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Abstract 
Optimization problem is one such problem commonly encountered in many area of endeavor, 

obviously due to the need to economize the use of the available resources in many problems. This paper 
presents a population-based meta-heuristic algorithm for solving optimization problems in a continous 
space. The algorithm, combines a form of cross-over technique with a position updating formula based on 
the instantaneous global best position to update each particle position .The algorithm was tested and 
compared with the standard particle swarm optimization (PSO) on many benchmark functions. The result 
suggests a better performance of the algorithm over the later in terms of reaching (attaining) the global 
optimum value (at least for those benchmark functions considered) and the rate of convergence in terms of 
the number of iterations required reaching the optimum values. 
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1. Introduction 

Optimization problems are common problems that arise in many areas of life, from 
science and engineering, to medicine and business among others. These problems arise from 
the need to find the best way to use the available resources (time, store, money etc.,) to meet 
certain life needs. Many of these problems occur naturally.  Examples of this include finding  a 
way  to minimize  the production cost of  items, identifying the  shortest path  connecting two or 
more  places  and  locating  the „highest‟  or „lowest‟ point  in an area.  Some others arise from 
problems that are non naturally optimization problems being transformed or cast into such 
problems. An example is the problem of finding the root of an equation or a system of 
equations. 

Though common and age-long, optimization problems have defiled all attempt to 
produce a single method that could solve them all. In fact it has been shown in [1] that no such 
algorithm could be found. The result of this is a „daily‟ increase in the number of   methods being 
devised for the problem, (each being able to solve only some kinds of the problem but unable to 
handle others) resulting in many optimization methods available from which a user could (and 
indeed responsible to) make a choice of a right (optimization) method for the right optimization 
problem. The directions of attack of optimization problems are usually to develop a new method 
that could solve some optimization problems that the others are unable to solve or at enhancing 
the effectiveness of the existing ones. The other way is to produce a method that has a wide (or 
wider) area of effectiveness or applicability. 

We propose here a method for solving optimization problems in a continuous domain 
capable of locating the global optimum point of a wide varieties of functions. It is a population 
based hybrid method where each agent in the population employs both an evolutionary 
operation and a swarm-based updating method to determine its next move. An hybrid approach 
involves the appropriate merging of two or more methods (or concepts) in a way that they 
strengthen each other: a stronger one possibly taking position where the others are weaker. By 
this device the area of applicability or effectiveness of the hybrid is wider than those of its 
constituent. 

The method proposed is meta-heuristic based.  “A meta-heuristic is an iterative master 
process that guides and modifies the operations of subordinate heuristics to efficiently produce 
high-quality solutions. It may manipulate a complete (or incomplete) single solution or a 
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collection of solutions at each iteration. The subordinate heuristics may be high (or low) level 
procedures or a simple local search or just a construction method” [2]. 

Meta–heuristic approach is preferred because of its beautiful properties: 
1. It does not impose any condition on the objective function (and could be tried on any 

objective function). In order words it i general purpose. 
2. It does not require (the user to supply) starting values unlike the traditional methods 

such as gradient method, or Newton method. 
3. It does not require the gradient of the objective function at any point. This is unlike 

the traditional methods such as the Newton and gradient methods. 
4. It converges faster than these other methods especially on large-scale problems. 

The other methods (deterministic or exact) could hardly solve such problem in a reasonable 
amount of time. 

5. It can escape from a local optimum into which it might fall. 
6. It accommodates nesting or creation of levels of abstraction: a higher level heuristics 

could be devised to control a lower level one. For instance we could have an heuristics to start 
the iterative process and carries the iteration to a level where it could then hand over to another 
heuristics to carry on improvement process on the result. 

Application of meta-heuristic  to optimization problems  has been of old  and seems to 
have come to stay (being currently an active area of research) even though in most cases meta-
heuristic-based methods lack mathematical proof of convergence, (their performances are 
usually confirmed or investigated  through  experimental observations) and provide near-optimal 
solutions in many cases. 

