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Software defined network (SDN) is a developing concept that emerged
recently to overcome the constraints of traditional networks. The
distinguishing characteristic of SDN is the uncoupling of the control plane
from the data plane. This facilitates effective network administration and
enables efficient programmability of the network. Nevertheless, the updated
architecture is susceptible to cyberattacks including distributed denial of
service (DDoS) attacks, that can impair network regular functions and hinder
the SDN controller from assisting authorized users. This paper introduces
hybrid deep learning model, to detect DDoS assaults triggered by TCP SYN
attacks in SDN environments. Our proposed model integrates a temporal
convolutional network (TCN) with a stacking classifier that leverages
logistic regression, which is an innovative hybrid approach. We assessed the
performance of our model by utilizing the benchmark CICDD0S2019
dataset. When compared to other benchmarking techniques, our model
significantly improves attack detection. The experimental results indicate

that the proposed hybrid model attains 99.9% accuracy for attack detection

Weighted stacking
compared to the available approaches.
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1. INTRODUCTION

Over the last twenty years, the quantity of network devices has been significantly expanding, leading
to more administrative complexity and obstructing future Internet progress. Moreover, the rigidity of the
conventional network diminishes its capacity to expand and adjust, resulting in increased operational
expenses. The constraints of traditional networks hamper the growth of modern applications such as cloud
computing, 10T, big data and network function virtuliazation (NFV), which require higher bandwidth,
flexibility and real time network management. Software defined networking (SDN) has emerged to address
the modern network requirements based on novel architecture to isolate the control plane and the data palne
from each other, facilitate centralized network control, programmability, and agility. Despite exciting and
promising charectiistics, the centralized architecture of SDN is sensitive to cyber attacks, and can be a single
point of failure, specifically for distributed denial of service (DDoS) assaults. DDoS assaults can overwhelm
the controller through fake traffic, halt the normal network functionalities by depleting the bandwidth,
computing power, and the controller memory. This can lead to a decrease in performance or complete
network disruption [1].

DDoS attacks are generally classified into three categories: volumetric attacks, which saturate the
bandwidth; application-layer attacks, which exhaust resources at the application level; and protocol attacks,
which exploit weaknesses in network protocols to disrupt services. TCP SYN flood is a protocol-level DDoS
assault that exploits the TCP three-way handshake by transmitting several SYN packets without terminating
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the link, specifically by skipping the concluding ACK [2]. Figure 1 presents an overview of the TCP three-
way handshake and its exploitation during a TCP SYN flood attack. Figure 1(a) illustrates the normal
handshake process, in which the client initiates the connection by sending a SYN packet, the server responds
with a SYN-ACK, and the client completes the connection with an ACK. In contrast, Figure 1(b) depicts the
TCP SYN flood attack wherein the attacker repeatedly sends SYN packets without completing the final ACK
step. This results in a large number of half-open connections that accumulate on the target machine, rapidly
depleting its memory resources.
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Figure 1. An overview of the TCP three-way handshake and its exploitation during a TCP SYN flood attack
(a) standard successful three-way handshake and (b) TCP-SYN flood attack

In an SDN environment, where the controller centrally manages flow operations, such an
overwhelming volume of incomplete handshakes can severely impair the control of plane control, making
TCP SYN floods one of the most damaging DDoS threats to SDN controllers. Furthermore, the limited
processing capability of most controllers and the openness of OpenFlow, which attracts attackers, and worsen
the problem even more. Therefore, TCP SYN flood attacks are thus now acknowledged as among the most
disastrous DDoS threats in SDN networks [3].

