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ABSTRACT 
As we all know, traditional electromagnetism mechanism (EM) algorithm has the disadvantage 

with low solution precision, lack of mining ability and easily falling into precocity. This paper proposes a 
new chaos electromagnetism mechanism algorithm combining chaotic mapping with limited storage Quasi-
Newton Method (EM-CMLSQN). Its main idea is that it adopts limit quasi-Newton operator to replace the 
local optimization operator in EM algorithm for local searching in the late of algorithm. In the process of 
algorithm, the chaos mapping is introduced into optimization processes, and it generates new individuals 
to jump out of local to maintain the population diversity according to characteristics of chaos mapping 
random traversal. Finally, the experiments show that the new algorithm can effectively jump out of local 
optimal solution through comparing three continuous space test functions. The new algorithm has obvious 
advantages in terms of convergence speed compared to traditional EM algorithm, in addition, it is more 
accuracy than particle swarm optimization (PSO) algorithm. We compare the new chaos electromagnetism 
mechanism algorithm with ant colony optimization (ACO) algorithm, PSO algorithm, the results represent 
that new scheme can obtain the optimal path in the path optimization process, which shows that the new 
method has better applicability in the discrete domain problem. 
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1. Introduction.  
Electromagnetism Mechanism (EM) algorithm [1, 2] is a kind of random search 

methods based on principle of attraction and repulsion between different charged particles in 
Coulomb law and electromagnetic field. This algorithm firstly establishes the relationship of 
fitness function value and individual’s value affected by electric field, then it is as the population 
movement trend according to the principle of “excellent solutions attract poor, poor solutions 
reject the excellent” and puts forward a global stochastic optimization heuristic algorithm [3]. 
The global stochastic optimization heuristic algorithm has been used in many aspects, such as 
fault location in distribution networks and pipeline assemble. Nevertheless, the EM algorithm 
has the shortcoming of premature convergence, low local search accuracy in late and slow 
convergence rate, which resembles other global intelligent algorithms. To solve these problems, 
this paper proposes an improved local optimization strategy using high precision local 
optimization operator and limited storage Quasi-Newton operator [4]. It seeks optimization value 
for solution domain near optimal individual and adopts chaos mapping [5] to increase the 
diversity of population. As a mature intelligent algorithm, Particle Swarm Optimization (PSO) 
algorithm [6, 7] has a very good effect on searching the optimization value in continuous 
domain. There is an improved PSO algorithm named particle swarm optimization with Time-
Varying Accelerator Coefficients (TVAC) [8, 9], which has a better ability of searching 
optimization. Therefore, we compare TVAC with our new method (EM-CMLSQN), and the 
simulation results show that EM-CMLSQN has a better convergence rate and performance of 
jumping out of local solution than PSO and TVAC method. We also apply EMCMLSQN 
algorithm into path planning problem, and the results represent that EM-CMLSQN algorithm can 
search the optimal path more precisely and can be better applied into solving discrete domain 
problems than genetic algorithm and PSO algorithm [10, 11]. 
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2. Electromagnetism Mechanism. 
The basic EM algorithm is composed of initialization, local search, resultant force 

calculation, particle displacement and judgment terminated.  
a) Initialization. Initialization process of EM algorithm is a random process of initialization. In 

the solution domain, it randomly generates several solutions as the original generation. The 

charge value of particle ji,x  is: 
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Where ik ,q  is the charge value of i−th particle at k−th iteration process, n is the total number of 

particles. f(·) is evaluation function. ikx ,  is the i−th particle at k−th iteration process. bestix ,  is one 

particle with the best evaluation function value at k−th iteration process.  
b) Local search. Local search strategy in EM algorithm adopts linear search. Its expression is 

as follows: 

                 ）（ ii X-UX    >0.5 

           iY =                                                         (2) 
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Where ix  is i − th particle. iY  is the searched particle in neighborhood of iX .  is a random 

number from 0 to 1. L is lower bound of feasible region. U is upper bound of feasible region.  

