
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 39, No. 3, September 2025, pp. 1807~1814

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v39.i3.pp1807-1814  1807

Journal homepage: http://ijeecs.iaescore.com

Comprehensive secure code review analysis of web

application security vulnerabilities

Azlinda Abdul Aziz1, Nur Razia Mohd Suradi2, Rahayu Handan2, Mohd Noor Rizal Arbain2
1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) Melaka, Campus Jasin, Melaka, Malaysia

2Faculty of Communication, Visual Arts and Computer, Universiti Selangor, Selangor, Malaysia

Article Info ABSTRACT

Article history:

Received Nov 11, 2024

Revised Apr 7, 2025

Accepted Jul 2, 2025

 A secure code review is a process of software development involves

systematic examination of application code. However, web applications

evolving of cyber threats makes it challenging to conduct adequate security.

Therefore, this paper conducts a comprehensive secure code review analysis

to protect any crucial aspect of web security from potential threats and

vulnerabilities. The application code is scanned for security issues during the

real review, and the results are classified according to the areas of

vulnerability. As a result, the application code risk level and list of risk

categories were defined. This result assists in prioritizing issues for

resolution, beginning with the most critical problems to lower risk levels.

Next, a list of risk categories that give the most significant security

vulnerabilities affecting application codes is defined. SQL injection, weak

password handling, insecure direct object reference, information exposure,

improper session management, missing input validation, deprecated

functions, and lack of comments are defined as a risk category. Moreover,

the result of application code weakness in the security of the application

code is determined based on the level of risk and categories. Thus, the

analysis result offers the developers a clear perspective on protecting the

web applications from threats and vulnerabilities.

Keywords:

Cyber thread

Risk

Secure code

Security

Vulnerabilities

Web application

This is an open access article under the CC BY-SA license.

Corresponding Author:

Azlinda Abdul Aziz

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) Melaka

Campus Jasin, Melaka, Malaysia

Email: azlindaaziz@uitm.edu.my

1. INTRODUCTION

Web applications play a critical role in modern digital ecosystems, supporting essential services

across various industries. Strict measures must be taken at every level of the software development lifecycle

because of the widespread use of these devices, which often makes them the target of security attacks. One

crucial approach to safeguarding web applications is secure code review, a process in which developers

analyze application code to identify and mitigate security vulnerabilities, enhance code quality and ensure

compliance with security standards [1]. This process is essential for safeguarding web applications,

especially those handling sensitive data, from potential cyber threats and attacks [2]. However, the

complexity of modern web applications and the constantly evolving nature of cyber threats make conducting

effective security reviews challenging [3]. Furthermore, ongoing training helps developers stay informed

about the latest security threats and best practices. Incorporating security measures early in the development

lifecycle helps establish a strong foundation for secure coding [4].

One of the main objectives of secure code reviews is to identify and fix security vulnerabilities before

deployment. Therefore, this process helps prevent common threats such as SQL injection, cross-site scripting

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 3, September 2025: 1807-1814

1808

(XSS), and cross-site request forgery (CSRF), which could compromise sensitive data and system security [5].

Optimizing secure ode review techniques for real-world use is still difficult, despite prior research

emphasizing the need of early security implementation and ongoing developer training. This study explores

secure code review, evaluating their effectiveness and suggesting improvements to enhance web application

security. By implementing secure code review practices, developers can adopt best security measures, such as

enforcing secure authentication mechanisms, validating user inputs, and managing sessions securely, all of

which contribute to strengthening web application security. Conducting thorough secure code reviews is

important to keep web applications strong and safe, especially as cyber threats continue to evolve [6].

2. LITERATURE REVIEW

Code review is an integral part of software development [7]. The developers examine source code in a

systematic approach to find bugs, improve code quality, and make sure standards are followed. Reviews of the

code are an essential part of web security because they keep applications safe from threats and holes [8]. Web

applications are easy targets for hackers because they handle a lot of private data and are used by many people.