One of the early meta-heuristic devised for optimization problems is the simulated 
annealing (SA) [3]. It is a probabilistic method that uses a move strategy that imitates the 
annealing process of a crystalline solid, where a solid is slowly cooled so that when eventually 
its structure is „frozen‟ this happens at a minimum energy configuration. Another is a tabu 
search [4, 5] that allows a worsening move to be taken where no improving move is available 
and either keeps a record of some solutions termed as tabu, (being solutions  that are forbidden  
to be revisited in subsequent moves) or define them through a set of rules. 

These methods are local search methods that improve on a single solution in each 
round of their iterations by replacing the single solution with its „better‟ neighbour. Local search 
methods, in general, have the tendency of being trapped in local–optimum areas or on plateaus. 
Recent research activity is consequently focused on the population-based meta-heuristics 
resulting into the development of several population-based meta-heuristics, many of which have 
been used to solve real-life optimization problems: timetabling problem [6], vehicle routing 
problem [7] data mining [8], rostering [9], Resource scheduling [10], office space allocation 
problem  [11], Circuit Design [12],  engineering problems [13, 14]. These meta-heuristics come 
in different flavours based on what inspired them. Nature-inspired meta-heuristics are inspired 
by natural processes or phenomena, (laws of nature) such as those from biology (i.e principle of 
evolution), physics and chemistry (chemical laws). Genetic algorithm [15] and differential 
evolution [16] are optimization search methods modeled after the principle of evolution of 
organisms in biology where the best survive in a population. Gravitational search algorithm [17] 
was fashioned after the law of gravitation in physics and intelligent water drops [18] was 
proposed to reflect the swarming of water drops flowing with soil along a bed. In [19] is devised 
the harmony search technique which mimics the improvisation process of a musician. 

A swarm-based meta heuristic optimization methods are inspired by the collective 
behavior of some social-living objects such as birds, fishes. The Particle swarm optimization 
technique (PSO) invented by [20] was devised to mimic the social behavior of flocking of birds 
or fish schooling. The  Ant  colony optimization methods [ACO] [21-23] was devised to imitate 
the behavior of ants in a colony trying  to solve their food problems and Artificial bee colony 
(ABC) optimization algorithm [24] was presented to  mimic  the foraging behavior of honey bees 
in their colony. Symbiotic Organisms search [25] simulates the interactive behavior among 
organisms. Another meta-heuristic method is recorded in [26] regarding monkeys. 

A survey of some of the meta-heuristic algorithms can be found in R.S. Parpinelli and 
H.S. Lopes [27]. Jorge A. and others [28] presented a review of meta-heuristics algorithms 
based on animal behaviour and classify them into classes (swarming, flocking, schooling, herd 
e.t.c) based on their social behavior as applied to traveling saleman problem. Bianchi, Leonora, 
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M Dorigo and others [29] presented a survey on metaheuristic for stochastic combinational 
optimization. 

The next section presents the hybrid method while the section that follows it presents 
some the results obtained on applying the method on some benchmark functions. 
 
 
2. The Hybrid Optimization Method 

To be highly effective, optimization search algorithm in general should have two 
components: the explorative and the exploitative components. The explorative component 
enables the search algorithm to look beyond the neighbourhood of the current point in the 
search space for the optimum point and so enables the algorithm to avoid being trapped in a 
local optimum point. The exploitative component concentrates its search effort on the 
neighbourhood of the current point to avoid missing the global optimum point that might be 
hidden in the neighbourhood of the point. 

The idea employed in this work is to use the evolution technique (precisely the cross-
over and repair operations) together with a swarm based position updating method to produce 
the next position for each particle.  

The evolution part is meant to serve the explorative component of the algorithm and is 

obtained by applying  a cross over operation on two positions      and    , as: 
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superscript denotes the iteration number while the subscript denotes the component number of 
the vector (position) to which it is attached. The dim denotes the dimension of the problem. 

The parameter r, is a real number in [0,1] meant to control the diversity of     from its 

constituents,    ,   . For instance setting r=1 would cause    =    while r=0 would cause it 

about the same as    .  However r is set to 0.5 for the results presented below. In this 

experiment    ,      are each  set to 1. 

