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We present a comparative analysis of traditional machine learning (ML)
models, random forest (RF), support vector machine (SVM), and extreme
gradient boosting (XGB), and deep learning (DL) architectures, convolutional
neural networks (CNN), and bidirectional long short-term memory
(BiLSTM) for high-precision 3D positional forecasting. Conventional
approaches often underperform when modeling complex spatiotemporal
dependencies, limiting their use in dynamic systems such as robotics and
autonomous vehicles. This study highlights BiLSTM's advantage in learning
bidirectional temporal features, achieving superior R2? scores and stable
prediction intervals compared to both classical ML and spatially-focused
CNN models. Uncertainty metrics, prediction interval coverage probability
(PICP), and mean prediction interval width (MPIW) provide additional
insight into model reliability. Experiments on a 22-hour GPS dataset confirm
that BILSTM achieves both high accuracy and predictive confidence,
underscoring its suitability for real-world trajectory forecasting.
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1. INTRODUCTION

Accurate 3D positional forecasting is essential for autonomous navigation, robotics, and geospatial
systems. These applications require real-time predictions of spatial coordinates governed by both spatial and
temporal dependencies. Traditional machine learning (ML) methods often fall short in modeling high-
dimensional sequential data, where complex, non-linear relationships evolve over time. Classical models
such as random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) perform
well on static datasets but lack internal mechanisms to capture sequence patterns [1]-[3]. This shortcoming
motivates the use of deep learning (DL) models, particularly those suited to time-series data. convolutional
neural networks (CNNs), though effective for spatial pattern recognition, do not inherently capture temporal
progression. In contrast, LSTM and its bidirectional variant, bidirectional long short-term memory (BiLSTM)
offer temporal modeling through memory mechanisms and have shown promising results in prior sequence-
learning tasks [4]-[6]. Despite this, few studies directly compare these architectures—especially using
uncertainty metrics - on real-world positional datasets. This paper addresses that gap through a structured
evaluation of five models on GPS data collected over a continuous 22-hour period. The core objective is to
assess whether BIiLSTM outperforms classical and CNN models in both accuracy and uncertainty
reliability [7], [8]. Our key contributions are:
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— A comparative study across five ML and DL models on real GPS-based 3D trajectory data.

— Integration of uncertainty quantification using PICP and MPIW alongside standard metrics.

—  Empirical validation that BiLSTM vyields the most accurate and reliable forecasts across all dimensions.
The remainder of this paper outlines the methodology in section 2, presents results and interpretation in
section 3, and concludes with implications and future directions in section 4.

2. METHOD
2.1. Data source and preprocessing

We use a real-world 22-hour GPS dataset recorded at the Indian Institute of Science (11Sc),
Bangalore. Each record includes three-dimensional coordinates X, y, z representing longitude, latitude, and
altitude [9], [10]. The position (P) at time i is represented as in (1).

P =[x, yi 2] 1)

To ensure uniform scaling and enhance model training, all coordinates are normalized as in (2).

—~ P; — 1 1
P=-"F u={2L Po= [CXL (R - w? @)

Where, P, is normalized coordinator vector, p is the mean and o is the standard deviation of all positions in
the dataset. This step reduces data variance and prepares inputs for all learning models.

2.2. Time-series windowing
To frame the data for sequence learning, we apply a sliding window of length T=30 [11], [12]. Each
input sequence X; consists of 30 timesteps, and the corresponding target y; is the next position as in (3).

Xj = [Pj; Pjpq,meen Pj+T—1] v Y = AJ'+T @

Where j=1,2,...,.N-T, and N is the total number of data points after normalization. This transforms the
normalized dataset into supervised training samples suitable for temporal forecasting models.

2.3. BiLSTM model structure and training
2.3.1. Model architecture

Each input sequence X; (30 timesteps) is processed by a BiLSTM layer with 64 units. Its output is
passed through a 50-neuron dense layer (ReLU activation) and a final dense layer to predict 3D coordinates
[13]-[15]. The structure of the BiLSTM network, including the bidirectional LSTM layer and dense layers, is
illustrated in Figure 1.

