
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 3, No. 1, July 2016, pp. 164 ~ 173
DOI: 10.11591/ijeecs.v3.i1.pp164-173 164

Received February 2, 2016; Revised May 25, 2016; Accepted June 10, 2016

An Algorithm for Continuous Optimization Problems
using Hybrid Particle Updating Method

PB Shola, LB Asaju

Department of Computer Science, University of Ilorin, Ilorin, Nigeria
Corresponding author, e-mail: shola.bp@unilorin.edu.ng, lbasaju@unilorin.edu.ng

Abstract
Optimization problem is one such problem commonly encountered in many area of endeavor,

obviously due to the need to economize the use of the available resources in many problems. This paper
presents a population-based meta-heuristic algorithm for solving optimization problems in a continous
space. The algorithm, combines a form of cross-over technique with a position updating formula based on
the instantaneous global best position to update each particle position .The algorithm was tested and
compared with the standard particle swarm optimization (PSO) on many benchmark functions. The result
suggests a better performance of the algorithm over the later in terms of reaching (attaining) the global
optimum value (at least for those benchmark functions considered) and the rate of convergence in terms of
the number of iterations required reaching the optimum values.

Keywords: population, continous, optimization, meta-heuristics, search.

Copyright © 2016 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

Optimization problems are common problems that arise in many areas of life, from
science and engineering, to medicine and business among others. These problems arise from
the need to find the best way to use the available resources (time, store, money etc.,) to meet
certain life needs. Many of these problems occur naturally. Examples of this include finding a
way to minimize the production cost of items, identifying the shortest path connecting two or
more places and locating the „highest‟ or „lowest‟ point in an area. Some others arise from
problems that are non naturally optimization problems being transformed or cast into such
problems. An example is the problem of finding the root of an equation or a system of
equations.

Though common and age-long, optimization problems have defiled all attempt to
produce a single method that could solve them all. In fact it has been shown in [1] that no such
algorithm could be found. The result of this is a „daily‟ increase in the number of methods being
devised for the problem, (each being able to solve only some kinds of the problem but unable to
handle others) resulting in many optimization methods available from which a user could (and
indeed responsible to) make a choice of a right (optimization) method for the right optimization
problem. The directions of attack of optimization problems are usually to develop a new method
that could solve some optimization problems that the others are unable to solve or at enhancing
the effectiveness of the existing ones. The other way is to produce a method that has a wide (or
wider) area of effectiveness or applicability.

We propose here a method for solving optimization problems in a continuous domain
capable of locating the global optimum point of a wide varieties of functions. It is a population
based hybrid method where each agent in the population employs both an evolutionary
operation and a swarm-based updating method to determine its next move. An hybrid approach
involves the appropriate merging of two or more methods (or concepts) in a way that they
strengthen each other: a stronger one possibly taking position where the others are weaker. By
this device the area of applicability or effectiveness of the hybrid is wider than those of its
constituent.

The method proposed is meta-heuristic based. “A meta-heuristic is an iterative master
process that guides and modifies the operations of subordinate heuristics to efficiently produce
high-quality solutions. It may manipulate a complete (or incomplete) single solution or a

IJEECS ISSN: 2502-4752

An Algorithm for Continuous Optimization Problems using Hybrid… (PB Shola)

165

collection of solutions at each iteration. The subordinate heuristics may be high (or low) level
procedures or a simple local search or just a construction method” [2].

Meta–heuristic approach is preferred because of its beautiful properties:
1. It does not impose any condition on the objective function (and could be tried on any

objective function). In order words it i general purpose.
2. It does not require (the user to supply) starting values unlike the traditional methods

such as gradient method, or Newton method.
3. It does not require the gradient of the objective function at any point. This is unlike

the traditional methods such as the Newton and gradient methods.
4. It converges faster than these other methods especially on large-scale problems.

The other methods (deterministic or exact) could hardly solve such problem in a reasonable
amount of time.

5. It can escape from a local optimum into which it might fall.
6. It accommodates nesting or creation of levels of abstraction: a higher level heuristics

could be devised to control a lower level one. For instance we could have an heuristics to start
the iterative process and carries the iteration to a level where it could then hand over to another
heuristics to carry on improvement process on the result.

Application of meta-heuristic to optimization problems has been of old and seems to
have come to stay (being currently an active area of research) even though in most cases meta-
heuristic-based methods lack mathematical proof of convergence, (their performances are
usually confirmed or investigated through experimental observations) and provide near-optimal
solutions in many cases.