The position      is repaired using the rule: 
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To cause the resulting position,       
    

        
   lie within the search space.  The  

              denote  the lower and upper bounds on  the search space along the  j
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dimension  and  rand()  is a random number in the range [0,1]. 
The exploitative component of the algorithm is computed from the formular, 
 

  
    

                     
           

 
This is a swarm based updating  method where each particle ignores its own personal 
experience but uses the global experience of the swarm (i.e the current global best 

position,    ) to determine  its next move. Geometrically the equation might be considered as 

expressing the action of a particle taking a step from its current position (or taking a 

neighbouring position) along the direction          
  .  
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Here    
  =(    

      
            

  ) denotes the position of particle i at time k (i.e  at k
th
  iteration)    

while  rand()  is  a random number  generator  that returns a random number  in the range  [0,1].  
The parameter    is set to 3.5 in this experiment. 

The position,   
   , for the i

th
 particle at time k+1 is then taken as either    or    

depending on the one with  better  fitness value, 
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Diversification (i.e exploration) is further enhanced, by making a particle too close to the current 
global best position to take a new position which is generated randomly: 
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Where              ,       , …..,          ),              ,       , …..,        ). 

The parameter    is used to control this and is set to   =10
-10

 in this experiment. 
With the following parameters defined as below: 
 

         : positive constants. In this experiment   ,    are each set to 1 while     is set to 
3.5. 
dim: the dimension of the problem. 
                  :  geometric distance of    from    

D=[minx1,maxx1]x[minx2,maxx2]x…x[minxdim, maxxdim]:  the domain  of the problem. 
minx =( minx1, minx2, ….., minxdim ),  maxx =( maxx1, maxx2, ….., maxxdim ) 
fitValue( z ) :   the fitness  value  of its  vector  argument  z.  
cRate: a real value in the interval [0,1] controlling the cross-over and was set to 0.5.. 
 : the minimum distance allowed between a particle and the current global position. A 
particle  
whose expected position violates this will become a launcher. A launcher is here 
defined as a   
particle that generate its  next  position  randomly.  In essence   controls the number of  
launchers. All particle will become launchers if   is very large while small number or non 

will be if       

is zero or less than it. The value    =10
-10

 is used in this experiment. 
 
The above is precisely put  in an algorithm  as follows: 

Initialization  step: 

(a) INITIALIZE  randomly  the positions    
     of all the  particles in the population: 

 

   
                               for   i=1,2…,no Of Particles 

 

(b) Set the global best position         to  the particle  position with the best fitnesss 

value 
Iterative step:  
for   k=1,2,……….noOfIterations  do   the following looping 
for  ( i=1  ,….., noOfParticles)  do the following 
{(α)UPDATE   xik  to  obtain xik+1 : 
(a) (i) for ( j=0, 1 … to dim )    do   

                  if ( rand()>cRate)  then             
   

                               else               
           

       

                   (ii) If (   is not in the interval [minxj, maxxj]) then   = minxj + rand()*(maxxj - minxj )  

        (b)  for ( j=0, 1 …  to   dim )    do     

               {  (i)       
                

     
      

                  (ii) If (  is not in the interval [minxj, maxxj ] )  then     = minxj + rand()*(maxxj - minxj)  
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             } 

            (c)  If (fitValue(v) >fitValue(u))  then    set     
             

                   else set   
      ; {where                      and                    } 

            (d) if ( distance(  
   ,     ) <   )  then         

                                      

            (β) UPDATE   global best position  fitness value  : 

            if ( fitValue(   ) < fitValue(  
   ))   then             =   

    

            else        =      

 } 

Output the current global best position,               , and it fitness value, fitValue 

(               ). 

 
 
3. Results and Discussion 

Algorithms can be compared along many directions: simplicity (in terms of structure and 
ease of implementation), performance (in terms of convergence and ability to produce required 
result) and cost (in time and space requirement) for accomplishing the job. While the proposed 
algorithm cannot compete in terms of simplicity with such method as particle swarm optimization 
(PSO) it does favourably, with some evolutionary based algorithms (such as the genetic 
algorithm (GA), Differential Evolution (DE)) or swarm based algorithm such as the artificial Bee 
colony (ABC). Its non- consideration of the velocities of the particles (possibly a disadvantage 
unlike in PSO) makes the need for extra store for its implementation not necessary. However 
we are more interested here on performance (the ability to produce result) rather than these 
other features and for this we need functions on which to test the method. 

