description of BI-RADS six-category mammaography findings

BI-RADS Findings Likelihood of Management
category breast cancer
0 Need additional imaging or prior N/A Recall for additional imaging and/or await
examination prior examinations
1 Negative Negligible Routine screening
2 Benign Negligible Routine screening
3 Probably benign <2% Short interval-follow-up
4 Suspicious 23-34% Tissue diagnosis
5 Highly suggestive of malignancy >95% Tissue diagnosis
6 Malignancy confirmed biopsy 100% Surgical excision when clinically appropriate

Other rule-based methods were implemented to classify BI-RADS breast tissue composition from
mammography records [7] to examine ambiguity in BI-RADS assessment categories utilizing the GATE
NLP framework [8]. Later advancements introduced machine learning-based NLP systems, such as those
employing support vector machines (SVMs) and Naive Bayes (NB) to extract BI-RADS categories and
laterality classifications, achieving an Fl-score of 0.95 and surpassing rule-based approaches in
performance [9]. Additionally, alternative NLP pipelines have been utilized to extract BI-RADS
evaluation categories [10], while statistical testing has been employed to support clinical decision-making
using extracted findings [11], [12].

There are now enormous digital archives of clinical documents in Saudi Arabia due to the
widespread use of electronic health records, necessitating NLP-driven methods to extract meaningful
insights. Several studies have explored NLP techniques for symptom extraction and disease progression
analysis within Saudi medical records [13]-[15]. More recently, research on Saudi clinical text has expanded
to address broader NLP challenges, including negation detection and tumor-related information extraction
from surgical notes. Despite these contributions, no prior study has specifically addressed the structured
extraction of BI-RADS findings from Saudi breast ultrasound reports, highlighting a critical gap in the field.

Structured BI-RADS extraction is crucial for clinical decision-making. To address this gap, we
present a deep learning approach to Saudi Arabian breast ultrasound data that can extract all BI-RADS
finding classifications. In light of the growing interest in deep learning models, we explicitly investigate the
application of a bidirectional long-short term memory (BiLSTM) network for this task. We specifically
explore the application of a BiLSTM-based recurrent neural network (RNN) for extracting BI-RADS
findings from breast ultrasound reports [16]-[19]. We use an annotated dataset of 465 reports to illustrate that
deep learning methodologies surpass conventional conditional random fields (CRF) based machine learning
techniques. This underscores their potential to enhance breast cancer research and clinical decision support.

Recent NLP advancements show that RNN-based models surpass CRF models in named entity
recognition (NER) tasks, especially when integrating human-generated features and domain-specific
dictionaries [19]. In the clinical domain, RNNs have been effectively applied to medical event detection [20],
medical concept extraction [21], extraction of temporal information in clinical contexts [22], and disease
name recognition [23]. However, there is still a lack of study on using deep learning and machine learning to
extract BI-RADS in Saudi healthcare. Here is the outline for the rest of the paper: first, we examine the
methodology and experiment; second, we present the results and discuss what we found; and finally, we wrap
up the study in section 4.

2. METHOD AND EXPERIMENT
2.1. Dataset and annotation
Data source:
We utilized breast ultrasound reports from Khamis Mushayt Maternity Hospital in Aseer Province,
Saudi Arabia, covering the period from 2015 to 2020. All reports were anonymized to protect patient
confidentiality by replacing sensitive information (e.g., patient names, addresses, telephone numbers, and
medical staff names) with surrogates or pseudonyms. This ensured the text remained coherent without
unusual gaps. Notably, our dataset comprised textual reports without accompanying ultrasound images.
Annotation process:
An iterative approach was employed to develop the annotation guidelines:
i) Initial drafting: collaborated with domain experts to create the initial annotation guidelines.
ii) Pilot annotation: two annotators independently annotated a subset of 65 reports using the initial
guidelines. The inter-annotator agreement yielded an F-measure of 0.821, highlighting the task’s
complexity.
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iii) Guideline refinement: based on discrepancies observed, the guidelines were refined for clarity and
comprehensiveness.

iv) Re-annotation: the same 65 reports were re-annotated using the updated guidelines, resulting in an
improved F-measure of 0.942.

v) Full annotation: the finalized guidelines were applied to annotate the remaining 400 reports, culminating
in 465 annotated reports. Figure 1.
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Figure 1. The method flowchart is the entire methodology pipeline

A web-based annotation application called BRAT, which is open-source, made the annotation
process easier [24]. Figure 2 in addition to entity annotation, we marked the negation state of every entity.
Afterward, the annotated corpus was divided into two halves: a training set comprising 310 reports (about
two-thirds) and a testing set comprising 155 reports (about one-third).

|The ultrasound examination of the left breast revealed a hypoechoic mass with irregular margms,l

|Iocated at 2 o'clock position. The lesion measures approximately 15 mm in du’ameter.]

