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 The efficiency of a load management system in terms of its energy 
performance index (EPI) depends on its capacity to enhance the reliability, 

resilience, and cost effectiveness of the existing system. Artificial 
intelligence (AI) is crucial in this shift from classical to AI-based power 
system planning, optimizing renewable energy (RE) and reducing grid-
stress. On the other hand, proper placement of resources is essential to 
achieve benefits and reduce transmission losses. Utility sectors of different 
states has revealed that in certain areas amongst different type of loads, 
domestic loads accounts for a substantial proportion of energy consumption. 
Therefore, the present work deals with optimum load scheduling, integration 

of RE, energy storage (ES) and proposed tri-optimized-tariff (TOT) for 
prosumers. We have found that the weighted-K-nearest-neighbor (KNN) 
method excels in selecting features for household appliances and ES 
scheduling. The composite greedy optimization (CGO) technique 
outperforms existing methods in optimization. These results demonstrate the 
efficiency and real-world potential of our model. We have conducted a case 
study and developed an AI-based strategic-residential-load-management-
system (SRLMS), which we have tested on the IEEE33 bus system, showing 

cost effectiveness and improved EPI for prosumers. This work encourages 
the development of a harmonious relationship between utility-sectors and 
prosumers. 
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1. INTRODUCTION 

Meeting the ever-growing load demand and managing grid stress has become a significant challenge 

in today's world. This load demand fluctuates due to various factors, including human habits, economic 
growth, the acceptance of new technology advancements, geographical location, and demographic cycles. 

The energy profile of a nation is shaped by these parameters and is often characterized by the per capita 

energy consumption. Utility sectors have provided data indicating that in some countries, more than 25% of 

the total energy is consumed by the domestic sector. This shift has transformed domestic consumers into 

domestic prosumers, playing a pivotal role in addressing the current power scenario. Extensive research has 

been conducted on load profiles and the scheduling of home appliances. These efforts have led to the 

development of smart home energy management systems. In some research articles, several practical 

https://creativecommons.org/licenses/by-sa/4.0/
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constraints have been identified in existing energy management systems, many of which are related to human 

interaction, unavailable power supply and consumers’ preferences [1], [2]. To partially address this concern, 

recent developments have focused on integrating renewable energy sources, with efficient communication 

and optimization schemes proving to be quite effective in improving energy management systems [3], [4]. 

However, it is worth noting that some research efforts have aimed to minimize prosumer interaction [5]–[7]. 

To enhance the effectiveness of existing energy management systems, researchers have incorporated various 

factors, including consumer satisfaction levels and energy costs, along with the integration of renewable 
energy sources [8]–[10]. The utilization of energy storage systems (ESS) and the development of scheduling 

strategies for ESS play a vital role in designing an efficient energy management system which have been 

tackled in some research studies [11]–[13]. As a result, in-depth modelling of energy storage systems has 

become a more relevant research topic [14], [15]. Additionally, a body of research has demonstrated that 

achieving the most effective optimal charging and discharging schedules for ESS is achievable through time-

of-use tariff schemes [16]–[20]. Conversely, only a limited number of research efforts have delved into the 

design of new tariff structure based on the availability of RES, incorporating the scheduling of ESS and 

household appliances. Recognizing this gap, our research focuses on various techniques for feature selection 

to establish judicious model for optimizing charging and discharging of ESS and its sizing, as well as the 

scheduling of household appliances. These efforts culminate in the introduction of an innovative tri 

optimized tariff (TOT) structure proposal. To confirm this, we have employed composite greedy optimization 

(CGO) technique in a comprehensive case study. 
Numerous countries worldwide have implemented a range of energy conservation codes and star-

leveling programs [21] aimed at advancing energy efficiency within the domestic sector. In this article, we delve 

into the concept of the energy performance index. While some research has assessed the model's effectiveness 

in IEEE Bus systems, only a selected few have delved into crucial dimensions, including cost reduction, voltage 

stability improvement, and power loss mitigation [14], [22]–[28] which has been summarized in Table 1. 

