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 We present a comparative analysis of traditional machine learning (ML) 
models, random forest (RF), support vector machine (SVM), and extreme 

gradient boosting (XGB), and deep learning (DL) architectures, convolutional 
neural networks (CNN), and bidirectional long short-term memory 
(BiLSTM) for high-precision 3D positional forecasting. Conventional 
approaches often underperform when modeling complex spatiotemporal 
dependencies, limiting their use in dynamic systems such as robotics and 
autonomous vehicles. This study highlights BiLSTM's advantage in learning 
bidirectional temporal features, achieving superior R² scores and stable 
prediction intervals compared to both classical ML and spatially-focused 

CNN models. Uncertainty metrics, prediction interval coverage probability 
(PICP), and mean prediction interval width (MPIW) provide additional 
insight into model reliability. Experiments on a 22-hour GPS dataset confirm 
that BiLSTM achieves both high accuracy and predictive confidence, 
underscoring its suitability for real-world trajectory forecasting. 
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1. INTRODUCTION 

Accurate 3D positional forecasting is essential for autonomous navigation, robotics, and geospatial 

systems. These applications require real-time predictions of spatial coordinates governed by both spatial and 

temporal dependencies. Traditional machine learning (ML) methods often fall short in modeling high-

dimensional sequential data, where complex, non-linear relationships evolve over time. Classical models 

such as random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) perform 
well on static datasets but lack internal mechanisms to capture sequence patterns [1]-[3]. This shortcoming 

motivates the use of deep learning (DL) models, particularly those suited to time-series data. convolutional 

neural networks (CNNs), though effective for spatial pattern recognition, do not inherently capture temporal 

progression. In contrast, LSTM and its bidirectional variant, bidirectional long short-term memory (BiLSTM) 

offer temporal modeling through memory mechanisms and have shown promising results in prior sequence-

learning tasks [4]-[6]. Despite this, few studies directly compare these architectures—especially using 

uncertainty metrics - on real-world positional datasets. This paper addresses that gap through a structured 

evaluation of five models on GPS data collected over a continuous 22-hour period. The core objective is to 

assess whether BiLSTM outperforms classical and CNN models in both accuracy and uncertainty  

reliability [7], [8]. Our key contributions are: 

https://creativecommons.org/licenses/by-sa/4.0/
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 A comparative study across five ML and DL models on real GPS-based 3D trajectory data. 

 Integration of uncertainty quantification using PICP and MPIW alongside standard metrics. 

 Empirical validation that BiLSTM yields the most accurate and reliable forecasts across all dimensions. 

The remainder of this paper outlines the methodology in section 2, presents results and interpretation in 

section 3, and concludes with implications and future directions in section 4. 

 

 

2. METHOD 

2.1.  Data source and preprocessing 

We use a real-world 22-hour GPS dataset recorded at the Indian Institute of Science (IISc), 

Bangalore. Each record includes three-dimensional coordinates x, y, z representing longitude, latitude, and 

altitude [9], [10]. The position (P) at time i is represented as in (1). 

 

P𝑖 = [x𝑖 , y𝑖 , z𝑖] (1) 

 

To ensure uniform scaling and enhance model training, all coordinates are normalized as in (2). 

 

P̂𝑖 =
P𝑖 − 

σ
  , μ =

1

N
∑ Pi

n
i=1 , σ = √

1

N
∑ (Pi − μ)2n

i=1  (2) 

 

Where, P̂𝑖 is normalized coordinator vector, μ is the mean and σ is the standard deviation of all positions in 

the dataset. This step reduces data variance and prepares inputs for all learning models. 
 

2.2.  Time-series windowing  

To frame the data for sequence learning, we apply a sliding window of length T=30 [11], [12]. Each 

input sequence Xj consists of 30 timesteps, and the corresponding target yj is the next position as in (3). 

 

Xj = [P̂𝑗, P̂𝑗+1,∙∙∙∙∙∙ P̂𝑗+𝑇−1]  ,    yj = P̂𝑗+𝑇 (3) 

 

Where j=1,2,…,N−T, and N is the total number of data points after normalization. This transforms the 

normalized dataset into supervised training samples suitable for temporal forecasting models. 