c) Resultant force calculation. According to the principle of superposition, resultant force iF  of 

each particle can be defined as the following formula: 
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It can be seen from (3) that particles with better function value would attract the 

particles with poorer function value, and particles with poorer objective function value will reject 

particles with better function value. If f( ）（ jX  < f( iX )), then they have attraction, on the 

contrary, they have repulsive force. The direction of the resultant force between any two 
particles points to particles with better objective function value, which ensures that the algorithm 
is finally able to find the optimal solution.  

d) Particle displacement. Moving formula of iX  is defined as: 
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Where λ is random step length ranging [0,1]. iZ  is a new particle after moving. Then f( iZ ) and 

f( iX ) can be recalculated and algorithm starts to carry out greedy selection. 

e) Judgment terminated. As with the rest of the intelligent algorithms, it sets the terminating 
condition, if it meets the condition, then stop. Otherwise continue to execute iteration. 
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3. Chaos Electromagnetism Mechanism Algorithm Based on CLMSQN.  
3.1. The Confined Quasi-Newton Local Operator 

With the calculation method in formula (3)(4), when individual i is close to optimal 

individual bestX , the | iX  − jX | → 0, then | iF | → ∞. The i will sustain a bigger resultant force. 

There is a great error with particle moving direction. And it cannot make searching near optimal 
solution. So this paper adopts ECMLSQN algorithm to search local solution. ECMLSQN 
algorithm is a effective optimization method using derivative operator with the advantages of 

fast convergence speed, strong local search ability. Assuming kS  = 1S k  − kX , kY = 5f( 1kX 

)−5f( kX ). So we can get the Hessen matrix formula as (5). 
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Therefore, the processes of ECMLSQN algorithm are as follows:  

a) Choosing initial node 0X  ∈ Rn and setting positive integral m.  

b) Assuming 0H
 = I, k = 0. Calculating gradient kg

= 5f( kX
) of objective function f(x) at kX

.  

c) Determining the search direction kd
 let kd

= kgkH
.  

d) Starting from the kX
, it searches solutions along the direction of the kd

to calculate 
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e) Let 1x k = kx + kdk . If ||f( 1kx  )||≤ε, Then stop iteration and get optimal solution, 

otherwise return step6.  

f) Selecting 


m = min{k + 1,m}, according to (5), it updates 0H  for


m  times and gets kH . 

 
3.2. Chaos Operator 

    Considering chaotic movement has a good diversity so using chaotic operator for local 
search can improve the performance of the algorithm, its detailed process is as follows. Let Up 

and Low be upper and lower bounds of feasible region respectively. bestx = ( 1X , 2X ,··· , 3X ) is 

current optimal position. So it executes mapping process as shown in formula (6). 
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Obviously, after mapping the interval is [0,1], so this paper can use Logistic mapping 

to generate chaos variables as shown in (7).  
 

= ）（  -1                                    (7) 

 
Where µ is controls parameter, when µ = 4, system is in a state of complete chaos, 

which is conducive to jump out of local optimum. Finally, we inverse chaotic variables mapping 
to the solution domain through (8). Then it experiences repetitive process until that the function 
value is unchange.  
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3.3 EM-CMLSQN Algorithm Process 
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The detailed processes are as follows: 
Step1. Initialization.  
Step2. Local search. It conducts local search and greedy selection around the initial solution 

according to(2). 
Step3. Determine whether make confined quasi-Newton method and local optimization. Setting 

threshold value ε, when | ix  − jx | < ε, it randomly selects k confined quasi-Newton local 

operator to search local optimal solution and jump to step5. Otherwise it does go to 
step4. 

Step4. Computing resultant force. According to (3) (4), it calculates resultant force of particles 
and the fitness function value of particle movement. 

Step5. Particle movement. Algorithm calculates the fitness value of individual in step4 and 

compares to best individuals in last generation. If f(


0X ) > f( iX ), it makes greedy 

selection, otherwise it enters into chaotic mapping process. Firstly, we set chaotic search 
iterative threshold Ibet; Secondly, the existing particle is mapped to the chaotic space 
according to formula(6); Thirdly, for variables after mapping, we adopt formula (7) to 
generate new chaotic variables; Fourth, we use formula (8) to reflect the shooting 
method, projection solution domain and get new particles. If the fitness of new particles 
is greater than the that in original particles, then it makes greedy choice, otherwise 
remain unchanged. 