Different  functions  have different  features  that tell  on how  difficult  it  is  to  obtain 
their  global optimum. For example: 

a. Inter-relationship of dependent variables: a function is said to be separable if it can 
be written as a sum of functions of just one variable. A non-separable function thus has its 
dependent variables some how tangled together and this makes its global optimum a bit difficult 
to obtain than those of the separable type. 

b. The function‟s dimension: obtaining the global optimum of a high dimensioned 
function is in many cases more difficult than those of lower ones and the computational time it 
takes may be more. 

c. Multi-modal: multi-modal functions are functions with more than one local optimum: 
Methods that have no means of getting out of a local optimum would usually get trapped in such 
point and so return a local optimum for a global optimum. The difficulty of handling such 
problem may be compounded further by the: 

1. Number of such local optimum. Functions with large number of local optimum may 
be a bit more difficult to handle 

2. Distribution of the local optimums (i.e whether randomly distributed or not). Those 
with randomly distributed local optimums may be more difficult to handle 

d. Position of the global optima: for instance whether close to some local optimums, in 
which case a local one may mistakenly be taken for the global one. Global optimum near the 
boundary of the search space can cause problem to a method deficient in boundary searching. 

e. Relative size of the global optimum compared with the whole search space. A very 
small global optimum relative to the search space size may be a bit more difficult to be noticed. 

According to [30], “attempting to design a perfect test set where all the functions are 
present in order to determine an algorithm is better than another for every function is a fruitless 
task. That is the reason why when an algorithm is evaluated, we must look for the kind of 
problems where its performance is good in other to characterize the type of problems for which 
the algorithm is suitable”. 

In view of this, we decided using some benchmark functions for this purpose. Many 
benchmark functions have been devised for testing optimization methods. Some of these are 
unimodal (U), having no local optimum value apart from the global optimum, others are 
multimodal (M), having [many] local optimum. Some are separable (S) while others are non-
separable (N). Having these classification in mind the following benchmark functions were 
selected.  The functions are labeled F0, F1, to F10 for ease of identification. The minimization 
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problem is turned into optimization problem by negating the objective function (i.e min { F(x)}  is 
turned into max{-F(x)} ). 

 

F0: Rosenbrock‟s (UN):               ∑       
               

       
   . Global Min: 0 

at   =1 in [-3,3]
 d
. 

 

F1: De Jong‟s                  ∑   
  

    .   Global  Min:0  at   (0,0,…..,0) in  [-10,10]
 d
. 

 

F2: Schwefel (UN)                    ∑ (∑   
 
   )

  
   . Global Min: 0 at (0,0,..,0) in [-10,10]

 d
. 

 

F3: Eggerate:             
     

                     . Global Min: 0 at (0,0,..,0) in [-2π, 

2π]
2
. 

 

F4:Ackley‟s (MN)                       (    √
 

 
∑   

  
     )        

 

 
∑        

 
     

 
Global  Min:0  at  point (0,0,…..,0) in  [-10,10]

 d
. 

 

F5: Griewank (MN):                  ∑
  

 

    

 
     ∏      

  

√ 
  

   . Global Min: 0 at (0,0,…,0) 

in  [-10,10]
 d

. 
 

F6:                
 

       ∑
  

 

    
 
        ∏      

  
√ 

  
   

 . Global  Min: 10  at  (0,0,…,0) in  [-10,10]
 d
. 

 

F7 Rastrigin (MS):               ∑    
     

              . Global Min: 0 at (1,1,..,1) in 

[-10,10]
 d

. 
 

F8 Schwefel(MS):                          – ∑      √    
 
   . Global Min: 0 at 

  =420.9867 in [-500,500]
 d

. 

 

F9 Styblinski-Tang ():               
 

 
∑    

     
     

       . Optimum. value: 

39.165999*d at   =-2.903534  

 

F10  Dixon-Price   (MS):                         ∑      
         

   .  Global Min:0,   

in  [-10,10]
d
       

 

F11 Zakharov(MS):           ∑   
  

     ∑       
 
        ∑       

 
      .Global Min:0 at 

  =0 in [-5,0]
 d

. 
 

A discussion on the behaviour of some of these functions can be found in [31]. For 
example, Rosenbrock function (F0) has a global optimum inside a long narrow parabolic shaped 
flat valley, with its variables strongly dependent on each other and its gradient not pointing 
towards the optimum. 