2.3.2. LSTM computation
At timestep t, a standard LSTM unit performs as shown in (4) to (6).

fe = U(Wf “[he—1, %] + bf) vie = oW - [he_q, ] + be) (4)
¢ = tanh(W, - [he_q, ]+ be), ¢ = frocq + iy ©C; (5)
op =W, - [he_1, %] + b,) , hy = o, ° tanh(c) (6)

Here, f; is Forget Gate, i, input gate, ¢, is candidate memory, c, is Cell state, h, is hidden state, o, is output
gate, o(-) is the sigmoid function, o tanh(:) is the hyperbolic tangent, and o denotes element-wise
multiplication, W, and b, are the weight matrices and biases associated with each gate

BiLSTM combines forward and backward LSTM outputs as in (7).

hfi = [Ht' Et] (7)

The prediction is computed as in (8).
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y\j = Woye - h?l + byt (8)
where, y; € R3 is the predicted 3D positional vector.

2.3.4. Training setup
The model is trained using the Mean Squared Error (MSE) loss function as in (9).

M
Lysg = %Z]_ﬂ”?i - Yj” ©)

Where, M is the number of training samples. Training uses early stopping based on validation loss to prevent
overfitting.

2.4. CNN model structure and training

To benchmark against a spatial DL approach, we implemented a one-dimensional convolutional
neural network (1D-CNN). Though CNNs lack sequence memory, they can effectively learn local spatial
patterns within the input window [16]-[18].

2.4.1. Model architecture

The model receives input X; and passes it through a 1D convolutional layer with 64 filters (kernel
size = 3), followed by a flattening layer and a 50-neuron dense layer (ReLU activation). The final dense layer
outputs the predicted X, y, z coordinates [19]-[22]. The CNN architecture and data flow are illustrated in Figure 2.
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2.4.2. Convolution operation
The convolution operation at position t for filter m in layer | is defined as in (10).

™ = FEEZ W™ x +b™) (10)
Where, f(-) is the ReLU activation function, W]El'm) are the filter weights, b™ is the bias term, xt(ﬁ:kl) is the
input from the previous layer, K is the kernel size (set to 3).
2.4.3. Output layers

The feature map is flattened and transformed is presented in (11).

z = Flatten ({hgl'm)}) (11)
This is then passed through a dense layer as in (12).

hgense = ReLU(Wyense - Z + baense) 12)

And finally mapped to the predicted position as in (13).

95 = hout * hdense + bout (13)

2.4.4. Training setup
The CNN model is trained using the same MSE loss function as the BiLSTM. Early stopping is also
applied with a patience of 10 epochs, restoring the model weights to the best-performing validation epoch.

2.5. Uncertainty quantification with prediction intervals

In addition to point prediction accuracy, we assess model reliability using prediction intervals (PIs),
which estimate the confidence range around each forecast [23]-[25]. Two metrics are used: prediction
interval coverage probability (PICP) and mean prediction interval width (MPIW).

2.5.1. Prediction interval estimation
For each prediction y;, a confidence interval is computed as in (14).

PI] = [y] —Zy O'j ,y] + Zy O']] (14)

Where, o; is the estimated standard deviation estimate, z, is the z-score corresponding to the desired

confidence level (e.g., 1.96 for 95% confidence).

2.5.2. Prediction interval coverage probability
PICP quantifies how often true values fall within the predicted intervals as in (15).

M
1
PICP = ﬁZizlﬂ(y,- €PL;) (15)

where 1(-) is the indicator function returning 1 if the true value is within the interval and 0 otherwise, M is
the total number of predictions.

2.5.3. Mean prediction interval width
MPIW captures the average width of all prediction intervals as in (16).

M
MPIW = ﬁzjﬂ”y}m”” — glower|| (16)

Together, PICP (reliability) and MPIW (precision) offer a robust uncertainty assessment for each model.
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2.6. Model evaluation metrics

We use standard regression and variance metrics to evaluate model performance across all spatial
axes in (17) to (21). These include error magnitude, predictive strength, and explained variability. Mean
squared error (MSE): Penalizes large deviations, highlighting average squared error.

Mo 2
MSE = ﬁzjﬂ”yj -yl a7

Root mean squared error (RMSE): Expresses prediction error in original units.