One of the early meta-heuristic devised for optimization problems is the simulated
annealing (SA) [3]. It is a probabilistic method that uses a move strategy that imitates the
annealing process of a crystalline solid, where a solid is slowly cooled so that when eventually
its structure is „frozen‟ this happens at a minimum energy configuration. Another is a tabu
search [4, 5] that allows a worsening move to be taken where no improving move is available
and either keeps a record of some solutions termed as tabu, (being solutions that are forbidden
to be revisited in subsequent moves) or define them through a set of rules.

These methods are local search methods that improve on a single solution in each
round of their iterations by replacing the single solution with its „better‟ neighbour. Local search
methods, in general, have the tendency of being trapped in local–optimum areas or on plateaus.
Recent research activity is consequently focused on the population-based meta-heuristics
resulting into the development of several population-based meta-heuristics, many of which have
been used to solve real-life optimization problems: timetabling problem [6], vehicle routing
problem [7] data mining [8], rostering [9], Resource scheduling [10], office space allocation
problem [11], Circuit Design [12], engineering problems [13, 14]. These meta-heuristics come
in different flavours based on what inspired them. Nature-inspired meta-heuristics are inspired
by natural processes or phenomena, (laws of nature) such as those from biology (i.e principle of
evolution), physics and chemistry (chemical laws). Genetic algorithm [15] and differential
evolution [16] are optimization search methods modeled after the principle of evolution of
organisms in biology where the best survive in a population. Gravitational search algorithm [17]
was fashioned after the law of gravitation in physics and intelligent water drops [18] was
proposed to reflect the swarming of water drops flowing with soil along a bed. In [19] is devised
the harmony search technique which mimics the improvisation process of a musician.

A swarm-based meta heuristic optimization methods are inspired by the collective
behavior of some social-living objects such as birds, fishes. The Particle swarm optimization
technique (PSO) invented by [20] was devised to mimic the social behavior of flocking of birds
or fish schooling. The Ant colony optimization methods [ACO] [21-23] was devised to imitate
the behavior of ants in a colony trying to solve their food problems and Artificial bee colony
(ABC) optimization algorithm [24] was presented to mimic the foraging behavior of honey bees
in their colony. Symbiotic Organisms search [25] simulates the interactive behavior among
organisms. Another meta-heuristic method is recorded in [26] regarding monkeys.

A survey of some of the meta-heuristic algorithms can be found in R.S. Parpinelli and
H.S. Lopes [27]. Jorge A. and others [28] presented a review of meta-heuristics algorithms
based on animal behaviour and classify them into classes (swarming, flocking, schooling, herd
e.t.c) based on their social behavior as applied to traveling saleman problem. Bianchi, Leonora,

 ISSN: 2502-4752

 IJEECS Vol. 3, No. 1, July 2016 : 164 – 173

166

M Dorigo and others [29] presented a survey on metaheuristic for stochastic combinational
optimization.

The next section presents the hybrid method while the section that follows it presents
some the results obtained on applying the method on some benchmark functions.

2. The Hybrid Optimization Method

To be highly effective, optimization search algorithm in general should have two
components: the explorative and the exploitative components. The explorative component
enables the search algorithm to look beyond the neighbourhood of the current point in the
search space for the optimum point and so enables the algorithm to avoid being trapped in a
local optimum point. The exploitative component concentrates its search effort on the
neighbourhood of the current point to avoid missing the global optimum point that might be
hidden in the neighbourhood of the point.

The idea employed in this work is to use the evolution technique (precisely the cross-
over and repair operations) together with a swarm based position updating method to produce
the next position for each particle.

The evolution part is meant to serve the explorative component of the algorithm and is

obtained by applying a cross over operation on two positions and , as:

 {

To obtain

 .

Here = (

), denotes the global best position (i.e the best

position so far encountered during the movement of all the particles, up to the k
th
 iteration) and

 (i.e is a linear combination of the local best position,

 =

(

) and the global best position , with weights ,). The local best

position,
 is the best position so far attained by particle i up to the k

th
 iteration. The

superscript denotes the iteration number while the subscript denotes the component number of
the vector (position) to which it is attached. The dim denotes the dimension of the problem.