[No significant axillary lymphadenopathy was observed. BI-RADS category 4 was assigned, |

|5uggestmg a suspicious abnormality requiring further evaluation

[hypoechoic mass |

[irregular margins |

[2 o'clock position |

Finding Size

DeSCriptOr BI-RADS Assessment
|BI-RADS category 4| Location

Figure 2. BART annotation for a brest cancer radiology report

2.2. NER methods

NER is a crucial problem in NLP that entails identifying and classifying entities in text into
established categories [25], such as names of people, organizations, locations, and specific terminologies
pertinent to a domain Figure 3. We explored three NER approaches:
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2.2.1. Rule-based method:

Established as a baseline, this method integrates manually generated rules with an entity dictionary
and is implemented through the UIMA Ruta framework. The entity dictionary was constructed from the
annotated development set, and regular expressions were designed to identify specific patterns [26]. Ruta
rules handled complicated permutations, including combining integers and units.

2.2.2. CRF-based method:

CRFs are probabilistic models adept in sequence labeling tasks. We utilized the CRF++ package to
incorporate essential NER components, including bag-of-words and n-grams, to construct the NER model.
CRFs include contextual information, making them suitable for tasks like ours.
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Figure 3. Performance comparison on NER methods

2.2.3. RNN-based deep learning method:

Capturing long-term dependencies in sequential data is a strong suit of RNNs, especially LSTM
networks. We implemented an RNN architecture with LSTM units drawn from Lample’s creations et al. [18]
enhancements explored included:

— Character embeddings: capturing morphological features of words.

— BILSTM: radiology reports are structured as a sequential medical text, making BiLSTM effective for
capturing long-range dependencies in textual patterns. Processing sequences in forward and backward
directions to utilize past and future context Figure 4.

Finally, what was needed for the RNN model were:

— Character embedding dimension: 50

— LSTM layer size: 100 units at the word level

— Learning rate: 0.005

— Dropout probability: 0.5

Several epochs passed before the training and validation losses began to change. Figure 5 illustrates
the BiLSTM model’s loss convergence curve, demonstrating the stability and effectiveness of the training
process. While transformer-based models such as BERT have shown strong performance in NLP tasks, we
opted for a BiLSTM-based approach due to its effectiveness in handling sequential medical text, lower
computational requirements, and better generalizability on a moderate-sized dataset.

Evaluation measures: We used standard metrics measures to assess the NER systems’ efficacy:

— Precision (PRE): the proportion of accurately anticipated positive observations to the projected positives.

— Recall (REC): the proportion of accurately predicted positive instances to the total instances in the actual
category.

— F1-score (F1): the sum of precision and recall, calculated using weights.

— Accuracy (ACC): the proportion of accurately anticipated observations to the total observations.

Mathematically, these are defined as:

PRE = —~ 1)

TP+FP
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REC = —& )
TP+FN
_ (2+PRE*REC)
F1= PRE+REC ®)
TP+TN
ACC= TP+FP+FN Q)

TP = true positives, FP = false positives, FN = false negatives, TN = true negatives.
The training set was utilized to develop and train the NER models, while the test set served to evaluate their

performance based on the metrics mentioned above.
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Figure 4. BiLSTM-based model Figure 5. Loss convergence of
architecture for BI-RADS extraction BiLSTM model

3. RESULTS AND DISCUSSION

3.1. Result
In alignment with BI-RADS standards, experts identified 20 entity types in the breast ultrasound

reports, with an additional category labeled “Other” to group infrequent occurrences. Out of 465 reports,
9,132 entities were annotated. Four entity types—Ilocation, echo, size, and vascularity—were the most
frequent, each appearing over 1,000 times. Conversely, ten entity types, such as architectural distortion,
calcifications, and tissue composition, had fewer than 100 occurrences as shown in Table 2.

Table 2. Distribution of BI-RADS entity categories in the annotated corpus

Entity type Number of entities
Alder 15
Architectural-distortion 22
Calcifications 30
Ductchanges 52
Echo 1,308
Elasticity-assessment 60
Hardness-ratio 19
Location 2,301
LymphNode 399
Margin 801
Masses 158
Negation 655
Orientation 26
Posterior-features 31
Resistance-index 231
Shape 461
Size 1,440
Skin 131
Tissue-composition 14
Vascularity 958
Other 20
Total 9,132
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We aimed to determine which of three methods—the rule-based approach, the CRFs-based model,
and the RNN-based model (BiLSTM)—was most effective in NER evaluation. The deep learning model
using BiLSTM accomplished the greatest F1-score of 0.908, followed by the model based on CRFs with an
F1-score of 0.885, and the approach based on rules with an F1-score of 0.864, as illustrated in Table 3.
Compared to more conventional methods, these results demonstrate that deep learning-based systems are
more effective in extracting BI-RADS conclusions from breast ultrasound records. The evaluation metrics
used to assess the performance of the NER models include PRE, REC, F1, and ACC, which are calculated
using the (5)-(8):

PRE = — (5)
TP+FP
TP
REC = TP+FN ©)
__ (2+*PRE*REC)
F1= PRE+REC )
ACC= e @

— Precision (PRE) is defined as in (5).
— Recall (REC) is defined as in (6).