 

2.3. BiLSTM model structure and training 

2.3.1. Model architecture 

Each input sequence Xj (30 timesteps) is processed by a BiLSTM layer with 64 units. Its output is 

passed through a 50-neuron dense layer (ReLU activation) and a final dense layer to predict 3D coordinates 

[13]-[15]. The structure of the BiLSTM network, including the bidirectional LSTM layer and dense layers, is 

illustrated in Figure 1. 

 

2.3.2. LSTM computation 

At timestep t, a standard LSTM unit performs as shown in (4) to (6). 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) , 𝑖𝑡 = 𝜎(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4) 

 

 𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐), 𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡  ∘ 𝑐̃𝑡  (5) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ,          ℎ𝑡 = 𝑜𝑡  ∘  𝑡𝑎𝑛ℎ(𝑐𝑡) (6) 

 

Here, 𝑓𝑡  is Forget Gate, 𝑖𝑡  input gate, 𝑐̃𝑡 is candidate memory, 𝑐𝑡  is Cell state, ℎ𝑡 is hidden state, 𝑜𝑡 is output 

gate, σ(⋅) is the sigmoid function, ∘  𝑡𝑎𝑛ℎ(⋅) is the hyperbolic tangent, and ∘ denotes element-wise 

multiplication, 𝑊∗ and b∗ are the weight matrices and biases associated with each gate 

BiLSTM combines forward and backward LSTM outputs as in (7). 

 

ℎ𝑡
𝐵𝑖 = [ℎ⃗ 𝑡 , ℎ⃖⃗𝑡]  (7) 

 

The prediction is computed as in (8). 
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𝑦̂𝑗 = 𝑊𝑜𝑢𝑡 ∙ ℎ𝑡
𝐵𝑖 + b𝑜𝑢𝑡 (8) 

 

where, 𝑦̂𝑗 ∈ ℝ3 is the predicted 3D positional vector. 

 

2.3.4. Training setup 

The model is trained using the Mean Squared Error (MSE) loss function as in (9). 

 

𝐿𝑀𝑆𝐸 =
1

M
∑ ‖Ŷj − Yj‖

M

j=1
  (9) 

 

Where, M is the number of training samples. Training uses early stopping based on validation loss to prevent 

overfitting. 

 

2.4.  CNN model structure and training 

To benchmark against a spatial DL approach, we implemented a one-dimensional convolutional 

neural network (1D-CNN). Though CNNs lack sequence memory, they can effectively learn local spatial 

patterns within the input window [16]-[18]. 

 

2.4.1. Model architecture 

The model receives input Xj and passes it through a 1D convolutional layer with 64 filters (kernel 

size = 3), followed by a flattening layer and a 50-neuron dense layer (ReLU activation). The final dense layer 

outputs the predicted x, y, z coordinates [19]-[22]. The CNN architecture and data flow are illustrated in Figure 2. 

 

 

  
  

Figure 1. Workflow for BiLSTM model for 3D 

positional prediction 

Figure 2. Workflow for CNN model for 3D positional 

prediction 
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2.4.2. Convolution operation 
The convolution operation at position t for filter m in layer l is defined as in (10). 

 

ℎ𝑡
(𝑙,𝑚)

= 𝑓(∑ 𝑤𝑘
(𝑙,𝑚)𝐾−1

𝑘=0 ⋅ 𝑥𝑡+𝑘
(𝑙−1)

+ 𝑏(𝑙,𝑚))  (10) 

 

Where, 𝑓(⋅) is the ReLU activation function, 𝑤𝑘
(𝑙,𝑚)

 are the filter weights, 𝑏(𝑙,𝑚) is the bias term, 𝑥𝑡+𝑘
(𝑙−1)

 is the 

input from the previous layer, 𝐾 is the kernel size (set to 3). 