Therefore, code reviews are important for finding vulnerabilities before they happen [9]. The main goal of code

reviews to find and fix security holes before the code is deployed. Moreover, adopting a proactive approach

helps mitigate risks such as SQL injection, XSS, CSRF, and other common vulnerabilities that could enable

hackers to compromise data or breach security [10].

Code reviews significantly improve web application security by ensuring developers follow the best

practices for security, such as using secure authentication methods, validating input, and managing sessions

securely [11]. Code reviews also improve code quality by encouraging code to be straightforward, easy to

update, and work well. Moreover, it encourages team members with the developer to work together and share

what they know, which helps everyone understand security principles and practices better [12]. A structured

review method looks at all the code, gives helpful feedback on security issues, and checks the fixes to ensure

the problems are fixed correctly.

The complexity of current web applications and the constantly changing cyber threats make it hard

to do effective security. Security practices early in the development lifecycle help to set the stage for safe

code. Previous studies have mostly examined automatic and manual code reviews independently, each with

unique advantages and limitations. By examining big codebases, automated technologies effectively find

typical vulnerabilities like SQL injection and XSS [13]. Nevertheless, they frequently produce false positives

and might fail to notice context-specific security vulnerabilities. Conversely, manual reviews enable skilled

developers to properly examine the code, identifying logical errors and business logic weaknesses that

automated methods could overlook. Therefore, developers must stay updated on the latest security threats and

protection measures by participating in regular training sessions [14]. To overcome these problems, a mix of

automated tools for quick identification and hand inspection for more in-depth analysis [15]. Thus, the study

conducts a comprehensive code review analysis of web security by integrating various techniques, providing

a solid foundation for web application security [16].

3. OBJECTIVES

There are two main objectives to be achieved in this study. Here are the objectives:

a) To identify the risk level and categories from the secure code review affect the lack of security

b) To examine how application code development affects the resistance to cyber threats

4. METHOD

The secure code review process follows a structured approach to ensure a systematic evaluation of

web applications before deployment. This study involves a combination of manual and automated techniques

to identify security vulnerabilities effectively. The methodology consists of several key stages, including the

selection of multiple web applications developed by the developer to ensure diversity in codebases and

security implementations. Applications with different architectures, programming languages, and frameworks

are included to enhance the study’s generalizability. The secure code review is to identify security

weaknesses resulting from missing or inadequate security controls, which may compromise the application's

resistance to cyber threats [17]. Rather than attempting to identify every possible flaw, the review prioritizes

the detection of key vulnerabilities that indicate broader security risks. The methodology adopts a

comprehensive classification of security threats, which helps in creating a more systematic approach to

secure coding. Security analysts manually examine the source code to detect security flaws in authentication

mechanisms, data validation, and session management [18]. Identified security risks are documented in

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Comprehensive secure code review analysis of web application security … (Azlinda Abdul Aziz)

1809

dedicated spreadsheets, categorized based on severity, and assigned risk ratings. Common vulnerabilities are

verified through cross-checking, while less frequent security issues undergo group reviews for validation.

This process directly supports the objective of identifying risk levels and categories that contribute to the lack

of security in web applications.

The combination of manual and automated techniques ensures comprehensive vulnerability

detection [19]. Manual reviews help identify logic-based security issues that automated tools might overlook,

while automated tools enhance coverage and efficiency. Each identified security issue is assessed based on

predefined risk criteria, considering factors such as exploitability, impact, and remediation complexity. Risk

reports include severity ratings and recommended mitigations to address identified issues. By systematically

identifying and mitigating potential security vulnerabilities, the secure code review strengthens web

application security [20]. Furthermore, it enhances developers' awareness of security issues, contributing to

the development of more resilient applications. Security risks are greatly decreased by best practices such

strong data validation, secure authentication, and appropriate session management. Ensuring adherence to

these principles protects user data and maintains the credibility of web applications. Finally, the review

directly addresses the objectives of the study by evaluating the effectiveness of security implementations in

web applications and making a comprehensive classification of security threats, which helps in creating a

more systematic approach to secure coding [21]. This approach aligns with the studies aims to identify

vulnerabilities and improving application security resilience. The methodology stage consists of defining

objectives, outlining the review process, and analyzing the study outcomes, as illustrated in Figure 1.

