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Abstract 
 A quantum chaos cloning multi-objective evolutionary algorithm was proposed herein based on 

chaos search ergodicity, quantum computing efficiency and clonal selection theory of antibodies in artificial 
immune system. The qubits encoded initial population is used in the new algorithm, Chaos quantum 
rotation gates are introduced to update individuals, crowding distance is used to keep solution population 

distribution and diversity. Theoretical analysis and simulation show the effectiveness of the algorithm. 
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1. Introduction 

 Many optimization problems can be attributed to the multi-objective optimization 
problem (Multi-objective Optimization Problem, MOP) in Science and Engineering Practice [1, 
2], and it is very difficult to solve. At present, the existing multi-objective optimization algorithm 
was based on local presence convergence, diversity of the population is poor, there is high time 
complexity and it is sensitive to parameters and other issues. Multi-objective optimization 
problem is generally considered the best overall objective is to optimize multiple targets weigh 
an overall objective to be achieved under, and therefore need to consider the right of each sub-
goal weight, and require high latitudes, large scale, so that it becomes difficult to optimize, and 
traditional optimization means more demanding in forming objective function. In geting better in 
this regard applied algorithm, there were genetic algorithms, simulated annealing, tabu search 
algorithm, neural network algorithm [3-5]. Feynman put forward the concept of quantum 
computingin the early 1980s [6], then Shor proposed factorization of large numbers matter in 
1994 [7], Grover  proposed quantum search algorithm of disorderly database in 1996 [8]. 

 Therefore, the study of a more efficient multi-objective optimization algorithm is very 
scientific value and practical significance. Artificial Immune System (AIS) is a mimic biological 
immune system function in an intelligent way with a strong recognition, learning, memory and 
adaptability. Quantum evolutionary algorithm (QEA) have better population diversity and global 
optimization capability, they have smaller groups, but it does not affect the performance of the 
algorithm, etc., but  how to set the corner is very difficult to design in the quantum evolutionary 
algorithm. Chaotic is with randomness, ergodicity, regularity, etc., according to its own laws, 
chaotic can not be repeated traverse all states within a certain range. In this paper, chaotic 
quantum cloning MOEA (Chaos Quantum Clonal Multiobjective Evolutionary Algorithm, 
CQCMEA) is proposed. The new quantum encoding method is  introduced in the framework of  
of clonal selection algorithm in the algorithm, the the corresponding quantum chaos revolving 
door mutation operator is designed, the crowding distance is used to keep distribution and 
population diversity. Theoretical analysis and numerical simulations show CQCMEA can solve 
the multi-objective optimization problem, it is with a strong global search capability. 
 
 
2. Materials and Methods 
2.1. Multi-objective Optimization Problem   

With n decision variables and m objective functions, m multi-objective optimization 
problem (MOP) can be expressed as Formula (1): 
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Where,
n

nxxx R Xx ),,,( 21   is the decision variables, X  is n-dimensional decision 

space; y  ),,,( 21 nyyy  m
RY is objective function, Y  is m-dimensional target space. 

fXxx  , ，


x  dominates x ( it is referred to as xx 
) 
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fXx  is called as Pareto- the optimal solution (or non-inferior solutions), 
 xxXx ： . 

Pareto- 0ptimal solution set is defined as Formula (3): 
 

   xxXxx ：SP   (3) 

 
Pareto- optimal solution set is a collection of all Pareto-optimal solution, Pareto is isolution n 
optimal solution set, which solution set is corresponding to the composition set of the objective 
function value. 
 

}))(,),(),(()({ 21 SmF PfffP  xxxxxF   (4) 

 
It is called Pareto-front end.  

 
2.2. Chaotic Quantum Cloning MOEA 
2.2.1. Problem Representation 

1) Initialization groups: Optimization problem is corresponds to an antigen, antibody is 
feasible solution which is corresponding to the problem. Initial population is produced by the 
following method [9]: 

First, initial values are given n different variables, n is the dimensional number of 
optimization variables. So that k = 0, using Equation (5): 
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It is first qubit on the antibody which n chaotic variable ),,2,1(1 nix i   initialized 

population is generated, where 4i  ),,2,1)(1,0( nix i

k  , i was chaotic variable number. 