The precise identification of TCP SYN flood attacks is essential; however, it must conform to the
resource limitations of SDN controllers. Current solutions include entropy-based analysis [4], [5], statistical
models and flow based mechnisms [6]. Traditional machine learning and deep learning methods are
commonly used, both single and hybrid such as CNN-BILSTM [7], stacked and contractive autoencoders
[8]-[10]. Machine learning models achieve high accuracy however exhibit constraints to adapt temporal
traffic patterns while trade off between detection accuracy and computing efficiency [11]-[13]. Deep learning
models enhance detection capabilities by automatically recognizing attack-related features with lower false
positive rates compared to traditional ML models, making them more efficient but are frequently resource-
intensive, rendering them inappropriate for lightweight SDN controller settings [1], [2], [14], [15]. To
address these constraints, this study proposes a hybrid deep learning model integrating temporal
convolutional network (TCN) with a dynamic weighted stacking classifier based on logistic regression
(TCN+DWSR) to detect TCP SYN attacks in SDN. TCNs are particularly effective for modeling sequential
data with long-range dependencies through causal and dilated convolutions, making them ideal for
identifying SYN flood patterns in SDN environment [16]. Compared to earlier work based on statistical and
traditional ML/DL models that consume excessive resources and often neglect temporal traffic patterns, our
model captures both sequential and computational dependencies. The proposed model also addresses the
need of lighweight solution to detect attacks with a less computational burden on controllers. By applying
Boruta and LightGBM for relevant feature selection, 84 attributes reduced to only 14 features, lowering
complexity with 99.9% accuracy

The research contributions are summed as follows:

a) A novel hybrid deep learning model, the proposed (TCN+DWSR) model is an innovative method that
combines the benefits of TCNs with stacked classifiers to provide a robust solution for identifying
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DDosS attacks in SDN environment. The adoption of early stopping and the use of validation data
substantially enhance the model's performance and generalizability.
b) Comprehensive temporal analysis: The proposed TCN based approach captures bothe static and
temporal patterns, making it suitable for precise identification of DDoS attacks.
c) Advanced feature extraction: Employing TCN for feature extraction enables the model to find intricate
patterns in network traffic data that simpler models may overlook.
d) Enhanced classification accuracy: Incorporating stacking classifier in model with Logistic Regression
enhanced model classification accuracy.
The rest of the paper is organized as follows: section 2 covers literature review. Section 3 presents
the proposed model and methodology. The experimental findings are provided in section 4. Section 5
provides a discussion, while section 6 includes the conclusion and future work.

2. LITERATURE REVIEW

Academic research proposes diverse methods to detect and mitigate TCP SYN flood attacks in SDN,
such as entropy based SAFETY system to analyze the randomness in flow data [4], a resource efficient
approach SLICOTS is proposed in [17], that scans TCP connection requests and blocks malevolent
connection. Another method is selective packet inspection, utilizing distributed monitors and centralized
controllers to detect attack signatures [6]. Sinha [5] proposed a security system named SynFloWatch
designed to protect hybrid SDN environments from TCP-SYN-based DDoS attacks. It utilizes Tsallis entropy
analysis to effectively identify both low-rate and high-rate attacks. The proposed technique divides incoming
network traffic into windows according to the count of packet_in messages. This allows for the early
identification of attacks. Then by analyzing Tsallis entropy on the destination IP parameter to identify both
low-rate and high-rate TCP-SYN DDoS assaults in hybrid SDN settings. This technique achieves higher
accuracy than Shannon entropy-based methods. Swami et al. [18] examines the effects of both spoofed and
non-spoofed TCP-SYN DDoS assaults on controller. It also demonstrates the implementation of machine
learning based intrusion detection system to protect from attacks. Extracting essential attributes from packet
headers, for instance the source IP address and port number, TCP flags, etc. This study involves five machine
learning models (random forest, decision tree, AdaBoost, logistic regression, multi-layer perceptron) to break
down traffic into two categories: normal and attack. Researchers in design [14] an experimental evaluation
utilizing the CAIDA UCSD DDoS 2007 Attack Dataset to compare the performance of the SYNTROPY
framework to the SAFETY algorithm in identifying TCP SYN DDoS attacks. However, this study lacks a
thorough examination of the computational expense of the SYNTROPY algorithm on the controller.