Recognizing these research gaps, our study conducts a rigorous assessment of our designed model in the IEEE 

33 Bus system. Our results have primarily focused on reducing grid stress, quantified through peak to average 

ration (PAR) reduction, lowering monthly electricity bills for consumers, minimizing operational cost, reducing 

transmission power losses, enhancing consumer preferences, and improving stability indices, which in turn has 

motivated the design and development of a strategic residential load management system (SRLMS) achieved by 

judicious load scheduling and ESS scheduling optimizing the size and location of photovoltaic (PV) generation.  
 

 

Table 1. Summarized relevant work 
Research 

papers as in 

ref. sec. 

Tested 

on IEEE 

Bus 

Parameters addressed 

RE 

penetration 

PAR 

reduction 

ESS 

scheduling 

Consumers’ 

preference 

operating 

cost 

Reduction in 

monthly bill 

Transmission 

loss 

Stability 

index 

[29]          

[30]          

[31]          

[32]          

[33]          

[34]          

[35]          

[36]          

[37]          

[38]          

[11]          

[39]          

[40]          

[41]          

[42]          

[43]          

[44]          

[22]          

[23]          

[24]          

[14]          

[25]          

[26]          

[27]          

[28]          

[45]          

[46]          

[47]          

[48]          

SRLMS          
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Contribution and paper organization: recognizing the limitations in the previous research works, we 

have formulated a SRLMS for domestic sectors situated in tropical countries. The novelty of the proposed 

SRLMS is tabulated below. 

 We have explored different feature selection techniques to select appropriate parameters for scheduling of 

home appliances and ESS and conducted a comparative study. 

 We have formulated a deterministic rule-based strategy for judicious scheduling of ESS. 

 We have proposed a TOT structure to enhance the effectiveness of SRLMS. 

 To improve the efficiency of SRLMS, we have proposed CGO technique. 

 Finally, the model has been tested on IEEE 33 Bus System to assess its viability. 

In the following sections, different methods, mathematical models, a rule-based strategy used in designing 

the system, has been presented. And finally results obtained after testing of the system on IEEE33 bus has 

been discussed. 

 

 

2. SYSTEM DESIGN 

Efficient energy management within the existing grid infrastructure holds paramount importance, 

making EMS a critical component. From the utility's standpoint, our proposed SRLMS is tasked with 
intricately managing energy consumption, thus mitigating PAR, and line losses. Simultaneously, from the 

consumers' perspective, its primary role is to curtail electricity expenses and improve EPI. 

To achieve our outlined goals, we have designed a versatile model followed by different methods, 

mathematical modeling, and a deterministic rule-based strategy. The system adeptly handles load scheduling, 

ESS scheduling and TOT incorporation. To validate our model's effectiveness, we have showcased its 

capabilities through a testing on the IEEE33 bus system. 

 

2.1.  Methods 

2.1.1 Forecasting: auto-regressive-integrated-moving-average-with-exogenous-variables 

Demand forecasting constitutes the foundational and critical element of an electrical power system, 

particularly the load management system. In this study, various forecasting tools were evaluated, with the 
auto-regressive-integrated-moving-average-with-exogenous-variables (ARIMAX), a multivariate approach, 

emerging as the most effective method for load forecasting and RE availability forecasting, outperforming 

other techniques. Leveraging this classical method has enabled us to achieve an almost error-free forecasted 

demand profile. 

 

2.1.2. Feature selection 

In this research paper, we have evaluated seven features for scheduling household appliances and 

nine features for scheduling ESS using four distinct methods: complex tree, gaussian support vector machine 

(SVM), weighted K-nearest neighbor (KNN), and bagged trees which have been shown in Tables 2 and 3. 