The parameter r, is a real number in [0,1] meant to control the diversity of from its

constituents, , . For instance setting r=1 would cause = while r=0 would cause it

about the same as . However r is set to 0.5 for the results presented below. In this

experiment , are each set to 1.

The position is repaired using the rule:

 {

 ()

To cause the resulting position,

 lie within the search space. The

 denote the lower and upper bounds on the search space along the j
th

dimension and rand() is a random number in the range [0,1].
The exploitative component of the algorithm is computed from the formular,

This is a swarm based updating method where each particle ignores its own personal
experience but uses the global experience of the swarm (i.e the current global best

position,) to determine its next move. Geometrically the equation might be considered as

expressing the action of a particle taking a step from its current position (or taking a

neighbouring position) along the direction
 .

IJEECS ISSN: 2502-4752

An Algorithm for Continuous Optimization Problems using Hybrid… (PB Shola)

167

Here
 =(

) denotes the position of particle i at time k (i.e at k
th
 iteration)

while rand() is a random number generator that returns a random number in the range [0,1].
The parameter is set to 3.5 in this experiment.

The position,
 , for the i

th
 particle at time k+1 is then taken as either or

depending on the one with better fitness value,

 ={

Diversification (i.e exploration) is further enhanced, by making a particle too close to the current
global best position to take a new position which is generated randomly:

 {

 ()

Where , , …..,), , , …..,).

The parameter is used to control this and is set to =10
-10

 in this experiment.
With the following parameters defined as below:

 : positive constants. In this experiment , are each set to 1 while is set to
3.5.
dim: the dimension of the problem.
 : geometric distance of from

D=[minx1,maxx1]x[minx2,maxx2]x…x[minxdim, maxxdim]: the domain of the problem.
minx =(minx1, minx2, ….., minxdim), maxx =(maxx1, maxx2, ….., maxxdim)
fitValue(z) : the fitness value of its vector argument z.
cRate: a real value in the interval [0,1] controlling the cross-over and was set to 0.5..
 : the minimum distance allowed between a particle and the current global position. A
particle
whose expected position violates this will become a launcher. A launcher is here
defined as a
particle that generate its next position randomly. In essence controls the number of
launchers. All particle will become launchers if is very large while small number or non

will be if

is zero or less than it. The value =10
-10

 is used in this experiment.

The above is precisely put in an algorithm as follows:

Initialization step:

(a) INITIALIZE randomly the positions
 of all the particles in the population:

 for i=1,2…,no Of Particles

(b) Set the global best position to the particle position with the best fitnesss

value
Iterative step:
for k=1,2,……….noOfIterations do the following looping
for (i=1 ,….., noOfParticles) do the following
{(α)UPDATE xik to obtain xik+1 :
(a) (i) for (j=0, 1 … to dim) do

 if (rand()>cRate) then

 else

 (ii) If (is not in the interval [minxj, maxxj]) then = minxj + rand()*(maxxj - minxj)

 (b) for (j=0, 1 … to dim) do

 { (i)

 (ii) If (is not in the interval [minxj, maxxj]) then = minxj + rand()*(maxxj - minxj)

 ISSN: 2502-4752

 IJEECS Vol. 3, No. 1, July 2016 : 164 – 173

168

 }

 (c) If (fitValue(v) >fitValue(u)) then set

 else set
 ; {where and }

 (d) if (distance(
 ,) <) then

 (β) UPDATE global best position fitness value :

 if (fitValue() < fitValue(
)) then =

 else =

 }

Output the current global best position, , and it fitness value, fitValue

().

3. Results and Discussion

Algorithms can be compared along many directions: simplicity (in terms of structure and
ease of implementation), performance (in terms of convergence and ability to produce required
result) and cost (in time and space requirement) for accomplishing the job. While the proposed
algorithm cannot compete in terms of simplicity with such method as particle swarm optimization
(PSO) it does favourably, with some evolutionary based algorithms (such as the genetic
algorithm (GA), Differential Evolution (DE)) or swarm based algorithm such as the artificial Bee
colony (ABC). Its non- consideration of the velocities of the particles (possibly a disadvantage
unlike in PSO) makes the need for extra store for its implementation not necessary. However
we are more interested here on performance (the ability to produce result) rather than these
other features and for this we need functions on which to test the method.