Shalini et al. [19] presents a strategy for promptly identifying and mitigating TCP SYN flood DDoS
assaults in SDN. They develop and deploy a detection model for TCP SYN flood attacks at the source,
utilizing the elongated chi-square goodness of fit test on network traffic characteristics that are gathered at
the SDN controller. To configure the switch's behavior the ultimate ACK packet is directed to the controller.
This will enable the controller to accurately calculate the amount of half-open connections. As compared to
entropy-based methods, the efficacy of the suggested model in identifying network attacks from many
perpetrators. The TFAD approach in [20] employs two proxies, one for mitigating TCP SYN flood assaults
and another for mitigating TCP ACK flood assaults. The ML-TFAD module implements the C4.5 decision
tree approach for SYN flood attack identification prior to their arrival at the server. The proposed approaches
accelerate the disposing of partially constructed links from the server queue to accomodate authorized
requests. Chuang et al. [21] presents a SDN architecture that incorporates an artificial intelligence (Al)
module to detect aberrant attacks at an early stage. It assesses several ML and DL models and devises a
hierarchical multi-class (HMC) architecture to enhance performance on datasets with imbalanced data. Niyas
et al. [8] introduced an Intrusion Detection System implemented in the controller. For classification, a deep
learning-based stacked autoencoder model is proposed. The system comprises of three major parts: traffic
flow collection, feature extraction, and categorization of the destructive flows. The proposed IDS employs
packet analysis to minimize false positive rates. The researchers employed Hping3 to initiate various
flooding assaults, including TCP-SYN, UDP, and ICMP floods. The suggested model surpasses earlier
approaches, with an accuracy of 99.65%. However, it encounters constraints regarding its processing
capabilities, involving the time and resources necessary to manage each packet and accomplish feature
extraction. Aktar and Nur [9] introduces an innovative intrusion detection model utilizing deep learning and a
contractive autoencoder. The model attains an accuracy level of 92.45%. Alghazzawi et al. [7] introduced a
deep learning model employing a hybrid architecture of CNN and BIiLSTM to detect and classify DDoS
assaults in SDN. Hamaeshe et al. [22] utilized the Random Forest method achieved to achieve the greatest
accuracy rate of 68.9%. Kumar et al. [23] in suggests a LSTM based deep learning model that can reach a
remarkable accuracy rate of up to 98% to detect DDoS attacks in CICDD0S2019 dataset, surpassing
conventional machine learning methods.
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3. PROPOSED MODEL DESCRIPTION AND METHODOLOGY
This section covers a comprehensive explanation of the proposed hybrid model for TCP SYN flood
attack detection in SDN, including dataset selection, preprocessing, and feature engineering.

3.1. Dataset

A major obstacle faced by ML/DL based intrusion detection techniques is the limited accessibility
of datasets. The primary factor contributing to the scarcity of datasets in the intrusion detection field can be
attributed to concerns around privacy and legal implications. Network traffic comprises highly confidential
information, the disclosure of which can expose customer and business secrets, as well as personal
communications. To address the above deficiency, numerous researchers generate their own data through
simulation to mitigate any potential privacy problems. However, in these instances, the majority of the
datasets produced are not meticulous, and the selected samples are insufficient to encompass the application
operations. The following datasets are often used for intrusion detection: KDDCUP’99 [24], NSL-KDD [25],
Kyoto 2006+, 1SCX2012 [26], and CICIDS2017. Additional information regarding various datasets utilized
in the field of intrusion may be found in reference [27]. The performance of our model assessed using the
state-of-the-art CICDD0S2019 dataset. It contains over 80 flow attributes which were obtained through
CICFlowMeter tools. The dataset comprises of a substantial volume of diverse DDoS assaults that may be
executed using application layer protocols utilizing TCP/UDP [28].

3.2. Data preprocessing
The CICDD0S2019 dataset is provided in a flow-based format, with over 80 attributes extracted
utilizing the CICFlowMeter tool. The following are the steps to prepare data:

a) Eliminating socket features: we eliminate socket attributes including source and destination IP, source
and destination port, timestamp, and flow ID. The property of these features varies across different
networks; thus, it is necessary to train the model using the packet attributes directly. Moreover, it is
possible for both the attacker and regular user to share an identical IP address. Consequently, training
the deep learning model using socket data may lead to overfitting, as the model may become biased
towards the socket information. After eliminating the undesired features, we acquired a total of 14
attributes for the model input.

b) Data cleaning: the actual dataset includes a significant number of duplicate values. Hence, unnecessary
values are removed from the dataset.

c) Encoding categorical variables: we applied label encoding technique to transform categorical variables
to numerical form. Label encoding was chosen for the project due to its simplicity, efficiency, and
relevance to the nature of the categorical features in the dataset.

d) Feature scaling: the proposed model is trained using a stanadradization technique of feature scaling.