Tables 2 and 3 have presented a comparative assessment of these four methods, considering model accuracy 

and prediction speed. Our findings have indicated that WKNN is outperforming the other methods based on 

the accuracy. Based on these results, we have selected most crucial features for designing the load scheduling 
model ESS scheduling model. 

 

 

Table 2. Feature selection for household appliances scheduling 
Method used Analysis based on 

the parameters 

Predictors Remarks 

 Complex tree 

 Gaussian SVM 

 Weighted KNN 

 Bagged trees 

 Model accuracy 

 Prediction speed 
 Appliance rating 

 No. of appliances 

 Energy consumption 

 Operation time 

 No. of START time 

 Operation frequency 

 Peak hour operation 

 Weighted KNN is outperforming the 

other methods 

 3 features have been selected. 

 More than 85% accuracy has been 

achieved using WKNN with the 

selected features. 

 

 

2.1.3. Optimization 

Residential prosumer demand profiles are shaped by geographic conditions and demographics. In 

this context, we explored various optimization approaches, culminating in the development of a hybrid 

technique merging genetic algorithm (GA) and particle swarm optimization (PSO). This innovative approach, 

termed as composite greedy optimization (CGO), leverages greedy selection methods to identify both 
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personal best and global best solutions. To balance demand and supply effectively, we employed the multiple 

knapsack problem (MKP) as a foundation, followed by the application of CGO to reach the optimal solution. 

Particle swarm optimization with iterative pbest and gbest update in Algorithm 1. Here particles 

have been randomly initialized with position and velocity. Each particle settles at its own best position: pbest 

and best among all particles are considered as global best position: gbest. Based on its inertia, personal and 

global states positions and velocities are updated for each particle in every iteration. The objective function is 

evaluated, and both pbest and gbest are updated whenever better solutions are found. This loop continues for 
T iterations and finally, gbest represents the best solution identified by the particle at the end. 

 

Algorithm 1. Particle swarm optimization with iterative pbest and gbest update 
 Input F, lb, ub, N,T;   

 Evaluate pbest, gbest and assign values; 

 start Loop for x from 1 to T; 

 start Loop for y from 1 to N; 

 Evaluate velocity and position of xth and yth particle; 

 Evaluate F ; 

 modify Np, Pbest and gbest; 

 all loops end; 

 P in next iteration=present P+Pbest; 

 iterate T times; 

 printf (result); 

 

 

Table 3. Feature selection for ESS scheduling 
Method used Analysis based on 

the parameters 

Predictors Remarks 

 Complex tree 

 Gaussian SVM 

 Weighted KNN 

 Bagged trees 

 Model accuracy 

 Prediction speed 
 ESS cycle 

 Energy consumption 

 Availability of RES 

 Charging and discharging rate 

 ESS efficiency 

 No. of members in the considered area 

 Holidays 

 Electricity expenses 

 Weighted KNN is 

outperforming the other 

methods 

 4 features have been selected. 

 More than 85% accuracy has 

been achieved using WKNN 

with the selected features. 

 

 

2.2. Mathematical modeling 

2.2.1. Energy consumption 

Here we have considered that prosumers are using H household appliances and total number of 

appliances used by each prosumer is N like H1, H2, …, HN. The starting time of appliances is 'SH1' and 

finishing time 'FH1'. Operation time vector of H1 appliance, 

 

ɸH1= [α1GH1, α1PVH1, α2GH1, α2PVH1, …, α24GH1, α24PVH1] (1) 

 

αtGH1 is time slot of using energy from conventional sources to meet the demand of H1 at time t which is 

either known or predicted.  

αtPVH1 is time slot of using RES to meet the demand of H1 at time t which is either known or predicted.  

Consumers need to inform the appliances rating 𝛽H and switching ON time of the appliances fH. 