Different functions have different features that tell on how difficult it is to obtain
their global optimum. For example:

a. Inter-relationship of dependent variables: a function is said to be separable if it can
be written as a sum of functions of just one variable. A non-separable function thus has its
dependent variables some how tangled together and this makes its global optimum a bit difficult
to obtain than those of the separable type.

b. The function‟s dimension: obtaining the global optimum of a high dimensioned
function is in many cases more difficult than those of lower ones and the computational time it
takes may be more.

c. Multi-modal: multi-modal functions are functions with more than one local optimum:
Methods that have no means of getting out of a local optimum would usually get trapped in such
point and so return a local optimum for a global optimum. The difficulty of handling such
problem may be compounded further by the:

1. Number of such local optimum. Functions with large number of local optimum may
be a bit more difficult to handle

2. Distribution of the local optimums (i.e whether randomly distributed or not). Those
with randomly distributed local optimums may be more difficult to handle

d. Position of the global optima: for instance whether close to some local optimums, in
which case a local one may mistakenly be taken for the global one. Global optimum near the
boundary of the search space can cause problem to a method deficient in boundary searching.

e. Relative size of the global optimum compared with the whole search space. A very
small global optimum relative to the search space size may be a bit more difficult to be noticed.

According to [30], “attempting to design a perfect test set where all the functions are
present in order to determine an algorithm is better than another for every function is a fruitless
task. That is the reason why when an algorithm is evaluated, we must look for the kind of
problems where its performance is good in other to characterize the type of problems for which
the algorithm is suitable”.

In view of this, we decided using some benchmark functions for this purpose. Many
benchmark functions have been devised for testing optimization methods. Some of these are
unimodal (U), having no local optimum value apart from the global optimum, others are
multimodal (M), having [many] local optimum. Some are separable (S) while others are non-
separable (N). Having these classification in mind the following benchmark functions were
selected. The functions are labeled F0, F1, to F10 for ease of identification. The minimization

IJEECS ISSN: 2502-4752

An Algorithm for Continuous Optimization Problems using Hybrid… (PB Shola)

169

problem is turned into optimization problem by negating the objective function (i.e min { F(x)} is
turned into max{-F(x)}).

F0: Rosenbrock‟s (UN): ∑

 . Global Min: 0

at =1 in [-3,3]
 d
.

F1: De Jong‟s ∑

 . Global Min:0 at (0,0,…..,0) in [-10,10]
 d
.

F2: Schwefel (UN) ∑ (∑

)

 . Global Min: 0 at (0,0,..,0) in [-10,10]

 d
.

F3: Eggerate:

 . Global Min: 0 at (0,0,..,0) in [-2π,

2π]
2
.

F4:Ackley‟s (MN) (√

∑

)

∑

Global Min:0 at point (0,0,…..,0) in [-10,10]

 d
.

F5: Griewank (MN): ∑

 ∏

√

 . Global Min: 0 at (0,0,…,0)

in [-10,10]
 d

.

F6:

 ∑

 ∏

√

 . Global Min: 10 at (0,0,…,0) in [-10,10]
 d
.

F7 Rastrigin (MS): ∑

 . Global Min: 0 at (1,1,..,1) in

[-10,10]
 d

.

F8 Schwefel(MS): – ∑ √

 . Global Min: 0 at

 =420.9867 in [-500,500]
 d

.

F9 Styblinski-Tang ():

∑

 . Optimum. value:

39.165999*d at =-2.903534

F10 Dixon-Price (MS): ∑

 . Global Min:0,

in [-10,10]
d

F11 Zakharov(MS): ∑

 ∑

 ∑

 .Global Min:0 at

 =0 in [-5,0]
 d

.

A discussion on the behaviour of some of these functions can be found in [31]. For
example, Rosenbrock function (F0) has a global optimum inside a long narrow parabolic shaped
flat valley, with its variables strongly dependent on each other and its gradient not pointing
towards the optimum.

Below are presented, results obtained on testing the method on these benchmark
functions, F0, ..., F11. In all, the average (Ave), average best (Ave. Best) and standard deviation
(Std. Dev) of the fitness values were taken over 20 runs (with each run made up of 50000
iterations over the particles unless otherwise stated).The population of the particles (used) is 20.
Tables 1 and 2 present the output of the algorithm on these functions for dimensions 10, 20, 30
and 40.
 The algorithm seems to behave well even as the dimension increases except on
functions F0, F10. For which it gives a poorer result as the dimension of the function increases
beyond 20.