After preprocessing the dataset is ready for model training.

3.3. Feature selection

Feature selection is an influential step for optimized model performance specifically in case of high-
dimensional datasets, it supports interpretability and reduce overfitting which is particulary important in
network traffic analysis, where actionable insights are crucial for decision-making.

3.3.1. Techniques used for feature selection

We combined Boruta algorithm with LightGBM algorithm for relevent feature selection form
dataset. Boruta is an iterative feature selection algorithm that runs by evaluating the significance of randomly
generated shadow features with actual features. It iteratively identifies features that are significantly more
important than random noise. In the proposed project, BorutaPy, a Python implementation of Boruta, is used
along with the LightGBM classifier as shown in Figure 2. LightGBM is a gradient-boosting framework
known for its efficiency and scalability, makes it appropriate for handling large datasets. BorutaPy with
LightGBM efficiently selects the most essential features for the classification task and address overfitting
issue by extracting only the pertinent features, this reduces model complexity and enhance generalization. It
starts with the origianl feature set as shown in Figure 2, then create the shadow features by creating copies of
original features and shuffle them. Later combine the shuffled and original features feed the extended dataset
to LightGBM for z-score calculation, and repeat the process multiple times to eliminate the weak features.
TCNs has been known to handle sequential data of varying length better than CNN [29]. We choose TCN for
this research due to below mentioned characteristics:
—  Captures Sequential Patterns: TCNs excel in processing sequential data by capturing temporal

dependencies, rendering them highly effective at recognizing patterns in network traffic flow.
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—  Effective for long-term dependencies: TCNSs, in contrast to traditional convolutional layers, can capture
long-range dependencies by the application of dilated convolutions and causal padding. This is crucial
for precisely identifying complex patterns of DDoS attacks.

—  Robust to noise: convolutional layers are useful for extracting dependable features from noisy data,
which is common in network traffic analysis.

—  Stacking with logistic regression: integrating TCN with logistic regression leverages the strengths of
each of the models. TCN employs powerful algorithms to derive complex features from unprocessed
data, while Logistic Regression excels in effectively classifying data based on these derived features.

— Improved accuracy: utilizing the TCN's predictions as input for the logistic regression model, the
stacking methodology frequently attains superior accuracy relative to employing a solitary model
independibility.

—  Versatility: logistic regression is a simple yet powerful model capable of managing the altered feature
space provided by the TCN, leading to an effective method that is both flexible and effective.
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Figure 2. Boruta feature-LightGBM iterative feature selection process

3.4. Model architecture description

The model's architecture shown in Figure 3 comprises three residual blocks, each containing dilated
1D convolutional layer with ReLU activation function and residual skip connections. The dilation factors
(1,2, and 4) enable the netwrok to capture both short- and long-range temporal dependencies in the traffic
sequences without relying on pooling operations. This allows for the extraction of features from the input
sequences while also maintaining their temporal relationships. The flattened outcome is fed into a dropout
layer and a dense layer consists of 128 units. The utmost output layer uses SoftMax activation for binary
classification, with two classes: Attack and Benign. The model is set out with the Adam optimizer and
employs the sparse categorical cross-entropy loss function. Early stopping method is implemented
throughout the process of training to avoid the issue of overfitting. The stacking classifier is learned by
utilizing the stacked features and target labels. The stacking model makes predictions for the test data labels.
This proposed model leverages the advantages of temporal convolutional networks (TCN) and stacking
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techniques to enhance the performance of classification tasks. Below is an extended analysis of the TCN

model:

a) Input layer: the input layer accepts sequences of features with a fixed number of time steps (14 in this
case) and a single feature dimension.