Total consumption by a1 appliance,  

 

𝜎𝐻1 = ∑ ∑ β𝐻1(𝐻1є A α𝐺𝐻1 + α𝑃𝑉𝐻1) 𝑇
𝑡=1  (2) 

 

Similarly, the electricity expense for a1 over 24 hours, 

 

𝛿𝐻1 = ∑ ∑ β𝐻1(𝐻1є A 𝛾𝐺
𝑡 α𝐺𝐻1

𝑡 + 𝛾𝑃𝑉
𝑡 α𝑃𝑉𝐻1

𝑡 ) 𝑇
𝑡=1  (3) 

 

where the unit energy price is γ. 
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2.2.2. Scheduling of household appliances 

Here, we have considered 𝜏𝑟𝐻1 is the request time and 𝜏𝑤𝐻1 is waiting time of H1 respectively. 

Therefore,  

 

τwH1 = | SH1 - τrH1 | (4) 
 

Total waiting time for each of H appliance can be calculated as, 

 

τw =∑ τwHi
𝑁
𝑖=1  (5) 

 

Here, we have considered, 

 

𝜃𝐻1
t = 

run−time 

number of switch ON
 (6) 

 

Utilization factor for each appliance, 

 

𝑈ᵉ𝐻𝑖=
1

24
∑𝜃𝐻𝑖

𝑡  (7) 

 

Therefore, priority ranking can be done for all of the appliances, 

 

 𝜆𝐻𝑖 = [𝑈ᵉ𝐻𝑖] ∗ [𝜃𝐻𝑖
∗ ]   ꓯ Hi є H (8) 

 

Based on this ranking, we have effectively categorized the load into three distinct categories: Rank 1 load 
(which cannot be interrupted), Rank 2 load (which may be interrupted with minimal delay time), and Rank 3 

load (which can be interrupted). In alignment with these categories, we have systematically organized the 

appliances based on their computed priority levels. 

 
2.2.3. Scheduling of ESS 

Here we have outlined the charging-discharging processes of a battery, considering factors such as 

its round-trip efficiency, state of charge (SOC), and rate of charging-discharging. Within this section, we 

specifically focus on a battery with a 10 kW capacity. Round efficiency,  

 
ηr = ηch * ηdch (9) 

 

ηch = 0.98 and ηdch = 0.95. 

Here, we have set, SOCmin = 15% and SOCmax = 90%. 

Time to get full charge = 5 hours 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒𝑑 = 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑆𝑂𝐶 ∗
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

ηcharging
 (10) 

 

Throughout the charging process, 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑 = 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑆𝑂𝐶 ∗ Battery capacity ∗  ηdischarging (11) 

 

Battery scheduling introduces three conditions for each of two distinct cases. Consequently, in a subsequent 

section of this paper, we have presented a deterministic rule-based strategy aimed at optimizing the 

scheduling of ESS. 

 

2.2.4. Proposed tri optimized tariff 

An approach based on pricing proves to be an effective method for mitigating demand in peak hours 

and implementing judicious energy usage. In this process, two critical steps involve adjusting energy prices 

and ensuring that users have up-to-date information. As energy prices rise during periods of scarcity, 

prosumers are incentivized to curtail their peak hour consumption and opt for RES. We have considered the 
pricing for RES is invariable with time. 

In this paper, we have introduced a novel tariff scheme considering three important parameters 

(efficient use of RES, judicious energy consumption in peak hours, reduction in monthly electricity expense), 
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which is known as TOT. We have illustrated the design process of this new TOT structure through a 

flowchart depicted in Figure 1. 

Here, we have defined γPP as the unit energy price during peak hours, γOPP as the unit energy price 

during off-peak hours, and γIP as the unit energy price during intermediate hours.  