The graph in Figure 1 shows the effect of dimension increase of the functions on the
performance of the algorithm. It plots the standard-deviation of fitness values against the
dimensions of the functions with the number of iterations fixed at 50,000.

Table 1. Best, Average and Standard Deviation of the Fitness Values for dim=10, and 20
Func Dimension:10 Dimension:20

 ISSN: 2502-4752

 IJEECS Vol. 3, No. 1, July 2016 : 164 – 173

170

 Best Ave St. Dev Best Ave St.Dev

F0 0.000000 0.000000 0.000000 0.000298 004646 0.002408
F1,F2,F3,F4,F5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
F6 10.000000 10.000000 0.000000 10.000000 10.000000 0.000000
F7,F8 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000
F9 352.495605 352.495605 0.000038 744.157592 744.157288 0.000137
F10 0.000000 -0.499999 0.288674 -0.666667 -0.666667 0.000000
F11 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000

Table 2. Best, Average and Standard Deviation of the Fitness Values for dim=30, and 40
Func Dimension :30 Dimension :40
 Best Ave Std. Dev Best Ave Std. Dev

F0 -0.010184 -5.652472 2.702841 -0.053101 -16.517511 9.381538
F1 -0.000000 -0.000000 0.000000 -0.000000 0.000000 0.000000
F2 -0.000000 -0.000000 0.000000 -0.000000 -0.037128 0.161281
F3,F4,F5 -0.000000 -0.000000 0.000000 -0.000000 0.000000 0.000000
F6 10.000000 10.000000 0.000000 10.000000 10.000000 0.000000
F7 -0.000000 -0.000000 0.000000 0.000000 0.000000 0.000000
F8 -0.003906 -0.003906 0.000000 -0.009766 -0.009766 0.000000
F9 1135.81958 1135.81958 0.000217 1527.481934 1527.481689 0.000345
F10 -0.666667 -0.666667 0.000000 -0.666667 -0.666667 0.000000
F11 -0.000000 -0.000000 0.000000 0.000000 0.000000 0.000000

Dimension

Figure 1. A Plot of Standard Deviation of Best Fitness Values Against the Dimensions of the

Functions

The algorithm returns for F0 the value 0.053101 instead of the exact value 0 at
dimension 40 with standard deviation 9.381538,thus suggesting a need for more iterations than
50000 used. A trial of 6000 iterations for the function produced average best -0.005736 with
standard deviation 8.687126.

For function F10 the algorithm failed to produce the global optimum 0 for dimension
greater than 10 but hangs on to the average best 0.6666670 for the higher dimension and with
standard deviation 0.

The graph in Figure 2 below presents a plot of the standard-deviation of fitness values
against the number of iterations used to obtain them with the functions‟ dimension fixed at 10.
The standard deviation shows how dispersed, the values of the fitness values are, with respect
to their mean. It shows the spread of the fitness values. Consequently smaller standard
deviation shows smaller variation from the mean so that we might say approximately that the
algorithm converging about the mean (when the standard deviation approaches zero as the
number of iterations increases).

0

2

4

6

8

10

10 20 30 40

F0

F1

F2

F3

F4

F5

F6

F7

IJEECS ISSN: 2502-4752

An Algorithm for Continuous Optimization Problems using Hybrid… (PB Shola)

171

Number of iterations

Figure 2. A Plot of Standard Deviation of Best Fitness Values Against Number of Iterations for

Functions, Dimension=10.

Apart from F8 (whose convergence rate joins the rest only after 2000 iterations) the
others appear to require fewer iterations to produce the solution. F8 is a multi-modal functions
whose number of local minimum increases exponentially and this may possibly be the reason.

Table 3 below contains the result when the population size is varied with the dimension
fixed at 20. The population size would certainly affect the amount of memory and computational
time the algorithm requires to produce the global optimum and so worth considering. The sizes
5, 10 and 15, 20 were tried as the graph in Figure 3 shows. Table 3, 1 contains the result for
size 5, 10 and 20]. The graph is a plot of standard deviation of the fitness values against the
population. Except for function F0 the population size appears not to affect the algorithm much
at least on those functions.

Table 4 below, compares the result of this algorithm, denoted ESH, (standing for
Evolution Swarm Hybrid) with those of genetic algorithm (GA), particle swarm optimization
(PSO), differential evolution (DE) and artificial bee colony (ABC) as recorded in [30] for
functions‟ dimension 30.