b) Residual blocks with dilated convolutions: instead of traditional convolution + pooling, the model
employs dilated 1D convolutions inside residual blocks. Each block consists of ConvlD layers with
increasing dilation factors (1, 2, and 4) to capture both short- and long-range temporal dependencies in
the traffic sequences. Residual skip connections are used to stabilize training and preserve information
across layers.

c) Activation function: rectified linear unit (ReLU) an activation function is employed for every
convolutional layer to establish non-linearity and facilitate the model in acquiring intricate patterns.

d) Dropout layer: dropout regularization is applied to combat overfitting by randomly discarding a fraction
of the neurons' outputs during the training phase, thereby supporting the model to acquire increased
resilient and generalized representations.

e) Dense layers: after flattening the output of the convolutional layers, dense (fully connected) layers are
incorporated to further transform the features and prepare them for classification.

f)  Output layer: the final output layer comprises neurons that correspond to the number of classes (2 in this
case, representing SYN packets and non-SYN packets). The softmax activation function is used to
transform the raw output scores into probabilities, denoting the likelihood of each class.

g) Stacking classifier: finally, the softmax outputs are fed into a logistic regression stacking classifier,
which serves as a meta-learner to enhance the decision boundary and improve overall classification

accuracy.
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Figure 3. Proposed hybrid model combining TCN with stacking classifier for detecting TCP SYN attacks

3.5. Training the TCN model

The TCN model is trained utilizing the Adam optimizer, that is an adaptive learning rate
optimization algorithm, with cross-entropy loss function for classification purposes. The training data is
bifurcated into training and validation sets, with a portion reserved for early stopping. Incorporating early
stopping helps to intercept overfitting by observing validation loss and halting training when refinement
plateau, ensuring that the model generalizes well to new data. Once the TCN model is trained, its predictions
on the training data are used as additional features to train a stacking classifier. The stacking classifier is an
ensemble learning method used to aggregate the predictions of several base estimators (in this case, the TCN
model's predictions) using a meta-estimator (logistic regression). The meta-estimator learns to weigh the
predictions from the base estimators and makes the concluding decision. After training the stacking classifier,
it is employed for making forecast on the test data. The accuracy of the hybrid model is then conducted by
performing a comparison between the anticipated labels and the true labels obtained from the test data.
Accuracy, which quantifies the proportion of precisely identified samples, serves as the performance metric
for assessing the model's effectiveness in detecting SYN packets in SDN traffic data. Algorithm 1 presents
the key steps from data preprocessing to attack prediction. Overall, the proposed hybrid model based on
dynamic weighted stacking and regularization using TCN combines the advantages deep learning (TCN
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model) and conventional machine learning (stacking classifier) techniques to achieve accurate detection of
SYN packets, leveraging the TCN model's competence to cover up temporal dependencies and the stacking
classifier's potential to blend diverse predictions for improved performance. The merger of these
methodologies produces a robust, relible, and efficient model for DDoS attack detection in SDN, with high
validation accuracy (0.9984).

Algorithm 1. Model training for attack detection
Input: cicddos 2019 dataset.csv
Output: TRUE = SYN Attack, FALSE = Benign
BEGIN
Load and clean dataset.
Select key features using Boruta + LightGBM.
Train TCN model - get prediction score.
IF score 2 threshold THEN
TRUE: traffic = SYN attack
ELSE
FALSE: traffic = benign
END IF
END

4. RESULTS AND DISCUSSION
4.1. Configuration of the simulation

The network topology is established using Mininet. The topology consists of two hosts, one switch,
and a Ryu controller with 65,535 transfer data size as shown in Figure 4. Specifications for the Mininet
emulator version 2.3.0: A HP Pavilion system with the following characteristics was utilized for all tests and
experiments: Requirements include 16 GB RAM, Windows 11 64-bit, a 1.8 GHz Intel Core (TM) i7-8550U
processor, and VirtualBox Oracle VM version 6.0.18. Mininet functioning as a guest operating system on the
Ubuntu 14.04 32-bit Linux OS, is installed with 4,096 MB of RAM and is controlled by VirtualBox, utilizing
the Ryu controller. Our proposed hybrid model with stacking classifier shows outstanding results, we use
Boruta with LightGBM for feature selection that significantly reduced the number of feature to 14 out of 84.
to detect TCP SYN flood attacks in SDN environment. Compared to single deep learning models like LSTM,
the hybrid architecture leverages the temporal awareness of TCN and the generalization power of ensemble
learning, achieving higher detection accuracy and lower false positive rates. This not only reduces
computational overhead but also enhances the model's interpretability. While earlier models (e.g., CNN or
DNN-based) focused on raw accuracy, they often lacked robustness against redundant or irrelevant features,
which our model addresses effectively.