Figure 1. Methodology stage

5. RESULTS AND DISCUSSION

The analysis starts by viewing the code created by the developer and examining the code's lack of

security, which can cause a cyber threat. The analysis of the code risk levels is divided into four categories:

high, medium, low, and informational, as illustrated in Figure 2. The findings show high risk consists of ten

findings with the most prominent effect and needs quick attention to stop significant security breaches and

system failures. The medium risk showed nine results that essential problems must be fixed immediately.

Low Risk has one finding that points to minor bugs in the code that need to be fixed to keep the code quality

high. Two findings for informational research are not vulnerabilities but helpful observations for best

practices ideas. Furthermore, this result helps prioritize problem fixes, starting with the most critical issues

and moving to those with lower risk levels [22].

Moreover, Figure 3 shows the list of risk category findings and highlights the most significant

security vulnerabilities identified during the secure code review. The most common are and missing input

validation, which are shown in seven cases [23]. Therefore, it shows that bigger problems must be fixed

because attackers could easily run flaws at any SQL command and take advantage of the fact that input is not

being appropriately checked, which would be a significant security breach [24]. Weak password handling and

improper session management were found two times, which shows that keeping user sessions and private

information safe is not strong enough. Weak password handling, insecure direct object reference, information

exposure, deprecated functions, and lack of comments are some less common but still important results.

Although these problems are less frequent, they still pose significant risks that must be addressed [25].

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 3, September 2025: 1807-1814

1810

Figure 2. Risk level finding

Figure 3. List risk categories

Moreover, the application codes were analyzed by the secure code reviewer, and the weak security

of the application code development was defined. Based on the analysis, the higher risk code categories of

resistance effects are shown in Table 1. The study revealed SQL injection is the weakness of the software,

which constructs SQL commands using externally influenced input without proper neutralization of unique

elements that could modify the intended SQL command. Moreover, weak password handling must be

stressed to avoid cryptographic failures for plaintext password storage. The weakness is that the software

stores sensitive data, such as passwords, using a reversible encoding rather than a one-way hash [25].

Furthermore, in insecure direct object reference, broken access control occurs in broken access

control, which is authorization bypass through a user-controlled key. The weakness of the application is that

it does not correctly verify if a user is authorized to access the resource it is requesting. Moreover,

information exposure affects sensitive data exposure for information exposure. The weakness is the software

does not adequately protect sensitive data from unauthorized access during its lifetime.

Moreover, Table 2 shows the analysis result of the resistance effects of the medium-risk code

categories, which consist of improper session management and missing input validation. The improper

session management in cryptographic failures shows the weakness in plaintext storage of a password where

the software stores sensitive data such as passwords using reversible encoding rather than a one-way hash.

Moreover, missing input validation shows that the code created is not an improper input validation where the

weakness of the software does not properly validate inputs, which can affect and control the flow of the

program.

Moreover, Table 3 shows the resistance effects of the informational code categories, which consist

of deprecated caused by the security logging and monitoring failures, which are the effect of potentially

dangerous functions where the application uses deprecated functions that of deprecated functions and a lack

of comments. From the analysis shown the deprecated functions are caused by security logging and

monitoring failures, which are the effect of potentially dangerous functions where the application uses

deprecated tasks that might not be supported in future programming language versions and may have known

vulnerabilities [15]. Furthermore, the lack of comments affects the security logging and monitoring failures

for suspicious comments. It involves the application's lack of comments explaining complex code sections,

which can lead to difficulties in maintenance and debugging.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Comprehensive secure code review analysis of web application security … (Azlinda Abdul Aziz)

1811

Table 1. High-risk code categories resistance effect
Categories Application code Description Risk