Nk ,,2,1  -1, N other antibodies were produced by the above method.  The N antibodies 

are to form the initial population. For example, the k-th antibody kP  is used to initialize the 

result of the formula (6): 
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  2) Solution space transformation: Each group antibody comprises 2n qubits' probability 
amplitude, linear transformation is used, this can be mapped by the 2n probability amplitude 
units to traverse solution space of the space optimization problem. Each probability amplitude of 
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antibody is corresponding to an optimized variable of solution space, i-th qubit of antibody kP  is 

denoted as
T],[ i

k

i

k  ,then the corresponding solution space variable is respectively formula (7) 

and (8). 
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Thus, each antibody is corresponding to the two solutions of optimization problem. 

Where, ],[ ii ba  is the domain of variable ix ; probability amplitude
i

k of Quantum state | 

0>corresponds to
k

iX1
; probability amplitude

i

k  of Quantum state |1 corresponds to
k

iX 2
,  

ni ,,2,1  ； Nk ,,2,1  .  

3) Immunodominant antibody: Antibodies iP  (corresponding solution is
i

x ) is called 

immunodominant antibody in the antibodies' population },,,{ 21 NPPPP  , If and only if there 

is no other antibody 
jP  ( ijNj  ,,2,1  ),

jP  is the corresponding solution 
j

x  in the 

population, so that: 
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As can be seen from the above equation, immunodominant antibody is efficient solution 

of an antibody current populations or non-Pareto optimal solution. 
 

2.2.2. Proportion Clones 

After the proportion cloning is implemented to the antibody population P =

},,,{ 21 NPPP  , antibodies' population P  is to obtained, it is as follows: 
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Wherein: ),,2,1,,,2,1( NjqiPP j

i

j   ， Rmq c  is Cloning ratio. 

 
2.2.3. Revolving Door Variation of Chaotic Quantum 

Chaos is the essential characteristic of nonlinear systems with a series of special 
properties of randomness, ergodicity and regularity. There is chaos effect in quantum systems, 
which is different from the traditional chaotic phenomena [10], so chaos is used to design the 
corner of quantum revolving door. Logistic mapping [11] is Formula (11): 

 

,2,1,0),1(1  nxxx nnn        (11) 

 
This is a typical chaotic system, where   is the control parameters.   

1) Variation Strategy 1: The main evolution mode of quantum evolution computing is 
changing the phase of the antibody qubit by quantum revolving door to realize the mutation, but 
the quantum revolving door needs to determine the direction and size of the angle. For angular 
direction, now is almost all based on a lookup table, which involve multiple conditions to 
determine the impact the efficiency of the algorithm. To solve these problems, the introduction 
of quantum chaos mapping revolving door rotation angle is determined, as well as the rotation 
angle exhibits bidirectional design such as formula (12). 
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It is determined angle. ],1[ cml , cm  is the largest numberwhich is allowed to traverse the 

chaos. In order to traverse the range which are presented randomness, ergodicity and 

uniformity, chaos variable 
i

kx 1
 is calculated as formula (13): 
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The formula (13) are used and repeated l  times to obtain chaotic variables
i

lkx 
. 

Let the k-th variant parent kP  be Formula (14): 
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k x2 ( ni ,,2,1  ； qNk  ,,2,1  ). After quantum chaos revolving door is 

mutated, antibody is Formula (15): 
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2) Variation Strategy 2: In order to prevent the quantum rotation angle is too large to 
miss a good solution,  the traversing range of quantum revolving door corner is set as (0.005
，0.1 )Error! Reference source not found.

 
, Then according to formula (16) 
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it is used to replace mutation strategy 1 in the Formula (12), namely it is mutation strategy 2. 
 
2.2.4. Quantum Cloning Multi-Objective Evolutionary Algorithm (MOEA) Framework 

a) Algorithm 1: Chaos quantum cloning MOEA  
Input: Set antibody population size N, the immunodominant antibody population size

dN , cloning proportion q, chaos traverse the maximum allowable number cm  of chaos traverse 

mutation rate mp , the maximum iterative generation Maxgen[12]. 

Output: Final Pareto- approximate optimal solution set 1MaxgenD . 

Step 1: Initialization antibody populations: tP = },,,{ 21 NPPP  ， 0D , set the initial 

generation: t =0. 

Step 2: solution space transform, to calculate the objective function value which is 

corresponding antibody populations tP . 