 

2.4.3. Output layers 
The feature map is flattened and transformed is presented in (11). 

 

𝒛 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 ({ℎ𝑡
(𝑙,𝑚)}) (11) 

 
This is then passed through a dense layer as in (12). 

 

hdense = 𝑅𝑒𝐿𝑈(Wdense ⋅ 𝑧 + bdense)  (12) 

 

And finally mapped to the predicted position as in (13). 

 

ŷj = hout ⋅  hdense  +  bout   (13) 

 

2.4.4. Training setup 

The CNN model is trained using the same MSE loss function as the BiLSTM. Early stopping is also 

applied with a patience of 10 epochs, restoring the model weights to the best-performing validation epoch. 

 

2.5. Uncertainty quantification with prediction intervals 
In addition to point prediction accuracy, we assess model reliability using prediction intervals (PIs), 

which estimate the confidence range around each forecast [23]-[25]. Two metrics are used: prediction 

interval coverage probability (PICP) and mean prediction interval width (MPIW). 
 

2.5.1. Prediction interval estimation 

For each prediction 𝑦̂𝑗, a confidence interval is computed as in (14). 

 

PI𝑗 = [𝑦̂𝑗 − 𝑧α  ⋅ 𝜎j , 𝑦̂𝑗 + 𝑧α ⋅ 𝜎j] (14) 

 

Where, 𝜎j is the estimated standard deviation estimate, 𝑧α is the z-score corresponding to the desired 

confidence level (e.g., 1.96 for 95% confidence). 

 

2.5.2. Prediction interval coverage probability 

PICP quantifies how often true values fall within the predicted intervals as in (15). 

 

𝑃𝐼𝐶𝑃 =
1

M
∑ 𝕝(𝑦𝑗 ∈ PI𝑗𝑖

)
M

j=1
 (15) 

 

where 𝕝(⋅) is the indicator function returning 1 if the true value is within the interval and 0 otherwise, M is 

the total number of predictions. 

 

2.5.3. Mean prediction interval width 

MPIW captures the average width of all prediction intervals as in (16). 

 

𝑀𝑃𝐼𝑊 =
1

M
∑ ‖𝑦̂𝑗

𝑢𝑝𝑝𝑒𝑟
− 𝑦̂𝑗

𝑙𝑜𝑤𝑒𝑟‖
M

j=1
  (16) 

 

Together, PICP (reliability) and MPIW (precision) offer a robust uncertainty assessment for each model. 
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2.6.  Model evaluation metrics 

We use standard regression and variance metrics to evaluate model performance across all spatial 

axes in (17) to (21). These include error magnitude, predictive strength, and explained variability. Mean 

squared error (MSE): Penalizes large deviations, highlighting average squared error. 

 

MSE =
1

M
∑ ‖𝒚̂𝑗 − 𝐲j‖

2M

j=1
  (17) 

 

Root mean squared error (RMSE): Expresses prediction error in original units. 

 

RMSE = √
1

M
∑ ‖𝒚̂𝑗 − 𝐲j‖

2M

j=1
  (18) 

 
Mean absolute error (MAE): Measures average absolute difference. 

 

MAE =
1

M
∑ ‖𝐲̂j − 𝐲j‖

M

j=1
   (19) 

 

R-squared (R²): Reflects the proportion of variance explained by the model. 

 

 R2 = 1 −
∑ ‖𝒚̂𝑗−𝐲𝐣‖

2M

j=1

∑ ‖𝒚̂𝑗−𝐲̅j‖
2M

j=1

  (20) 

 

Where y̅ is the mean of all true target vectors. 

Explained variance score (EVS): Indicates how well the model captures variation in target data. 

 

 EVS = 1 −
Var(𝐲𝐣−𝐲̂j)

Var(𝐲𝐣)
 (21) 

 

 

3. RESULTS AND DISCUSSION  

This section presents a comprehensive evaluation of all five models, three classical ML models (RF, 

SVM, and XGB) and two DL architectures (CNN and BiLSTM), on the task of 3D positional forecasting. 