SQL injection

$sql = “INSERT INTO
‘transaction”(item’,’amount’, ‘type’,

‘email’, ‘date’)VALUES

(‘$item’,’$amount’,’$type’,’temp’,’$date”)”;

User input variables are directly
concatenated into the SQL query

without proper sanitization or use of

prepared statement

High

Week password
handling

$sql = “UPDATE ‘user’ SET

‘password’=’$password’ WHERE ‘email’=

‘$id”

The new password is stored in

plaintext in the database

High

Insecure direct

object reference

$d = $_GET(‘id’)

$sql = “DELETE FROM ‘transaction

WHERE id = “$id”;

The transaction ID from the URL

parameter is used directly in an

SQL DELETE query without
verifying user permissions

High

Information

exposure

if ($row ==1) { $_SESSION[‘sess’} =

$email; $_SESSION [‘notify’] = ‘1’; header
(“location: ./ ./ dashboard.php”);) else (

$_SESSION [‘notify’] = ‘2’; header

(“location: ./ ./login.php”);}

Error messages reveal sensitive

information

High

Table 2. Medium-risk code categories resistance effects
Categories Application code Description Risk

Improper session

management

SESSION_START(); The session is started without

regenerating the session ID upon

successful login

Medium

Missing input

validation

$type= $_POST[“type’];

$item=$_POST[‘item’]

$amount = $_POST [‘amount’]

The session is started without

regenerating the session ID upon

successful login

Medium

Table 3. Informational risk code categories resistance effects
Categories Application code Description Risk

Deprecated functions $conn= mysql_connect (‘localhost’, ‘root’,”,’mt’); The mysql_connect function is

deprecated

Informational

Lack of comment $sql =”UPDATE ‘user’ SET ‘name’ = “$name”,

‘email’= ‘$email WHERE ‘email’= ‘$teemp”, if
($conn-> query ($sql) === TRUE);

The code performs a series of

operations without any comments
explaining the logic

Informational

The findings of this study highlight the critical importance of secure coding practices in mitigating

security vulnerabilities before deployment. The analysis confirms that proper input validation, the use of

structured SQL queries, password hashing, session ID regeneration, and continuous code updates are

essential in preventing security threats. A key finding is that strict input validation effectively prevents XSS

and SQL injection attacks, reinforcing the necessity of implementing prepared statements to ensure user input

is treated as data rather than part of SQL commands [19]. Additionally, the study underscores that adding a

unique salt to passwords before hashing enhances security, ensuring that even if a hash is compromised, the

original password remains protected. These findings align with well-established security guidelines,

demonstrating that adhering to best coding practices significantly reduces security risks in web applications.

In contrast to earlier studies, which frequently offers broad security advice, this study provides a

systematic and categorized way to find and classify vulnerabilities according to their relevance. This allows

developers to effectively allocate resources toward the most critical security risks. One of the study’s

strengths is its comprehensive classification of security threats, which helps in creating a more systematic

approach to secure coding. However, a notable limitation is its reliance on static code analysis,

which may overlook runtime vulnerabilities and emerging threats [22]. The results also show that poor

session management and inadequate password handling are more common than expected, indicating that

even basic security precautions are frequently disregarded in practical applications. Furthermore, despite

current development norms restricting such practices, the continued use of obsolete functions and the absence

of adequate code documentation point to ongoing security oversights. These unexpected results highlight the

need for greater awareness and enforcement of security best practices among developers.

By integrating both automated and manual review techniques, this study enhances the accuracy and

efficiency of secure code analysis. Automated tools allow for quick detection of common vulnerabilities,

while manual reviews provide deeper insight into logic-based security flaws [25]. This combination ensures a

more comprehensive approach to securing web applications, reinforcing best coding practices and

strengthening cybersecurity defenses.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 3, September 2025: 1807-1814

1812

This study successfully achieves its goal of emphasizing the importance of secure code reviews in

reducing cybersecurity risks and strengthening web application security. It provides an effective structure for

developers, organizations, and cybersecurity experts to enhance their security strategies through proper input

validation, secure session management, and strong authentication mechanisms. To enhance the effectiveness

and precision of secure code reviews, future enhancement need explores artificial intelligence (AI)-enhanced

tools and dynamic security testing approaches. By continuously refining security techniques, the industry can

stay ahead of evolving cyber threats and ensure the long-term security and resilience of web applications.