Step 3: dominant antibody tPD  is obtained and  denoted from the tP  and tD , if 

dt NPD  , then 1tD = tPD ; otherwise,  crowding distance of  all individuals is calculated in 
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tPD , according to the crowding distance in descending order, the front dN  antibodies are 

choosed to form immune dominant populations 1tD . 

Step 4: If Maxgent  , the output is 1tD , to stop running, otherwise 1 tt . 

Step 5: new antibodies' population tP  is obtained from tD  , if NDt  , crowding 

distance of all individuals is calculated from tD , by crowding distance in descending order,  the 

top N antibodies are selected to form a new antibody population tP ; if NDt  , tt DP   is 

taken directly, tDN   antibodies are selected randomly from contemporary disposable 

antibodyies to join the new antibody populations tP . 

Step 6: Proportion cloning operation is done to antibody population to generate antibody 

populations P . 

Step7: quantum chaos revolving door variation is implemented to the population tP
, 

antibody populations tP   are generated, so tt PP  , to turn Step 3. 

b) Algorithm 2 Quantum Clonal Multi-objective Evolutionary Algorithm (QCMEA) 

Step 1: Initialization evolution generation: t =0; 

Step 2: initial population )(tQ , archive collection }{)( tA ; 

Step 3: )(tP is generated by )(tQ ; 

Step 4: Assessment )(tP ; 

Step 5: )(tA  is obtained by the )(tP ; 

Step 6: according to certain rules, the deletion of the archive collection )(tA  reaches 

the set requirements; 

Step 7: if the stop criterion is meet, output results, stop running; otherwise 1 tt , turn 

Step 8; 

Step 8: )(tP  is and generated by the selected compression )1( tA  ; 

Step 9: )(tP  is cloned, )(tQ  is generated by corresponding )(tQ ; 

Step 10: )(tQ   is generated qq by )(tQ  quantum revolving door variation, make 

)(tQ = )(tQ  . turn Step 3; 

 
 
3. Test and Discussion 
3.1. Parameter Settings  

 In order to verify the effectiveness of the proposed algorithm, the CQCMEA is 
compared to the three algorithms with NSGA-II [13], PESA [14] and SPEA2 [15], for solving two 
well-known multi-objective optimization problem of ZDT6 [16] and DTLZ1 [17] problem. The 
main parameters are as follows:  

 For CQCMEA, the size of the population are 50 antibodies, the immunodominant 
antibody population size is 100, cloned ratio is 3, the maximum number of chaotic traverse is 
30. For the NSGA-II, the population size is 100; for PESA, the population size of internal 
evolution and external archive size are set to 100, the number of super-grid cells is 10 in each 
dimension; for SPEA2, the population size of internal evolution the outside collection are located 
as 100. For the NSGA-II, PESA and SPEA2, we have adopted the Mutual simulation (simulated 
binary crossover, SBX) and polynomial mutation (polynomial mutation, PM) [18]. Of the four 

algorithms, crossover was 0.8, mutation rate is n1 , which n  represents the number of 

variables, the number of iterations is set to 500. Solution Set in this paper chooses two 
coverage [19], uniformity index [20] and the generation distance [21] for the evaluation of the 
four algorithms. 
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3.2. Experimental Results and Performance Analysis 
The following experiments run independently 30 times for each test question. Figure 1 is 

comparison box diagram for CQCMEA, NSGA-II, PESA and SPEA2 based on coverage metrics 
[22]. Here, C represents the solution set which CQCMEA obtained; N represents the solution 
set which NSGA-II obtained; P represents the solution set which PESA obtained; S represents 
the solution set which SPEA2 obtained. 

 
 

      

ZDT6(C,N) DTLZ3(C,N) ZDT6(C,P) DTLZ3(C,P) ZDT6(C,S) DTLZ3(C,S) 

Figure 1. Cartridge Figure of CQCMEA, NSGA-II, PESA and SPEA2 Coverage Indicators of 
Solution Which is Obtained by Solving the Two Problem, in Each Figure, the Left Side of the 

Box Represent CS (C, N), CS (C, P) and CS (C, S) Distribution the Right of Box 
Represents CS (N, C), CS (P, C) and CS (S, C) Distribution 

 
                                       

 Two coverage comparison of CQCMEA, NSGA-II, PESA and SPEA2 Solution Set 
shows that, the box diagram on DTLZ3, CS (C, N), CS (C, P) and CS (C, S) is higher than the 
box diagram of CS (N, C), CS (P, C) and CS (S, C); and in the ZDT6, the box diagram of CS (N, 
C), CS (S, C) and CS (C, P) is higher than the CS (C, N), CS (C, S) and CS (P, C). So, DTLZ3 
on CQCMEA is better than NSGA-II, PESA and SPEA2; ZDT6 on CQCMEA is better than 
PESA, but NSGA-II and SPEA2 is superior CQCMEA. 