:~$ sudo mn --controller remote
[sudo] password for waqgar:
*** Creating network
*** Adding controller
Connecting to remote controller at 127.0.0.1:6653
*** Adding hosts:
h1i h2
*** Adding switches:
s1
*** Adding links:
Ch1, s1) ((h2, s1)
*** Configuring hosts
hi h2
*** Starting controller
co
*** Starting 1 switches
S1 e
*%*%* Starting CLI:

Figure 4. Network topology creation

Table 1 shows that the model obtained an overall accuracy of 99.9%, with precision, recall, and F1-
score all equal to 1.00 (100%) for both the benign and attack classes. We specifically evaluated macro-
average and weighted-average metrics to account for class imbalance in the dataset, and these too are
approximately 1.00, indicating that the model performs equally well on minority and majority classes.
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Table 1. Testing performance of the proposed model
Precision Recall F1-Score Support

0 1.00 1.00 1.00 19562

1 1.00 1.00 1.00 9879
Accuracy 1.00 29441
Macro Avg 1.00 1.00 1.00 29441

Weighted Avg 1.00 1.00 1.00 29441

The confusion matrix is shown in Figure 5 further confirms this balanced performance: it reports
zero false positives and only a negligible number of false negatives, meaning that virtually all normal traffic
is correctly identified while almost no attack packets are missing. Such a nearly flawless classification pattern
signifies a robust discriminative capability. This level of reliability is critical for real-time SYN flood
detection in SDN systems, where false alarms could needlessly disrupt legitimate traffic and missed attacks
could cause serious damage.

Confusion Matrix

17500

Actual Benign 0 15000

12500

- 10000

True label

r 7500

Actual Attack | 46 + 5000

r 2500

T T
Predicted Benign Predicted Attack
Predicted label

Figure 5. Confusion matrix for classification performane of proposed model

Additionally, the training and validation curves presented in Figures 6 and 7 exhibited steadily
decreasing loss and consistently high validation accuracy during training, indicating stable convergence
without overfitting. In summary, our results demonstrate that the hybrid TCN + logistic regression stacking
model effectively learns the distinguishing temporal patterns of TCP SYN flood attacks, delivering highly
accurate and balanced detection performance.

Compared to previous approaches, the proposed model offers superior performance and novel
advantages. As shown in Table 2, Niyaz et al. [8] achieved about 99.65% accuracy using a stacked
autoencoder-based deep model for DDoS detection, whereas a conventional random forest method reached
only around 68.9% in a similar task [30]. Most other recent techniques report detection accuracies in the 92—
98% range for TCP SYN flood attacks [28], [29]. Against this backdrop, our model’s ~99.9% accuracy (with
precision and recall essentially 100%) represents a notable improvement, pushing the performance closer to a
practically perfect detection of SYN flood traffic. Beyond the metrics, our approach contributes a novel
hybrid architecture: the integration of a temporal convolutional network (TCN) with a dynamic weighted
stacking classifier using logistic regression. This design leverages TCN’s robustness in catching long-range
temporal patterns in network traffic and the simplicity of logistic regression for final classification. TCNs
have been shown to outperform conventional recurrent models like LSTM in similar time-series and intrusion
detection tasks, due to their ability to learn long-term dependencies without vanishing gradient issues and to
train in parallel for faster convergence. By using TCN to extract high-level sequential features and then
applying a lightweight logistic regression stacker, our model harnesses the best of both worlds, powerful
feature learning and efficient decision-making.
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Figure 7. Training and validation accuracy graph indicating consistent classification performance