 

Here, x =
𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑎𝑘 𝑝𝑟𝑖𝑐𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 24 ℎ𝑜𝑢𝑟𝑠
∗ 100% (12) 

 

𝛾𝑃𝑃. 𝑛𝑒𝑤 =  𝑇𝑎𝑟𝑖𝑓𝑓 2 +  (𝑥% 𝑜𝑓 𝑇𝑎𝑟𝑖𝑓𝑓 2) (13) 

 

𝑅𝑒𝑏𝑎𝑡𝑒 =  (20 + (20 − 𝑥)) % 𝑜𝑓 (𝜆𝑃𝑃 ∗  𝛾𝑃𝑃. 𝑛𝑒𝑤) (14) 

 

 

 
 

Figure 1. Flow-chart of the proposed tariff 

 

 

2.3.  ESS scheduling strategy 

In this section, we have introduced a strategy designed to optimize the scheduling of ESS 

efficiently. We have assumed λP, λOP, and λI to represent energy consumption during specific time intervals 

as peak hours, off-peak hours, and intermediate hours respectively. Here 5:00 pm to 11:00 pm has been 

considered as peak hours, 11:00 pm to 6:00 am as off-peak hours and 6:00 am to 5:00 pm as intermediate 

hours respectively.  
Additionally, we have designated γPP, γOPP, and γIP as the energy pricing per unit corresponding 

to peak hours, off-peak hours, and intermediate hours. The ESS scheduling depends on the following 

parameters (shown in Table 4). 

CASE 1: when λP < λOP and λP < λI,  

Condition 1, 

 
𝛄𝑃𝑃

𝛄𝑂𝑃𝑃
∗

λ𝑃

λ𝑂𝑃
> 𝜂𝑟 ∗

𝛄𝑂𝑃𝑃

𝛄𝐼𝑃
∗

λ𝑂𝑃

λ𝐼
   (15) 

 

Condition 2,  
 

𝛄𝑂𝑃𝑃

𝛄𝐼𝑃
∗

λ𝑂𝑃

λ𝐼
> 𝜂𝑟 ∗

𝛄𝐼𝑃

𝛄𝑃𝑃
∗

λ𝐼

λ𝑃
 (16) 
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Condition 3, 

 
𝛄𝐼𝑃

𝛄𝑃𝑃
∗

λ𝐼

λ𝑃
> 𝜂𝑟 ∗

λ𝑃𝑃

λ𝑂𝑃𝑃
∗

λ𝑃

λ𝑂𝑃
 (17) 

 

CASE 2: When λP > λOP and λP 
Condition 1, 

 
𝛄𝑃𝑃

𝛄𝑂𝑃𝑃
∗

λ𝑃

λ𝑂𝑃
< 𝜂𝑟 ∗

𝛄𝑂𝑃𝑃

𝛄𝐼𝑃
∗

λ𝑂𝑃

λ𝐼
    (18) 

 

Condition 2,  

 
𝛄𝑂𝑃𝑃

𝛄𝐼𝑃
∗

λ𝑂𝑃

λ𝐼
< 𝜂𝑟 ∗

𝛄𝐼𝑃

𝛄𝑃𝑃
∗

λ𝐼

λ𝑃
 (19) 

 

Condition 3, 

 
𝛄𝐼𝑃

𝛄𝑃𝑃
∗

λ𝐼

λ𝑃
< 𝜂𝑟 ∗

𝛄𝑃𝑃

𝛄𝑂𝑃𝑃
∗

λ𝑃

λ𝑂𝑃
 (20) 

 
 

Table 4. Deterministic strategy for ESS scheduling 
 Condition (CASE 1&2)  11pm – 6am 6am – 5pm 5pm – 11pm 

Clear sky 

(sufficient solar energy) 

1 N/A C D 

2 D C D 

3 N/A C/D D 

Cloudy sky 

(insufficient solar energy) 

1 C D N/A 

2 C D D 

3 C D C / C 

Here C represents the charging state and D represents the discharging state of ESS.  

 

 

3. TESTING ON IEEE 33 BUS SYSTEM 

3.1.  Simulink model description 

IEEE 33 bus system is the network of IEEE standards and consists one generator, several load 

points. Due to its easy data availability, IEEE33 bus has find wide application in various research works. 
Specification: radial distribution system, no. of buses = 33, no. of lines = 32, voltage level = 12.66 kV, load 

size = 3.715 MW and 2.3M Var, DG unit voltage = 12.66 kV, and fixed penetration level (30%) 
 

3.2.  Load flow analysis 

The load flow analysis has been carried out using Tustin/backward Euler solver in MATLAB. 