 
 

 
                 ZDT6                           DTLZ3                             ZDT6                         DTLZ3 

 
Figure 2. Box Diagram of Generations Distance and Uniformity Index which is obtained by 

CQCMEA, NSGA-II, PESA and SPEA2 Solving ZDT6 and DTLZ3 Problems 
 
 
 Figure 2 illustrates box diagram of generation distance index and uniformity index which 

is obtained by independent run for 30 times. Figure 2 shows that, in consideration of the 
convergence index case, CQCMEA is best on two issues. In consideration of the diversity index 
Spacing case, CQCMEA is best on ZDT6 question, and SPEA2 is best on DTLZ1 problem. 

 Summarize the results, the following conclusions: for ZDT6 and DTLZ3 two questions, 
on the convergence of indicators, CQCMEA is best on both issues; in diversity holding, 
CQCMEA has the best effect in the one of two issues. 
 
3.3. Analysis of the Algorithm Complexity 

Suppose the size of the antibodies' population for N , scale of the immunodominant 

antibody populations is
dN , chaos traversal  allowed maximum number is cm , the cloning 

proportion (ie clone size cN qN  ) is q , then CQCMEA complexity of once every iteration is 

as follows: 

1 2

0

0.2

0.4

0.6

0.8

1

Co
nv

era
ge

1 2

0

0.2

0.4

0.6

0.8

Co
nv

era
ge

1 2

0

0.2

0.4

0.6

0.8

1

Co
nv

era
ge

1 2

0

0.2

0.4

0.6

0.8

Co
nv

era
ge

1 2

0

0.2

0.4

0.6

0.8

1

Co
nv

era
ge

1 2

0

0.2

0.4

0.6

0.8

Co
nv

era
ge

CQCMEA NSGA-II PESA SPEA2

0

2

4

6

G
D

CQCMEANSGA-II PESA SPEA2
0

200

400

600

800

G
D

CQCMEA NSGA-II PESA SPEA2

0

0.1

0.2

0.3

0.4

S

CQCMEANSGA-II PESA SPEA2

0

50

100

S



                     ISSN: 2502-4752           

 IJEECS Vol. 3, No. 1, July 2016 :  226– 234 

232 

The time complexity of the solution space conversion is )( cd NNO  ; time complexity 

of proportional clone is )( cNO ; the  worst time complexity of the obtain immunodominant 

antibody populations is ))(( 2

cd NNO  ; the worst time complexity of new  antibody updated 

populations is )log( 2 dd NNO ; the worst  time complexity of the updated immunodominant 

antibody populations is ))(log)(( 2 cdcd NNNNO  ;  worst time complexity of quantum 

chaos revolving door variant is )( ccmNO . So the total worst-case time complexity is as the 

formula (17): 
 

)( cd NNO  + ))(( 2

cd NNO  + ))(log)(( 2 cdcd NNNNO  + 

)log( 2 dd NNO + )()( ccc mNONO          (17) 

 
According to the symbol O operation rules, worst time complexity of CQCMC for each 

iteration can be simplified to formula (18): 
 

))(( 2

cd NNO 
              (18) 

 
3.4. Simulation Comparison 

To test the performance of the algorithm, we use three sets of frequently used data 
knapsack problem. The number of experiments were chosen backpack 2, 3 and 4, the number 
of articles 250, 500 and 750, respectively. A similar method is found to compare the 
performance of the algorithm, this paper chose the non-dominated sorting genetic (NSGA-II) 
algorithm and Pareto Envelope-based Selection Algorithm for Multiobjective Optimization 
(PESA). In order to compare the fairness of the algorithm and NSGA2 and PESA algorithm uses 
the same set of parameters, and each set of data in the knapsack problem are the same 
number of iterations. Experiments run for nine knapsack problem were CQCMEA, PESA and 
NSGA2 100 times each, and record the value of each method and function C function S of each 
run. Figure 3 shows the distribution of the knapsack problem (2,750) of a particular experiment 
Pareto optimal front-end solution. Table 1 shows the average result of the comparison in the 
function S of the three algorithms were performed after 100 measurements. Table 1 shows the 
average result of the comparison function C on three algorithms were performed after 100 
measurements. 