— Fl-measure (F1) is defined as in (7).
— Accuracy (ACC) is defined as in (8).

Table 3. Performance comparison of NER approaches (Rule-based, CRF, and BiLSTM)
Method Precision  Recall F1-score
Rule-based 0.871 0.820 0.864
CRFs-based ~ 0.902  0.862  0.885
BiLSTM 0913  0.895  0.908

The superior performance of the RNN-based model suggests that deep learning techniques can
effectively capture complex linguistic patterns in radiology reports. However, the model’s performance
varied across different entity types, particularly struggling with those with fewer occurrences in the dataset.

3.2. DISCUSSION
3.2.1. Addressing gaps in previous research

While previous studies have explored BI-RADS entity extraction using rule-based and statistical
methods, the application of deep learning for structured information extraction from breast ultrasound reports
remains underexplored. Additionally, most prior research has focused on mammography rather than
ultrasound imaging. To bridge these gaps, our study utilizes a deep-learning NER system based on BiLSTM
to find breast ultrasound data with BI-RADS information.

3.2.2. Key findings and novel contributions

Our study demonstrates that RNN-based deep learning models (BiLSTM) outperform traditional
CRFs and rule-based approaches in extracting BI-RADS entities. The best possible F1-score of 0.908,
achieved by the RNN-based model, underscores the effectiveness of deep learning in this domain.
Additionally, our annotation process, involving 18 BI-RADS entity types, sets this study apart by providing a
more comprehensive labeled dataset than previous efforts.

3.2.3. Comparison with existing literature

Previous research has shown that deep learning is useful in medical text processing, and our results
are in line with that [27]. For instance, An et al. [27] demonstrated that BiLSTM models improve entity
recognition in clinical text. However, our approach extends this by applying deep learning to breast
ultrasound reports precisely rather than broader clinical narratives. Unlike earlier methods that relied solely
on hand-crafted rules or statistical models, our deep learning model effectively captures contextual
dependencies, enhancing accuracy.
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3.2.4. Limitations of the study

While the results show promise, our study has certain limitations. First, while the dataset includes a
diverse set of reports, the relatively low frequency of some entity types may have impacted the model’s
ability to generalize. Additionally, the absence of image-text alignment means that entity extraction was
performed solely on textual data, limiting multimodal insights. Future studies should consider integrating
imaging features alongside text-based analysis.

3.2.5. Implications for future research

Future research should explore hybrid models incorporating deep learning and rule-based techniques
to improve performance on rare entity types. Expanding the dataset with reports from multiple institutions
could enhance the model’s robustness and generalizability. Exploring transformer-based architectures like
BERT or BioBERT may improve entity extraction accuracy.

3.2.6. Conclusion

Our findings confirm that deep learning approaches, particularly RNN-based models, extract
BI-RADS results from breast ultrasound reports more effectively. The study contributes to the field by
presenting a comprehensive annotated dataset and demonstrating the feasibility of deep learning for
structured information extraction in radiology. Future advancements in multimodal learning and dataset
expansion could further enhance automated BI-RADS classification and clinical decision support.

4.  CONCLUSION

This study successfully addressed the challenge of extracting structured BI-RADS findings from
unstructured reports generated by deep learning for breast ultrasounds. As anticipated in the Introduction, our
BiLSTM model outperformed rule-based and CRF methods in BI-RADS extraction, demonstrating its
effectiveness in capturing linguistic patterns in radiology reports. It achieved an F1-score of 0.908,
confirming its potential for automated clinical decision support.

Our findings align with previous research on deep learning in medical text processing but extend its
application to breast ultrasound, an underexplored area. While our model demonstrates high accuracy,
limitations such as dataset diversity and the lack of image-text alignment highlight areas for further study.
Future work should explore hybrid deep learning-rule-based models, expand datasets across institutions, and
integrate transformer models like BERT for improved accuracy. Incorporating multimodal learning—
aligning text with ultrasound images—could further enhance artificial intelligence (Al)-driven radiology
decision support.
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