The models were assessed based on multiple performance indicators, including prediction accuracy metrics 

(MSE, RMSE, MAE, R², EVS) and uncertainty quantification metrics (PICP and MPIW), evaluated 

separately across the X, Y, and Z coordinate axes. 

The results are presented in tabular form, followed by an in-depth discussion that interprets the key 

findings. We examine the strengths and limitations of each model, compare outcomes with existing literature, 

and discuss implications for real-world deployment. This structured analysis emphasizes the practical 

significance of the findings and demonstrates how the BiLSTM model effectively overcomes limitations 
inherent in traditional ML and spatially-focused DL approaches. 

 

3.1.  Performance of classical ML models 

The predictive performance of RF, SVM, and XGB models across all three spatial dimensions is 

summarized in Table 1. These models were evaluated using the standardized input-output pairs generated 

from time-series windowing. While all three models demonstrated reasonably good performance, their ability 

to capture the underlying temporal structure of the data varied considerably. 

Among the classical models, XGB consistently outperformed both RF and SVM, particularly in the 

Y and Z axes, achieving higher R² scores (up to 0.9958) and lower RMSE values. XGB’s tree-boosting 

mechanism enabled it to capture complex non-linear patterns in the trajectory data, making it a strong 

baseline for non-sequential modeling. Additionally, it demonstrated narrower prediction intervals (MPIW ≈ 
0.198–0.199) and respectable coverage (PICP ≈ 0.989), suggesting a balance between accuracy and 

uncertainty estimation. 

RF, while less powerful than XGB, delivered robust performance, especially in the Z-axis with 

minimal variance in prediction error. RF's ensemble of decorrelated trees helped reduce overfitting and 

contributed to stable MAE values. However, its performance across all dimensions showed a slight lag in 

capturing subtle dynamic variations in the dataset. 
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SVM, in contrast, produced the weakest results. While it maintained moderate accuracy (R² ≈ 

0.991), its higher MAE and wider prediction intervals indicate difficulty in generalizing over the full 

sequence window. The lack of internal mechanisms to model temporal correlation limits its utility for 

sequence-based forecasting tasks. 

These observations reinforce the notion that while classical ML models can offer baseline predictive 

capabilities, they struggle to generalize temporal dependencies, which are critical in trajectory prediction 

scenarios. This highlights the need for more specialized architectures capable of modeling time-aware 
patterns, an area addressed by the DL models in the next section. 

 

 

Table 1. Comparative performance of ML and DL models across all metrics 

Model Coordinate 
Evaluation metric 

R² MSE RMSE MAE Explained variance PICP MPIW 

RF 

X 0.9940 0.0059 0.0771 0.0070 0.9940 0.9914 0.1984 

Y 0.9935 0.0065 0.0807 0.0068 0.9935 0.9904 0.1991 

Z 0.9947 0.0052 0.0723 0.0070 0.9947 0.9910 0.1988 

SVM 

X 0.9909 0.0090 0.0949 0.0506 0.9909 0.9510 0.9909 

Y 0.9915 0.0085 0.092 0.0519 0.9915 0.9405 0.9915 

Z 0.9919 0.0081 0.0897 0.0562 0.9920 0.9516 0.9919 

XGB 

X 0.9936 0.0064 0.0797 0.0110 0.9936 0.9892 0.1984 

Y 0.9951 0.0049 0.0699 0.0093 0.9951 0.9894 0.1995 

Z 0.9958 0.0042 0.0647 0.0106 0.9958 0.9889 0.1989 

CNN 

X 0.9945 0.0055 0.0741 0.0183 0.9945 0.9933 0.1990 

Y 0.9951 0.0049 0.0699 0.0160 0.9951 0.9939 0.1987 

Z 0.9959 0.0040 0.0636 0.0164 0.9959 0.9910 0.1992 

BILSTM 

X 0.9948 0.0052 0.0719 0.011 0.9948 0.9965 0.1988 

Y 0.9954 0.0046 0.0678 0.0104 0.9954 0.9975 0.1999 

Z 0.9962 0.0038 0.0613 0.0098 0.9962 0.9964 0.1999 

 

 

3.2.  DL model performance (CNN and BiLSTM) 

In contrast to the classical models, both DL architectures, CNN and BiLSTM demonstrated 

significantly enhanced performance in modeling the complex spatiotemporal patterns of the GPS dataset. 