6. CONCLUSION

In conclusion, carefully reading and looking over the application code developed by the developer

by hand during the review is essential. The secure code review revealed several security holes requiring

immediate attention to improve security and code quality. Identifying and addressing these vulnerabilities at

an early stage helps prevent potential cyber threats that could exploit weaknesses in the system. Using the

analysis requires immediate attention to improve. From that, code quality can enhance by encouraging

straightforward, easy-to-update, and well-functioning code. Consequently, the developer needs to review all

the code and security methods to ensure the security problems are fixed correctly. By integrating automated

tools alongside manual reviews, developers can enhance accuracy and efficiency in detecting security flaws,

leading to more secure and resilient applications. A strong secure coding culture within development teams

ensures long-term security benefits and adopts accountability among developers. Therefore, secure code

reviews are very important for keeping users' trust and protecting private data because they find bugs before

they happen, follow best practices, and encourage a culture of constant improvement. Thus, developers can

make their web applications much safer by following these rules. These rules will protect against standard

security holes and give developers a strong defense against threats. Additionally, organizations should invest

in regular security training programs to keep developers updated on the latest threats and protection

strategies. Lastly, continuous monitoring, regular updates, and thorough testing are necessary to maintain the

security and integrity of an application in the long term. A proactive approach to security not only protects

applications from cyberattacks but also strengthens the overall digital ecosystem by reducing security risks at

a larger scale.

ACKNOWLEDGEMENTS

The appreciation for the team member that has collaboration in completed for this research and

contribute throughout the process of writing paper. Their expertise and support have greatly enhanced the

quality of this work.

FUNDING INFORMATION

 This research was conducted independently by the authors without any external financial support.

AUTHOR CONTRIBUTIONS STATEMENT

All authors contributed meaningfully to the conception, design, execution, and analysis of this study,

as described in the following table:

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Azlinda Abdul Aziz ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nur Razia Mohd

Suradi

 ✓ ✓ ✓ ✓ ✓ ✓

Rahayu Handan ✓ ✓ ✓ ✓ ✓

Mohd Noor Rizal

Arbain

✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Comprehensive secure code review analysis of web application security … (Azlinda Abdul Aziz)

1813

CONFLICT OF INTEREST STATEMENT

 The authors declare that there are no conflicts of interest related to this research.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon

reasonable request. Due to privacy and confidentiality considerations, the data are not publicly available.

REFERENCES
[1] X. D. Hoang, T. H. Nguyen, and H. D. Pham, “A novel model for detecting web defacement attacks transformer using plain text

features,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 37, no. 1, pp. 232-240, Jan. 2025,
doi: 10.11591/ijeecs.v37.i1.pp232-240.

[2] A. A. Almutairi, S. Mishra, and M. AlShehri, “Web security: emerging threats and defense,” Computer Systems Science and

Engineering, vol. 40, no. 3, pp. 1233-1248, 2021, doi: 10.32604/CSSE.2022.019427.

[3] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving the web: a journey into web session security,” in The Web

Conference 2018 - Companion of the World Wide Web Conference, WWW 2018, New York, New York, USA: ACM Press, 2018,

pp. 451-455. doi: 10.1145/3184558.3186232.
[4] V. Abdullayev and A. S. Chauhan, “SQL injection attack: quick view,” Mesopotamian Journal of CyberSecurity, vol. 2023,

pp. 30-34, Feb. 2023, doi: 10.58496/MJCS/2023/006.