Algorithm 2 shows the step-by-step procedure for Newton–Raphson power flow analysis. 

 

Algorithm 2. Step-by-Step Procedure for Newton–Raphson Power Flow Analysis: 
Step 1: Initialization of bus data, line data, load data and generated data for some 

information like bus voltage limit, line parameters, load demand, generator characteristics 

and initial voltage value etc. and initial bus voltage magnitude, phase angle and maximum 

number of iterations etc. 

Step 2: Formulation of power flow equations for each bus individually. 

Step 3: Application of the Newton-Raphson method as its convergence properties and accuracy 

is better than others. It iteratively updates the voltage magnitudes and angles until the 

power flow equations are satisfied. 

Step 4: Calculation of Jacobian Matrix which in turn helps in updating the voltage for next 

iteration. 

Step 5: Checking for convergence. 

Step 6: Repetition for next iterations if not converged. 

Step 7: With the convergence of the algorithm, the steady-state operating conditions of the 

power system, including voltage magnitudes and angles at each bus, line currents, and power 

flows are obtained. 

 

The Newton–Raphson power flow method begins by initializing all required electrical system data. 

This includes the line parameters, bus voltage limits, generator outputs, and initial guesses for voltage 

magnitudes and angles. Power flow equations are then formulated for each bus based on system topology and 

load characteristics. The Newton–Raphson power flow method initializes system data and voltage estimates, 

then repeatedly computes power mismatches and updates voltages using the Jacobian matrix. This continues 
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until the mismatches are very small. The final result gives the system’s steady-state voltages, angles, and 

power flows. 

 

3.3.  Optimization to suitably locate PV sources 

Here we have used CGO as optimization tool to determine optimum size, and location for PV based 

generation on IEEE33 bus. 

 
 

4. RESULTS AND DISCUSSION  

Utilizing data gathered from both physical surveys and online surveys we have developed an 

effective model in MATLAB Simulink. The outcomes of this research are grouped into three perspectives: 

prosumers' standpoint, utility sector's viewpoint, and environmental considerations. 

 

4.1.  Prosumers’ preference 

4.1.1. Monthly electricity bill 

In this research article, the flexible and efficient use of RES and ESS with a TOT scheme can reduce 

the monthly electricity expense. Consumers need to specify the details of their home-appliances and their 

load requirement a day ahead or they can follow the demand profile suggested by the controller of the utility 

company. Consumers have the option to select and announce the most suitable tariff plan one day in advance. 
By adopting this approach, consumers can maximize their benefits as shown in Figure 2 and Table 5. 

 

 

 
 

Figure 2. Cost curve 

 
 

Table 5. The performance of proposed SRLMS based on electricity expense 
Prosumers Electricity bill (30 days) Savings (in %) 

Without EMS With SRLMS 

Prosumer 1 4,375 3,165 28% 

Prosumer 2 6,600 4,720 29% 

 

 

4.1.2. EPI 

The star rating of any residential building can be calculated based on its energy performance  
index (EPI). 

 
𝐸𝑃𝐼 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ)/𝑏𝑢𝑖𝑙𝑡 𝑢𝑝 𝑎𝑟𝑒𝑎 (𝑠𝑞. 𝑚𝑒𝑡𝑒𝑟) (𝑢𝑛𝑑𝑒𝑟 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠) 

 

For a period (14.12.2018 – 31.12.2024), in a tropical country EPI varying in the range of 29-39 represents  

4-star rating and EPI less than 29 represents 5 star rating. Due to the significant reduction in energy 
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consumption as shown in Figure 3, an improvement in EPI and further improvement in star rating by at least 

1 unit can be achieved, which in turn assures more subsidies from the federal agencies. 