Their ability to extract meaningful representations from sequential input data led to improvements across 
nearly all evaluation metrics. 

The CNN achieved strong results across the X, Y, and Z dimensions, with R² values exceeding 

0.995 in all cases and RMSE values consistently below 0.075. Its strength lies in its capability to extract 

localized spatial features across the 30-timestep input window. However, because CNNs lack inherent 

temporal recurrence, they are limited in modeling long-term dependencies. This is visible in the positional 

plot shown in Figure 3, where predicted values align closely with actual values but show slightly more 

dispersion than BiLSTM, particularly in the Y and Z axes. Residual plot in Figure 4 further illustrates these 

deviations, with residuals showing broader variance compared to BiLSTM. 

The BiLSTM model, however, delivered the most accurate and stable performance across all 

models. It achieved the highest R² scores (0.9948 to 0.9962) and the lowest RMSE and MAE values, 

particularly along the Z-axis, which often presents greater variability in GPS data. As shown in Figure 5, the 
predicted positional values closely follow the actual values, with minimal dispersion. The residual plot in 

Figure 6 further confirms this: residuals are tightly clustered around zero, highlighting the model’s ability to 

minimize prediction error across the entire sequence. 

Moreover, BiLSTM produced the highest PICP (~0.9975 for Y-axis) and maintained MPIW within 

0.199, indicating not only accuracy but also high confidence in its predictions. This performance affirms 

BiLSTM’s suitability for time-series forecasting in scenarios where sequence dependencies are critical such 

as vehicle tracking, UAV navigation, and robotics. 

The learning curves of both models are presented in Figures 7 and 8. As seen in Figure 8, the 

BiLSTM model converged smoothly and achieved minimal validation loss by epoch 37, while Figure 7 

shows CNN plateauing slightly earlier. This difference in convergence behavior reflects BiLSTM’s greater 

representational capacity for capturing temporal dynamics. 

In summary, while CNN provides a fast and spatially-aware alternative, BiLSTM emerges as the 
most effective model for accurate and reliable 3D positional forecasting. Its superior performance directly 

addresses the limitations of classical and convolutional approaches by fully leveraging temporal patterns in 

the input data. 
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Figure 3. CNN comparative positional plot Figure 4. CNN residual error plot 
 

 

 

 

  
  

Figure 5. BiLSTM comparative positional plot Figure 6. BiLSTM residual error plot 

 

 

 

 

  
  

Figure 7. CNN learning curve Figure 8. BiLSTM learning curve 
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4. CONCLUSION  

In this study, we conducted a comparative analysis of traditional ML models (RF, SVM, XGB) and 

DL architectures (CNN, BiLSTM) for 3D positional forecasting using a real-world GPS dataset. Through a 

structured evaluation based on accuracy and uncertainty metrics, we demonstrated that BiLSTM offers the 

most robust and reliable performance. Its bidirectional temporal learning capability allows it to capture 

complex sequential dependencies, outperforming classical and spatial-only models in both predictive 

accuracy and confidence interval estimation. The results affirm that models capable of learning long-range 
temporal dependencies are better suited for trajectory forecasting tasks. While CNNs provide an efficient 

spatial alternative, and classical models offer solid baselines, BiLSTM’s consistent accuracy, high PICP, and 

narrow MPIW make it the most viable candidate for real-world forecasting applications. This positions 

BiLSTM as a practical solution for deployment in fields such as autonomous navigation, logistics, and 

mobile robotics, where precise and dependable position prediction is mission-critical. Future work may 

explore hybrid architectures combining CNNs and BiLSTM layers to leverage both spatial and temporal 

features, as well as the integration of external variables such as speed, direction, or sensor noise. 

Additionally, testing across varied datasets and environmental conditions would further validate the 

generalizability and resilience of the proposed approach. 
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