To our knowledge, this TCN+LR stacking combination is relatively novel for detecting DDoS
attacks, and research outcomes validate its effectiveness. Another strength of our model is its computational
efficiency. We employed the Boruta algorithm with LightGBM to select the 14 most salient features from the
dataset, significantly reducing the input dimensionality without sacrificing accuracy. This feature selection
led to roughly a 40% reduction in training time (compared to using the full feature set) and helps avoid
overfitting by eliminating irrelevant features. Notably, even though our stacking classifier uses a
straightforward Logistic Regression, the model did not compromise on performance — an unexpectedly
positive outcome that underlines the quality of the temporal features extracted by the TCN. In other words,
TCN learned such informative patterns that even a simple classifier was able to achieve optimal results.
These comparisons and strengths highlight the contribution of our work: a high accuracy, balanced, and
efficient DDoS detection model that improves prior studies in both performance and design. The hybrid TCN
+ logistic regression approach not only attained excellent evaluation metrics but also demonstrated how
combining advanced sequential modeling with an ensemble strategy can bolster DDoS defense in SDN
environments. Broadly, these results suggest that more effective and faster DDoS detection is attainable in
practice, strengthening the stability of SDN-based networks against disruptive attacks. Nevertheless, there are
certain limitations and open questions that need further investigation. Our evaluation is conducted on a single
benchmark dataset (CICDD0S2019) and a binary classification of traffic (attack vs. benign). Future research
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should validate the model’s generalizability by testing it on different DDoS datasets and in real-world SDN
deployments. Another important extension will be to implement a multi-class classification framework that
can distinguish between various types of DDoS attacks (not just SYN floods), providing a more fine-grained
defense mechanism. Exploring these directions will address the remaining questions about the model’s
broader applicability and robustness. In summary, the hybrid model exhibits a progressive capability for SYN
flood capturing in SDN and represents a significant step forward in the quest to safeguard programmable
networks from DDoS threats.

Table 2. Performance comparison of TCN + DWSR with existing models

Author Model Performance metrics (%)

Accuracy  Precision Recall F Score

Niyaz et al. [8] Deep learning 99.65 99.75

Model with stacked autoencoder
Aktar et al. [9] deep learning 92.45 92.46 92.45 92.45
Model with contractive autoencoder

Alghazzawi et al. [7] CNN, BiLSTM 94.52 94.74 92.04 93.44

Hamarshe et al. [22] RF 68.9 56.0 80.0 66.0
Ahuja et al. [30] SVC, RF 98.8 98.27 97.65

Kumar et al. [23] LSTM 98.0 98 97 97
Proposed model TCN + DWSR 99.9 1.00 1.00 1.00

5. CONCLUSION AND FUTURE WORK

DDosS is considered one of the most destructive forms of cyber attacks currently, exerting a substantial
impact on the entire network. The application of deep learning within SDN environments presents some
practical challenges. However, deep learning models are compute intensive. To overcome this issue this paper
presents a novel lightweight hybrid approach utilizing dynamic weighted stacking and regularization with TCN
to identify TCP SYN DDoS attacks intended for SDN environments. The CICDD0S2019 dataset includes a
thorough and updated collection of DDoS attack types. For optimum feature selection we integrate Boruta
algorithm with LightGBM algorithm. This approach effectively addresses the common problem of overfitting in
ML/DL models by identifying and selecting only the pertinent features, thereby minimizing the potential for
model intricacy and enhancing the overall performance of generalization. Our model evaluation demonstrated
that the proposed hybrid approach outperforms over the well-known existing techniques for recall, precision, F-
score, and accuracy. The proposed model performance is assessed by considering both validation loss and
accuracy, promising its effectiveness in practical scenarios. The results show a remarkable enhancement in SDN
security, as the lightweight design of our method facilitates real-time application in resource-limited SDN
controllers. The incorporation of Boruta-LightGBM feature selection decreases computational complexity,
hence improving model generalizability. The practical implication of our research is the potential
implementation of effective, low-latency DDoS detection systems in real-world SDN environments, hence
enhancing network resilience against emerging cyber threats. Further, to broaden our research in future we aim
to classify each attack class separately by using a multi-class categorization method and to assess the efficacy of
proposed hybrid model on different datasets.
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