Population size

Figure 3. A Plot of Standard Deviation of Best Fitness Values Against Population Size for
Dimension= 20

Table 3. Best, Average and Standard Deviation of the Fitness Values for Population=5, and 10
at Dimension: 10

Func population:5 Dimension 20 population:10 Dimension:20
 Best Ave St. Dev Best Ave St.Dev

F0 -0.000116 -9.326571 5.166404 -0.001510 -1.188875 1.154142
F1,F2,F3,F4,F5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
F6 10.000000 9.945153 0.239073 10.000000 10.000000 0.000000
F7,F8 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000
F9 744.157471 744.157288 0.000117 744.157592 744.157288 0.000100
F10 -0.666667 -0.666667 0.000000 -0.666667 -0.666667 0.000000
F11 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000

0

5

10

15

20

25

30

35

40

500 1000 2000 5000 10000 20000 30000 40000

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

0

1

2

3

4

5

6

5 10 15 20

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

 ISSN: 2502-4752

 IJEECS Vol. 3, No. 1, July 2016 : 164 – 173

172

Table 4. Comparison of Result of the Algorithm with GA, PSO, DE, ABC As Lifted from [30].
Dimension: 30

Fun Algorithm Ave. Best Std. Dev Fun Algorithm Ave. Best Std. Dev

F0 ESH 0.010184 2.702841 F7 ESH,ABC 0 0
GA 1.96E+05 3.85E+04 GA 52.92259 4.564860
PSO 15.088617 24.170196 PSO 43.9771369 11.728676
DE 18.203938 5.036187 DE 11.716728 2.538172
ABC 0.0887707 0.077390 F8 ESH -0.003906 0.000000

F1 ESH, PSO,
DE, ABC

0 0 GA -11593.4 93.254240

GA 1.11E+03 74.214474 PSO -6909.1359 457.957783
F2 ESH,PSO,

DE, ABC
0 0 DE -10266 521.849292

GA 7.40E+03 1.14E+03 ABC -1256.487 0
F4 ESH,DE,ABC 0 0 F10 ESH 0.66666667 0

GA 14.67178 0.178141 GA 1.22E+03 2.66E+02
PSO 0.16462236 0.493867 PSO 0.66666667 E-8

F5 ESH,PSO,DE 0 0 DE 0.66666667 E-9
GA 0.013355 0.004532 ABC 0 0
ABC 0.0002476 0.000183 F11 ESH,ABC 0 0

 GA 10.63346 1.161455
 PSO 0.1739118 0.020808

 DE 0.0014792 0.002958

The dimension of the functions was 30 as in the article. The table shows in bold
(letters), those methods best for each of the functions. The algorithm is among those best
methods for these functions except for F11 where it surrenders to ABC and follows PSO and DE
with average best value 0.66666667.

4. Conclusion

A new meta-heuristic method for optimization problem in a continous space is
presented. To determine the position of each particle at each iterative step, the method
compares the offspring obtained from a cross over of the instantaneous global best position

namely and u=

 (i.e a position obtained by taking the linear combination

of this global best position and the local best position of the particle) with the position

 , obtained when the particle‟s current position is

incremented by a factor of the deviation of the current position of the particle from the current
global position. The better of the two is taken for the particle‟s next position. The algorithm was
tested over some benchmark functions with dimension 10, 20, 30, 40 and the results obtain are
presented on the table above. Based on the results the algorithm appears to have a better
success rate of reaching the global optimum for some functions (and with fewer number of
iterations) than the popular algorithms such as the PSO, GA, DE, ABC.

References
[1] Wolpert DH, Macready WG. No free lunch theorem for optimization. IEEE Trans. Evol. Comput.

1997; 1: 67-82.
[2] Voss S, Osman IH, Roucairol C. Meta-Heuristics: Advances and Trends in Local Search Paradigms

for optimization. Norwell. MA, USA: Kluwer Academic Publishers. 1999.
[3] Kirkpatrick, S Gelett CD, Vecchi MP. Optimization by simulated annealing Science. 1983; 220: 621-

630.
[4] Fred Glover F. Tabu-search Part 1. ORSA Journal on computing. 1989; 1(2): 190-206.
[5] Glover F. Tabu-search Part 2. ORSA Journal on computing. 1990; 2(1): 4-32.
[6] Manar Hosny, Shameen Fatima. Survey of genetic algorithms for university timetabling problem.