Below are presented, results obtained on testing the method on these benchmark 
functions, F0, ..., F11. In all, the average (Ave), average best (Ave. Best) and standard deviation 
(Std. Dev) of the fitness values were taken over 20 runs (with each run made up of 50000 
iterations over the particles unless otherwise stated).The population of the particles (used) is 20. 
Tables 1 and 2 present the output of the algorithm on these functions for dimensions 10, 20, 30 
and 40. 
  The algorithm seems to behave well even as the dimension increases except on 
functions F0, F10. For which it gives a poorer result as the dimension of the function increases 
beyond 20. 

The graph in Figure 1 shows the effect of dimension increase of the functions on the 
performance of the algorithm. It plots the standard-deviation of fitness values against the 
dimensions of the functions with the number of iterations fixed at 50,000.  

Table 1.  Best, Average and Standard Deviation of the Fitness Values for dim=10, and 20 
Func    Dimension:10 Dimension:20 
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 Best Ave St. Dev  Best Ave St.Dev 

F0 0.000000 0.000000 0.000000 0.000298 004646 0.002408 
F1,F2,F3,F4,F5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
F6 10.000000 10.000000 0.000000 10.000000 10.000000 0.000000 
F7,F8 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000 
F9 352.495605 352.495605 0.000038 744.157592 744.157288 0.000137 
F10 0.000000 -0.499999 0.288674 -0.666667 -0.666667 0.000000 
F11 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000 

 
 

Table 2. Best, Average and Standard Deviation of the Fitness Values for dim=30, and 40 
Func       Dimension :30     Dimension :40 
 Best Ave Std. Dev Best Ave Std. Dev 

F0 -0.010184 -5.652472 2.702841 -0.053101 -16.517511 9.381538 
F1 -0.000000 -0.000000 0.000000 -0.000000 0.000000 0.000000 
F2 -0.000000 -0.000000 0.000000 -0.000000 -0.037128 0.161281 
F3,F4,F5 -0.000000 -0.000000 0.000000 -0.000000 0.000000 0.000000 
F6 10.000000 10.000000 0.000000 10.000000 10.000000 0.000000 
F7 -0.000000 -0.000000 0.000000 0.000000 0.000000 0.000000 
F8 -0.003906 -0.003906 0.000000 -0.009766 -0.009766 0.000000 
F9 1135.81958 1135.81958 0.000217 1527.481934 1527.481689 0.000345 
F10 -0.666667 -0.666667 0.000000 -0.666667 -0.666667 0.000000 
F11 -0.000000 -0.000000 0.000000 0.000000 0.000000 0.000000 

 
 

 
Dimension 

 
Figure 1. A Plot of Standard Deviation of Best Fitness Values Against the Dimensions of the 

Functions 
 
 

The algorithm returns for F0 the value 0.053101 instead of the exact value 0 at 
dimension 40 with standard deviation 9.381538,thus suggesting a need for more iterations  than 
50000 used.  A trial of 6000 iterations for the function produced average best -0.005736 with 
standard deviation   8.687126. 

For function F10  the  algorithm failed to produce  the global optimum 0  for dimension  
greater than 10  but hangs  on to the average best 0.6666670 for the higher dimension  and with 
standard deviation 0. 

The graph in Figure 2 below presents a plot of the standard-deviation of fitness values 
against the number of iterations used to obtain them with the functions‟ dimension fixed at 10. 
The standard deviation shows how dispersed, the values of the fitness values are, with respect 
to their mean. It shows the spread of the fitness values. Consequently smaller standard 
deviation shows smaller variation from the mean so that we might say approximately that the 
algorithm converging about the mean (when the standard deviation approaches zero as the 
number of iterations increases). 
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Number of iterations 

 
Figure 2. A Plot of Standard Deviation of Best Fitness Values Against Number of Iterations for 

Functions, Dimension=10. 
 
 

Apart from F8 (whose convergence rate joins the rest only after 2000 iterations) the 
others appear to require fewer iterations to produce the solution.  F8 is a multi-modal functions 
whose number of local minimum increases exponentially and this may possibly be the reason. 