 
4.2.  Utility sectors’ preference 

4.2.1. Peak to average ratio 

Reduction in PAR reduces grid stress and electricity cost for the prosumers. 

 

PAR = (∑ 𝜎𝐻𝑖
𝑡 )𝑚𝑎𝑥 𝑁

𝑖=1  / 
1

𝑇
 (∑ 𝜎𝐻𝑖

𝑡𝑁
𝑖=1 ) (21) 

 

The result is shown in Figure 4. 
 

 

 
 

 

Figure 3. Reduction in energy consumption 
 

Figure 4. PAR reduction 

 
 

4.2.2. Voltage profile at each bus 

The load flow analysis has been carried out using Newton Raphson method. It is converged in 6 

iterations. From Figure 5 it can be concluded that by using the proposed SRLMS voltage profile has been 

significantly improved at bus number 18, 26, and 33. 

 

 

 
 

Figure 5. Voltage profile 
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4.2.3. Reduction in transmission losses with optimized PV integration 

The amount of reduction in transmission losses due to optimal placement of PV sources has been 

tabulated in Table 6. 

 

 

Table 6. Reduction in transmission losses 
Condition Load condition 

 

Power loss 

P Q 

Without PV integration Fixed load 206.63 kW 137.8 KVAR 

Peak hours 243.5 kW 163.1 KVAR 

With 1.31 MW PV integration at BUS 18 Fixed load 121.46 KW 79.6 KVAR 

With (2)1.31 MW PV integration at BUS 18 and 26 68.2 kW 48.7 KVAR 

With (3)1.31 MW PV integration at BUS 33, 26, and 18 66.1 kW 50.6 KVAR 

With (4)1.31 MW PV integration at BUS 33, 25, 21, and 18) 114.7 kW 85.2 KVAR 

With 1.31 MW PV integration at BUS 33 Peak hours 153.45 KW 99.6 KVAR 

With (2)1.31 MW PV integration at BUS 33 and 26 87.9 kW 61.1 KVAR 

With (3)1.31 MW PV integration at BUS 33, 26, and 18 74 kW 55.9 KVAR 

With (4)1.31 MW PV integration at BUS 33, 25, 21, and 18) 111.39 kW 83.61 VAR 

 

 

4.3.  Environmental aspect 

It has been estimated that 0.93 kg of CO2 is produced by 1 kWh generation. In this case study, we 

have found that daily approximately 2 tonnes of CO2 emission can be reduced by using SRLMS which a tree 

can absorb in 100 years.  
 

 

5. CONCLUSION  

This paper comprehensively addresses various aspects of a strategic load management system 

employing artificial intelligence. The intelligent SRLMS has shown significant improvement through the 

implementation of several key steps, such as, including load scheduling, RE penetration and energy storage 

system scheduling. Our research has focused on understanding diverse demand patterns among domestic 

prosumers. Moreover, the efficiency of this system is further amplified by the incorporation of a newly 

proposed TOT. Our system outperforms in the application of a rule-based strategy for charging and 

discharging the ESS. To validate the effectiveness of the designed model, we have conducted a case study 

considering different demand patterns of domestic consumers with dual objectives. Firstly, it empowers 
prosumers to indirectly participate in the utility market, resulting in significant reductions in their monthly 

electricity expenses without compromising their preferences. Simultaneously, it contributes in enhancing 

EPI, fostering eco-friendly practices, and promoting initiatives by utilities and federal agencies to conserve 

energy. Additionally, we have assessed the model's performance on an IEEE 33 bus system, revealing 

substantial reductions in transmission losses due to optimal placement of distributed solar energy generation. 

This testing phase also enables the design of a judicious model that efficiently reduce grid stress while 

ensuring uninterrupted, high-quality power supply to prosumers. In summary, the SRLMS serves the interests 

of prosumers and utility sectors, showcasing its potential in optimizing energy usage and fostering a healthy 

relationship between stakeholders. 
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