International conference on future information technology IPCSIT, IACSIT Press. Singapore. 2011;
13.

[7] Noora Ham Abdulmajeed, Masri Ayob. A firework Algorithm for solving capacitated vehicle routing
problem. International Journal of Advancements in computing Technology (IJACT). 2014; 6(1).

[8] Sousa T, Silva A, Neves A. Particle Swarm based Data mining algorithms for classification. Parallel
computing. 2004; 30: 767-783.

IJEECS ISSN: 2502-4752

An Algorithm for Continuous Optimization Problems using Hybrid… (PB Shola)

173

[9] Burke EK, Curtois, Post G, Qu R, Veltman B. A hybrid heuristic ordering and variable neighbourhood
search for the nurse rostering problem. European Journal of Operation Research. 2008; 188: 330-
341.

[10] Emergency Resource Scheduling Problem based on improved Particle Swarm Optimization.
TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014; 12(6): 4609-4616.

[11] Öżgϋ ÚLKER. Office space allocation by using mathematical programming and meta-heuristics. PhD
Thesis. University of Nottingham; 2013.

[12] Xuesong Yan, et al. Demonstration of the application of orthogonal Particle Swarm optimization to
Circuit design. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(6): 2926-2932.

[13] Hadi Eskandar, et al. Water cycle: A novel metaheuristic optimization method for solving constrained
engineering optimization problems. Computers and structures. 2012: 151-166.

[14] Yuxin Sun, Qinghua, Xuesong Yan. An improved constrained engineering optimization design
algorithm. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014; 12(11): 7079-7978

[15] Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to
biology, control and artificial intelligence. University of Michigan Press. 1975.

[16] Storn R, Price KV. Differential evolution: A simple and efficient heuristic for global optimization over
continuous spaces. J. Global Optimization. 1997: 11(4): 341-359.

[17] Rashedi E, et al. A Gravitational Search Algorithm. Information Sciences. 2009; 179: 2232-2248.
[18] Hamed Shah-Hosseini. Problem solving by intelligent water drops. Evolutionary Computation. CEC

2007, IEEE Congress. 2007: 3226-3231.
[19] Green ZW, et al. A new heuristic optimization algorithm: Harmony search. Simulation. 2001; 76: 60-

68.
[20] Kennedy J, Eberhart J. Particle swarm optimization. In Proc. IEEE International Conference Neural

Networks. Piscataway, NJ. 1995; 4: 1942-1948.
[21] Dorigo M, Gambardella LM. Ant colony System: a cooperative learning approach to the travelling

salesman problem. IEEE Transactions on Evolutionary computation. 1997; 1(1): 53-66.
[22] Socha K, Dorigo M. Ant colony optimization for continous domains. European Journal of operation

research. 2008; 185(3): 1155-1173.
[23] Christian B. Ant colony optimization: Introduction and recent trends. Physics of Life Reviews 2. 2005:

353-375.
[24] Karaboga, Bahriye Basturk. A powerful and efficient algorithms for numerical function optimization,

artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007; 39: 459-471.

[25] Cheng Min-Yuang, Prayogo Doddy. Symbiotic Organisms search: A new metaheuristic optimization
algorithm. Computers and Structures. 2014; 139: 98-112.

[26] K Lenin, B Ravindhranath Reddy, M Suryakalavathi. Modified Monkey optimization Algorithm for
solving optimal Reactive Power Dispatch Problem. Indonesian Journal of Electrical Engineering and
informatics (IJEEI). 2015; 3(2): 55-62.

[27] Parpinelli RS, Lopes HS. New inspirations in swarm intelligence: A survey. International Journal of
Bio- inspired computation. 2011; 3(1): 1-15.

[28] Jorge A, et al. Meta-Heuristics Algorithms based on the Grouping of animals by Social behavior for
the travelling saleman problem. International Journal of Combinational optimization Problems and
Informatics. 2012; 3(3): 104-123.

[29] Bianchi, Leonora, M Dorigo, et al. A survey on metaheuristic for stochastic combinational
optimization. Natural computing: an international Journal. 2009; 8(2): 239-289.

[30] Dervis Karaboga, Bahriye Akay. Comparative study of Artificial Bee Colony Algorithm. Applied
Mathematics and computation. 2009; 214: 108-132.

[31] Dervis Karaboga, Bahriye Basturk. A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. J. Glob optim. 2007; 39: 459-471.