[5] Y. Ashibani and Q. H. Mahmoud, “Cyber physical systems security: analysis, challenges and solutions,” Computers and Security,
vol. 68, pp. 81-97, Jul. 2017, doi: 10.1016/j.cose.2017.04.005.

[6] H. Lamsellak and M. G. Belkasmi, “Global software development agile planning model: challenges and current trends,”

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 32, no. 3, pp. 1774-1784, Dec. 2023,
doi: 10.11591/IJEECS.V32.I3.PP1774-1784.

[7] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, “Systematic literature review on security risks and its practices in secure

software development,” IEEE Access, vol. 10, pp. 5456–5481, 2022, doi: 10.1109/ACCESS.2022.3140181.
[8] Q. Wang et al., “Break the wall from bottom: automated discovery of protocol-level evasion vulnerabilities in web application firewalls,”

in Proceedings - IEEE Symposium on Security and Privacy, IEEE, May 2024, pp. 185-202. doi: 10.1109/SP54263.2024.00129.

[9] J. Heino, A. Hakkala, and S. Virtanen, “Study of methods for endpoint aware inspection in a next generation firewall,”
Cybersecurity, vol. 5, no. 1, p. 25, Sep. 2022, doi: 10.1186/s42400-022-00127-8.

[10] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar, “Software security patch management - a systematic literature review

of challenges, approaches, tools and practices,” Information and Software Technology, vol. 144, p. 106771, Apr. 2022,
doi: 10.1016/j.infsof.2021.106771.

[11] M. Alsaffar et al., “Detection of web cross-site scripting (XSS) attacks,” Electronics, vol. 11, no. 14, p. 2212, Jul. 2022,

doi: 10.3390/electronics11142212.
[12] L. Braz, E. Fregnan, G. Calikli, and A. Bacchelli, “Why don’t developers detect improper input validation? ’; DROP TABLE

papers; --,” in Proceedings - International Conference on Software Engineering, IEEE, May 2021, pp. 499-511.

doi: 10.1109/ICSE43902.2021.00054.
[13] A. O. Agbakwuru and D. O. Njoku, “SQL injection attack on web base application: vulnerability assessments and detection

technique,” International Research Journal of Engineering and Technology, pp. 243–252, 2021.

[14] W. P. K. Fernando, D. A. N. P. Dissanayake, S. G. V. D. Dushmantha, D. L. C. P. Liyanage, and C. Karunatilake, “Challenges
and opportunities in password management: a review of current solutions,” Sri Lanka Journal of Social Sciences and Humanities,

vol. 3, no. 2, pp. 9-20, Aug. 2023, doi: 10.4038/sljssh.v3i2.96.

[15] Ö. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, “A comprehensive review of cyber security vulnerabilities,
threats, attacks, and solutions,” Electronics, vol. 12, no. 6, p. 1333, Mar. 2023, doi: 10.3390/electronics12061333.

[16] R. L. Alaoui and E. H. Nfaoui, “Deep learning for vulnerability and attack detection on web applications: a systematic literature
review,” Future Internet, vol. 14, no. 4, p. 118, Apr. 2022, doi: 10.3390/fi14040118.

[17] W. Charoenwet, P. Thongtanunam, V. T. Pham, and C. Treude, “Toward effective secure code reviews: an empirical study of security-

related coding weaknesses,” Empirical Software Engineering, vol. 29, no. 4, p. 88, Jul. 2024, doi: 10.1007/s10664-024-10496-y.
[18] L. Braz, C. Aeberhard, G. Calikli, and A. Bacchelli, “Less is more: supporting developers in vulnerability detection during code

review,” in Proceedings - International Conference on Software Engineering, New York, NY, USA: ACM, May 2022,

pp. 1317-1329. doi: 10.1145/3510003.3511560.
[19] G. Deepa and P. S. Thilagam, “Securing web applications from injection and logic vulnerabilities: Approaches and challenges,”

Information and Software Technology, vol. 74, pp. 160-180, Jun. 2016, doi: 10.1016/j.infsof.2016.02.005.