 
 

 
Figure 3. (2,750) Knapsack Problem 

 
 
Figure 3 respectively after the distribution of the three algorithms run on behalf of the 

100 non-dominated solution, it can be seen from Figure CQCMEA search space wider than 
PESA and NSGA2, quality of the resulting solution will be better. 

Comparative results from Table 1, after each algorithm knapsack problem nine 
experiments each run 100 times, an average value of S CQCMEA get the maximum, which is 
CQCMEA algorithm Pareto optimal solution set better diversity, distribution more uniform. It is 
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concluded that the best performance is CQCMEA under normal circumstances, indicating 
CQCMEA is promising. This also proves that the revolving door adjustment strategy employed 
herein is successful, the algorithm can effectively avoid falling into local optimum and prevent 
premature. And on the question of increase in algorithm complexity, the performance is very 
good, so when solving complex multidimensional problem, CQCMEA more suitable. 

 
 

Table 1.  S Performance Comparison of Three Algorithms 
MKP NSGA-II PESA CQCMEA 
2-250 7.211e07 8.254e07 8.665e07 
2-500 3.243e08 3.334e08 3.543e08 
2-750 6.921e08 7.376e08 7.465e08 
3-250 6.881e11 6.854e11 6.865e11 
3-500 5.119e12 5.343e12 5.423e12 
3-750 1.703e13 1.765e13 1.854e13 
4-250 5.143e15 5.165e15 5.243e15 
4-500 7.211e16 7.233e16 7.365e16 
4-750 3.633e17 3.565e17 3.922e17 

 
 
4. Conclusion 

 Based on the new quantum bit encoding and quantum chaos revolving door variation, 
chaotic quantum cloning multi-objective evolutionary algorithm was proposed in this paper. 
Theoretical analysis and numerical simulations show that, CQCMEA can solve the multi-
objective optimization problem, with a strong global search capability. 

 CQCMEA algorithm advantages and performance analysis: 
 1) New quantum encoding method is introduced, a pair of qubits can ba used to 

represent a component of two different solutions, so that there exists a group of qubits, any 
group (including qubits) are optimal solution which corresponds to the global. In the case of 
constant population size, the encoded qubits can be used to extend the solution space ergodic; 
because the real number coding and decoding,  the time-consuming, low accuracy and other 
defects are avoided in decoding of binary solutions, thereby the efficiency of the optimization 
algorithm is improved. 

 2) Cloning operators maintain better the breadth of optimum distribution. The chaos 
produces initial antibodies against the population and the seed population as a whole cloning 
operation, it can expand the search space, it is conducive to produce new antibodies stocks and 
global search algorithm, so as to ensure a broad understanding of the solution distribution. 

 3) In chaos quantum rotation gate mutation operator, chaotic mapping is used to 
determine the angle of quantum rotation gate,  direction is determined by random method, 
cumbersome of updated lookup and lookup slow are reduced in the traditional quantum 
revolving door, due to the ergodicity of chaos, CQCMEA algorithm can search the whole 
solution space, to avoid falling into local optimum. 

 4) The  updated operator of immunodominant antibody populations maintain better the 
uniformity of the optimal solution. In the new algorithm, the proportion of cloning and quantum 
chaos revolving door are mutated every time, it can give a certain number of non-dominated 
solutions, when the number of non-dominated solutions exceeds the set value, according to the 
crowding distance, these non-dominated solutions in more crowded and its corresponding 
antibody solutions group of individuals are first removed, until it reaches the set value, then 
these more evenly distributed optimal solution is corresponding to an individual in the next 
generation of operations, in order to better ensure optimal solutions for uniform distribution. 

 The above three points is the most important measure of multi-objective optimization 
algorithm for optimal solution set quality, therefore, the optimal solution was obtained by the 
new algorithm and will be of higher quality, but also to ensure good convergence speed. 
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