Table 3 below contains the result when the population size is varied with the dimension 
fixed at 20. The population size would certainly affect the amount of memory and computational 
time the algorithm requires to produce the global optimum and so worth considering. The sizes 
5, 10 and 15, 20 were tried as the graph in Figure 3 shows. Table 3, 1 contains the result for 
size 5, 10 and 20]. The graph is a plot of standard deviation of the fitness values against the 
population.  Except for function F0 the population size appears not to affect the algorithm much 
at least on those functions.  

Table 4 below, compares the result of this algorithm, denoted ESH, (standing for  
Evolution Swarm Hybrid) with those of genetic algorithm (GA), particle swarm optimization 
(PSO), differential evolution (DE) and artificial bee colony (ABC) as recorded  in [30] for 
functions‟ dimension 30. 

 
 

 
Population size 

 

Figure 3. A Plot of Standard Deviation of Best Fitness Values Against Population Size for 
Dimension= 20 

 
 

Table 3.  Best, Average and Standard Deviation of the Fitness Values for Population=5, and 10 
at Dimension: 10 

Func    population:5        Dimension 20 population:10   Dimension:20 
 Best Ave St. Dev  Best Ave St.Dev 

F0 -0.000116 -9.326571 5.166404 -0.001510 -1.188875 1.154142 
F1,F2,F3,F4,F5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
F6 10.000000 9.945153 0.239073 10.000000 10.000000 0.000000 
F7,F8 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000 
F9 744.157471 744.157288 0.000117 744.157592 744.157288 0.000100 
F10 -0.666667 -0.666667 0.000000 -0.666667 -0.666667 0.000000 
F11 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000 
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Table 4. Comparison of Result of the Algorithm with GA, PSO, DE, ABC As Lifted from [30].  
Dimension: 30 

Fun Algorithm Ave. Best Std. Dev  Fun Algorithm Ave. Best Std. Dev 

F0 ESH 0.010184 2.702841 F7 ESH,ABC 0 0 
GA 1.96E+05 3.85E+04 GA 52.92259 4.564860 
PSO 15.088617 24.170196 PSO 43.9771369 11.728676 
DE 18.203938 5.036187 DE 11.716728 2.538172 
ABC 0.0887707 0.077390 F8 ESH -0.003906 0.000000 

F1 ESH, PSO, 
DE, ABC 

0 0 GA -11593.4 93.254240 

GA 1.11E+03 74.214474 PSO -6909.1359 457.957783 
F2 ESH,PSO, 

DE, ABC 
0 0 DE -10266 521.849292 

GA 7.40E+03 1.14E+03 ABC -1256.487 0 
F4 ESH,DE,ABC 0 0 F10 ESH 0.66666667 0 

GA 14.67178 0.178141  GA 1.22E+03 2.66E+02 
PSO 0.16462236 0.493867  PSO 0.66666667 E-8 

F5 ESH,PSO,DE 0 0  DE 0.66666667 E-9 
GA 0.013355 0.004532  ABC 0 0 
ABC 0.0002476 0.000183 F11 ESH,ABC 0 0 

  GA 10.63346 1.161455 
 PSO 0.1739118 0.020808 

  DE 0.0014792 0.002958 

 
 

The dimension of the functions was 30 as in the article. The table shows in bold 
(letters), those methods best for each of the functions. The algorithm is among those best 
methods for these functions except for F11 where it surrenders to ABC and follows PSO and DE 
with average best value 0.66666667. 
 
 
4. Conclusion  

A new meta-heuristic method for optimization problem in a continous space is 
presented. To determine the position of each particle at each iterative step, the method   
compares the offspring obtained from a cross over of the instantaneous global best position  

namely     and u=        
           

    (i.e a position obtained  by taking the linear combination 

of this global best position  and the local best position of the particle) with the position   

  
                                

    , obtained when the particle‟s current position is 

incremented  by  a factor of the deviation  of the  current position of the particle from the current 
global position. The better of the two is taken for the particle‟s next position. The algorithm was 
tested over some benchmark functions with dimension 10, 20, 30, 40 and the results obtain are 
presented on the table above. Based on the results the algorithm appears to have a better 
success rate of reaching the global optimum for some functions (and with fewer number of 
iterations) than the popular algorithms such as the PSO, GA, DE, ABC. 
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