Mo 2
RMSE = Jﬁzjﬂ”y, —yl (18)

Mean absolute error (MAE): Measures average absolute difference.

M
1 ~
MAE = ﬁz, 195 = il (19)
j=1
R-squared (R2): Reflects the proportion of variance explained by the model.

M
 yj-yil?
R2 =1 _ 2l (20)

S Iyl
j=1 Yi~Yj

Where y is the mean of all true target vectors.
Explained variance score (EVS): Indicates how well the model captures variation in target data.

Var(yj-¥;)

EVS=1- T

(21)

3. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of all five models, three classical ML models (RF,
SVM, and XGB) and two DL architectures (CNN and BiLSTM), on the task of 3D positional forecasting.
The models were assessed based on multiple performance indicators, including prediction accuracy metrics
(MSE, RMSE, MAE, R?, EVS) and uncertainty quantification metrics (PICP and MPIW), evaluated
separately across the X, Y, and Z coordinate axes.

The results are presented in tabular form, followed by an in-depth discussion that interprets the key
findings. We examine the strengths and limitations of each model, compare outcomes with existing literature,
and discuss implications for real-world deployment. This structured analysis emphasizes the practical
significance of the findings and demonstrates how the BiLSTM model effectively overcomes limitations
inherent in traditional ML and spatially-focused DL approaches.

3.1. Performance of classical ML models

The predictive performance of RF, SVM, and XGB models across all three spatial dimensions is
summarized in Table 1. These models were evaluated using the standardized input-output pairs generated
from time-series windowing. While all three models demonstrated reasonably good performance, their ability
to capture the underlying temporal structure of the data varied considerably.

Among the classical models, XGB consistently outperformed both RF and SVM, particularly in the
Y and Z axes, achieving higher R2 scores (up to 0.9958) and lower RMSE values. XGB’s tree-boosting
mechanism enabled it to capture complex non-linear patterns in the trajectory data, making it a strong
baseline for non-sequential modeling. Additionally, it demonstrated narrower prediction intervals (MPIW =
0.198-0.199) and respectable coverage (PICP =~ 0.989), suggesting a balance between accuracy and
uncertainty estimation.

RF, while less powerful than XGB, delivered robust performance, especially in the Z-axis with
minimal variance in prediction error. RF's ensemble of decorrelated trees helped reduce overfitting and
contributed to stable MAE values. However, its performance across all dimensions showed a slight lag in
capturing subtle dynamic variations in the dataset.
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SVM, in contrast, produced the weakest results. While it maintained moderate accuracy (R? =
0.991), its higher MAE and wider prediction intervals indicate difficulty in generalizing over the full
sequence window. The lack of internal mechanisms to model temporal correlation limits its utility for
sequence-based forecasting tasks.

These observations reinforce the notion that while classical ML models can offer baseline predictive
capabilities, they struggle to generalize temporal dependencies, which are critical in trajectory prediction
scenarios. This highlights the need for more specialized architectures capable of modeling time-aware
patterns, an area addressed by the DL models in the next section.

Table 1. Comparative performance of ML and DL models across all metrics
Evaluation metric
R? MSE RMSE  MAE  Explained variance  PICP  MPIW

Model Coordinate

X 0.9940 0.0059 0.0771 0.0070 0.9940 0.9914 0.1984

RF Y 0.9935 0.0065 0.0807 0.0068 0.9935 0.9904 0.1991
z 0.9947 0.0052 0.0723 0.0070 0.9947 0.9910 0.1988

X 0.9909 0.0090 0.0949 0.0506 0.9909 0.9510 0.9909

SVM Y 0.9915 0.0085 0.092 0.0519 0.9915 0.9405 0.9915
z 0.9919 0.0081 0.0897 0.0562 0.9920 0.9516 0.9919

X 0.9936 0.0064 0.0797 0.0110 0.9936 0.9892 0.1984

XGB Y 0.9951 0.0049 0.0699 0.0093 0.9951 0.9894 0.1995
z 0.9958 0.0042 0.0647 0.0106 0.9958 0.9889 0.1989