[20] R. A. Putra, I. A. Kautsar, H. Hindarto, and S. Sumarno, “Detection and prevention of insecure direct object references (IDOR) in
website-based applications,” Procedia of Engineering and Life Science, vol. 4, Jul. 2023, doi: 10.21070/pels.v4i0.1435.

[21] L. Braz and A. Bacchelli, “Software security during modern code review: the developer’s perspective,” in ESEC/FSE 2022 -

Proceedings of the 30th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, New York, NY, USA: ACM, Nov. 2022, pp. 810-821. doi: 10.1145/3540250.3549135.

[22] S. Alazmi and D. C. De Leon, “A systematic literature review on the characteristics and effectiveness of web application

vulnerability scanners,” IEEE Access, vol. 10, pp. 33200-33219, 2022, doi: 10.1109/ACCESS.2022.3161522.
[23] Z. Li et al., “Automating code review activities by large-scale pre-training,” in ESEC/FSE 2022 - Proceedings of the 30th ACM

Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering,

New York, NY, USA: ACM, Nov. 2022, pp. 1035-1047. doi: 10.1145/3540250.3549081.
[24] V. Casola, A. De Benedictis, C. Mazzocca, and V. Orbinato, “Secure software development and testing: A model-based

methodology,” Computers and Security, vol. 137, p. 103639, Feb. 2024, doi: 10.1016/j.cose.2023.103639.

[25] S. Kartunov, “Protection of user credentials in web application,” in Thematic conference proceedings of international
significance [Elektronski izvor]/International Scientific Conference, 2020, pp. 604-610. [Online]. Available:

http://jakov.kpu.edu.rs/handle/123456789/1334

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 3, September 2025: 1807-1814

1814

BIOGRAPHIES OF AUTHORS

Azlinda Abdul Aziz received her Ph.D. in computing from Universiti Selangor

(UNISEL), Malaysia, in 2022, an M.Sc. in computer science (distributed computing) from

Universiti Putra Malaysia in 2003, and a Bachelor of Science in computer science from

Universiti Putra Malaysia in 2000. Her research interests include IoT and cloud computing,

cybersecurity and web security, computer and network security, as well as telecommunication

and network forensics. She can be contacted at email: azlindaaziz@uitm.edu.my.

Nur Razia Binti Mohd Suradi received her Ph.D. in computing from Universiti

Selangor (UNISEL) in 2023, Master’s in computer science (software engineering) in 2011 and

B.Sc. Degree in computer science from Universiti Sains Malaysia in 1990. Her fields of

interest are software engineering, web programming, software quality assurance and software

testing. She can be contacted at email: razia@unisel.edu.my.

Rahayu Handan received her BBA in Management Information Systems (MIS)

and International Business from Drexel University, PA, USA, in 1999, and her M.Sc. in

Computer Science (IT) from UiTM, Selangor, Malaysia, in 2012. Her research interests

include technopreneurship, information systems, and human-computer interaction. She can be

contacted at email: raha@unisel.edu.my.

Mohd Noor Rizal Bin Arbain received his Diploma in electronic engineering

(majoring computer) from Polytechnic Ungku Omar (PUO) in 2001, Bachelor's degree in

Information Technology (Majoring Networking) from University Utara Malaysia (UUM) in

2004 and Master's in information technology (majoring management information system)

from University Selangor (UNISEL) in 2010. Currently pursuing a Ph.D. in information

technology (research in field cybersecurity and deep learning) from University Kuala Lumpur

(UNIKL), Malaysia. His field interest are computer networking, cybersecurity, and deep

learning. He can be contacted at email: rizal-it@unisel.edu.my.

http://orcid.org/0000-0001-7073-1325
http://orcid.org/0000-0001-5021-4849
https://www.scopus.com/authid/detail.uri?authorId=37082158200
http://orcid.org/0009-0004-0878-7191
https://orcid.org/0000-0001-7660-8838