Step6. Judgment termination. It determines that whether the number of iterations satisfies the 
initial threshold value. If it does not satisfies the condition, then it returns to step2. 
Otherwise it outputs results. 

 
 

4. Experiments and Analysis. 

In this paper, we adopt three continuous domain test functions: Sphere )( 1f , Griewank

)( 2f and Rosenbrock )( 3f  to make experiments under MATLAB R2010a platform (Processor: 

2.13GHz, Memory: 4GB). In order to show the superiority of the improved algorithm, we make 
100 experiments with the above three functions for EM algorithm and EM-CMLSQN algorithm. 

Iteration number of )( 1f , )( 2f  and )( 3f  is 1000, 6000 and 4000 respectively. Number of 

dimensions is 30 and population number is 50. Compared to the traditional algorithm, the new 
algorithm obtains the outcomes as Figure1-3. It can be clearly seen from Figure 1 that EM 
algorithm and EM-CMLSQN algorithm can effectively make optimization for Sphere test 
function, but the latter adopts confined quasi-Newton local optimization operator after reaching 
set threshold which can accelerate convergence and gets higher precision than the EM 
algorithm. 

As shown in Figure 2, performance of EM-CMLSQN is better than the EM algorithm 
during the process of Griewank function(It is a multimodal function), on account for the fact that 
the confined quasi-Newton operator is adopted to improve the local search, and then it uses the 
chaotic mapping to avoid precocity, which reflects a good performance. In Figure 3, EM 
algorithm has difficulty in searching optimal solution, nevertheless, to a certain extent, this 
paper’s method uses tentative mind based on the principle of chaos disorder leading the group 
in the direction of high quality solutions to search for Rosenbrock function. So the performance 
of EM-CMLSQN algorithm is better.  

In order to verify the fast convergence ability of the new algorithm, we define that if the 
difference between optimal individual and the known extreme value is less than a certain value, 
then test function is convergent. The setting value of Sphere, Griewank and Rosenbrock 
function is 1.0e

−15
, 0.01 and 0.1 respectively. We select the most optimal solution for statistical 

comparison between EM-CMLSQN algorithm and EM, PSO, TVAC algorithm, and get the 
results shown in table 1. From table1 we can know that iteration time of EM-CMLSQN is the 
minimum in test function 1, 2. Also it has the fastest convergence speed. The rest of the 
algorithms have difficulty in reaching convergence state. But the confined quasi-Newton 
operator is introduced into new algorithm, which can effectively conduct local optimization and 
chaotic mapping is used to guide the optimization direction. Therefore, the scheme has fast 
convergence speed and less number of iterations. 
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Figure 1. The Comparison Curve Of Iterative 

Convergence in Sphere functi on 

 
Figure 2. The Comparison Curve of Iterative 

Convergence in Griewank Function 
 
 

 
 

Figure 3. The Comparison Curve of Iterative Convergence in Rosenbrock Function. 
 
 

Table 1. Comparison of Convergent Iterations 
Algorithm f1 f2 f3 

EM-CMLSQN 853 986 1520 

EM 902 1685 4000 

PSO 2380 3578 4000 

TVAC 1709 2978 4000 

 
 
5. Conclusions 

In this paper, we simply describes the basic principle of EM and analyze its merits and 
demerits. To solve the problem of low local optimization ability in the late algorithm and easily 
falling into local optimum, we introduce the confined quasi-Newton local optimization operator to 
improve the local search algorithm performance. In the iteration process, the chaos operator is 
introduced to maintain the diversity of population, which effectively avoids the premature 
phenomenon of the algorithm and gets higher solution precision. Finally, the simulation results 
show that EM-CMLSQN in continuous domain optimization can jump out of local optimal 
solution and have a higher precision, faster convergence speed. When it is applied into the path 
planning problem, the new scheme can avoid the phenomenon of ”back and forth”, get the best 
path through optimizing capacity and high-precision search capability. In the future, we will 
study more improved electromagnetism mechanism algorithms to perfect optimization problems. 
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