X 0.9945 0.0055 0.0741 0.0183 0.9945 0.9933 0.1990

CNN Y 0.9951 0.0049 0.0699 0.0160 0.9951 0.9939 0.1987
z 0.9959 0.0040 0.0636 0.0164 0.9959 0.9910 0.1992

X 0.9948 0.0052 0.0719 0.011 0.9948 0.9965 0.1988

BILSTM Y 0.9954 0.0046 0.0678 0.0104 0.9954 0.9975 0.1999
Z 0.9962 0.0038 0.0613 0.0098 0.9962 0.9964 0.1999

3.2. DL model performance (CNN and BiLSTM)

In contrast to the classical models, both DL architectures, CNN and BiLSTM demonstrated
significantly enhanced performance in modeling the complex spatiotemporal patterns of the GPS dataset.
Their ability to extract meaningful representations from sequential input data led to improvements across
nearly all evaluation metrics.

The CNN achieved strong results across the X, Y, and Z dimensions, with R2 values exceeding
0.995 in all cases and RMSE values consistently below 0.075. Its strength lies in its capability to extract
localized spatial features across the 30-timestep input window. However, because CNNs lack inherent
temporal recurrence, they are limited in modeling long-term dependencies. This is visible in the positional
plot shown in Figure 3, where predicted values align closely with actual values but show slightly more
dispersion than BiLSTM, particularly in the Y and Z axes. Residual plot in Figure 4 further illustrates these
deviations, with residuals showing broader variance compared to BiLSTM.

The BIiLSTM model, however, delivered the most accurate and stable performance across all
models. It achieved the highest R? scores (0.9948 to 0.9962) and the lowest RMSE and MAE values,
particularly along the Z-axis, which often presents greater variability in GPS data. As shown in Figure 5, the
predicted positional values closely follow the actual values, with minimal dispersion. The residual plot in
Figure 6 further confirms this: residuals are tightly clustered around zero, highlighting the model’s ability to
minimize prediction error across the entire sequence.

Moreover, BiLSTM produced the highest PICP (~0.9975 for Y-axis) and maintained MPIW within
0.199, indicating not only accuracy but also high confidence in its predictions. This performance affirms
BiLSTM’s suitability for time-series forecasting in scenarios where sequence dependencies are critical such
as vehicle tracking, UAV navigation, and robotics.

The learning curves of both models are presented in Figures 7 and 8. As seen in Figure 8, the
BiLSTM model converged smoothly and achieved minimal validation loss by epoch 37, while Figure 7
shows CNN plateauing slightly earlier. This difference in convergence behavior reflects BILSTM’s greater
representational capacity for capturing temporal dynamics.

In summary, while CNN provides a fast and spatially-aware alternative, BILSTM emerges as the
most effective model for accurate and reliable 3D positional forecasting. Its superior performance directly
addresses the limitations of classical and convolutional approaches by fully leveraging temporal patterns in
the input data.
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4.  CONCLUSION

In this study, we conducted a comparative analysis of traditional ML models (RF, SVM, XGB) and
DL architectures (CNN, BIiLSTM) for 3D positional forecasting using a real-world GPS dataset. Through a
structured evaluation based on accuracy and uncertainty metrics, we demonstrated that BiLSTM offers the
most robust and reliable performance. Its bidirectional temporal learning capability allows it to capture
complex sequential dependencies, outperforming classical and spatial-only models in both predictive
accuracy and confidence interval estimation. The results affirm that models capable of learning long-range
temporal dependencies are better suited for trajectory forecasting tasks. While CNNs provide an efficient
spatial alternative, and classical models offer solid baselines, BILSTM’s consistent accuracy, high PICP, and
narrow MPIW make it the most viable candidate for real-world forecasting applications. This positions
BIiLSTM as a practical solution for deployment in fields such as autonomous navigation, logistics, and
mobile robotics, where precise and dependable position prediction is mission-critical. Future work may
explore hybrid architectures combining CNNs and BIiLSTM layers to leverage both spatial and temporal
features, as well as the integration of external variables such as speed, direction, or sensor noise.
Additionally, testing across varied datasets and environmental conditions would further validate the
generalizability and resilience of the proposed approach.
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