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Accurate evaluation of energy production in photovoltaic (PV) systems is
critical for renewable projects, especially in tropical climates where
environmental factors such as temperature significantly affect performance.
Although commercial simulation tools exist (photovoltaic geographic
information system (PVGIS), PVsyst, and system advisor model (SAM)),
previous studies have identified notable deviations between their predictions
and actual data, particularly in tropical climates. Moreover, these
investigations are usually limited to short periods (one year) and do not
systematically compare multiple tools under interannual conditions. This
study evaluates the accuracy of PVGIS, PVsyst, and SAM in predicting the
energy production of a PV installation in a tropical equatorial climate for
24 months to identify the most suitable tool for this context. Monthly energy
production data were collected from a PV plant in Monteria, Colombia,
equipped with 240 modules and two 36 kW inverters. Simulations were
performed using the most recent PVGIS, PVsyst, and SAM versions.
Accuracy was evaluated using metrics such as root mean square error
(RMSE) and mean absolute error (MAE). SAM showed the highest
accuracy, with an overall RMSE of 1,993.71 kWh and MAE of 1,615.87
kwh, followed by PVGIS (RMSE: 2,076.65 kWh, MAE: 1,830.84 kWh)
and PVsyst (RMSE: 3,546.18 kWh, MAE: 3,250.17 kWh). The results
highlight that SAM provides estimates closer to the real data and less
dispersion than other tools. This study contributes to the renewable energy
field by systematically comparing simulation tools in an understudied
tropical context. The findings emphasize the importance of selecting
appropriate software according to the specific environmental conditions of
the project, thus optimizing the design and efficiency of PV systems in
tropical regions.
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1. INTRODUCTION

The increasing demand for renewable energy sources is driven by the growing global population,
technological advancements, and the need for sustainable and environmentally friendly energy solutions [1].
Rapid population growth, rising living standards, and technological advancements have increased energy
demand [2]. Consequently, a shift towards sustainable and low-carbon energy systems has become necessary
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[3]. The transition to renewable energy sources, particularly solar power, is an essential response to the
urgent need for sustainable energy sources [4]. Despite its promise, fully harnessing the potential of solar
energy for global energy consumption requires addressing several challenges [5]. To attain a sustainable
future, the role of solar power in expanding the renewable energy sector is crucial [6]. Realizing solar
energy's full potential requires addressing challenges and investing in research and development [7].

The development of initial photovoltaic (PV) systems relied heavily on empirical methods and
essential calculation tools, with limited use of specialized simulation software [8]. Today, the photovoltaic
geographic information system (PVGIS), PVSyst, and the system advisor model (SAM) are among the most
widely used software packages for designing and simulating PV systems [9]. PVsyst is a prominent tool for
estimating the energy performance of both conventional and composite systems [10]. It has been widely used
to analyze losses due to shading, while PVGIS and SAM are employed for comparisons and the inclusion of
solar tracking systems [11]. The primary technical indicators for measuring the energy performance of a PV
plant are the performance ratio and energy production [12].

PVGIS calculates the energy output from various PV systems in nearly any global location [13].
SAM, a free techno-economic software model, aids professionals in the renewable energy sector by modeling
multiple renewable energy systems [14]. PVsyst, specifically designed for PV systems development, can
import meteorological and personal data from various sources [15].

The performance of solar PV systems is significantly influenced by environmental conditions,
including solar irradiance, ambient temperature, humidity, wind speed, and particulate matter such as dust
and smoke, so tropical climates can represent a challenge for these performance [16]. For instance, ambient
temperature negatively affects the efficiency of solar panels by increasing their operating temperature and
reducing their conversion efficiency [17]. While increased module temperatures in sunny climates can
decrease instantaneous efficiency, this is often compensated for by longer solar hours, resulting in higher
total daily production [18]. Thus, to optimize energy production and system reliability, it is crucial to consider
these environmental factors in the design, installation, and predictive modeling of solar PV systems [19].

Numerous PV system analyses use simulation programs such as PVGIS, PVsyst, and SAM [6], [20].
However, empirical validations in tropical climates reveal notable deviations. For instance, a case study in
Ghana demonstrated that PVsyst simulations overestimated annual energy production by approximately 10%
compared to measured data, emphasizing the influence of unaccounted environmental stressors on predictive
accuracy. Notably, this analysis did not incorporate cross-validation with PVGIS or SAM and was limited to
a one-year timeframe [21]. Research conducted in Indonesia similarly identified that PVsyst predictions were
negatively impacted by elevated ambient temperatures, leading to decreased monthly performance ratios
(indicating the efficiency of a PV system under actual conditions compared to ideal conditions) during peak
heat periods. However, the study’s conclusions were constrained by its single-year scope [22]. Furthermore,
Mohammadi and Gezegin [20] compared PVGIS and PVsyst with a grid-connected system in Turkey and
concluded that PVGIS had the highest consistency in a high-radiation climate [20].

Contrasting database performances within SAM were observed in a Brazilian PV plant assessment
[23]. The NSRDB dataset exhibited minimal deviation (-1.21%) from actual generation data, whereas the
Meteonorm database introduced a substantial overestimation (+11.18%). This disparity highlights the critical
role of meteorological data sources in simulation outcomes, though the study omitted comparisons with other
software tools [23]. Additionally, a comparison between PVSyst and SAM revealed that SAM had lower
annual error and deviation values [15].

The above studies were conducted over one-year analysis periods. However, environmental
conditions may vary yearly due to natural or anthropogenic causes [24], affecting the PV panel temperature
[25] and, consequently, the system’s performance [26]. These collective findings underscore two critical gaps
in current simulation practices: (i) the frequent exclusion of multi-software validation to identify tool-specific
biases (more than two programs) and (ii) the predominance of short-term (one-year) analyses, which may fail
to capture interannual climatic variability.

This study asks, what are the deviations in energy production predictions from PVGIS, PVsyst, and
SAM software compared to actual data from a rooftop PV installation in a tropical climate, throughout
analysis longer than one year? This research fills this gap by conducting a 24-month longitudinal comparison
of PVGIS, PVsyst, and SAM in a tropical location, incorporating metrics like mean absolute error (MAE)
and root mean square error (RMSE) to quantify deviations caused by environmental variability. This study
hypothesizes that PVGIS, PVsyst, and SAM will show average cumulative deviations of less than 10%
relative to measured data. The conclusions of this study could contribute to optimizing the design of
photovoltaic systems in tropical climates, reducing costs due to overestimation of production. This paper is
organized as follows: the first section methods, analyzes the site location and the data acquisition process,
then the section on results and discussions compares the evaluation metrics, including the RMSE and MAE,
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between the actual and simulated data, interpreting the findings. The final section presents the conclusions,
summarizing the key insights and implications for future research.

2. METHOD

This section outlines the methodology used for the analysis. Figure 1 shows the methods used to
develop the simulations. Data were collected from the rooftop PV installation using a proprietary
communication system of the inverter solar equipment. This system sends the operating data to a cloud
platform in CSV format via GSM. Ambient temperature data were obtained from meteostad.net for the
Garzones Monteria Weather Station in XLS format. The data were filtered for missing or outliers.
Simulations were conducted using PVGIS, PVsyst, and SAM. The annual energy production data from the
plant were compared with the simulations for each software program. The actual and simulated energy
production data were evaluated using RMSE and MAE metrics.

Simulations Analysis

Determine value of
RMSE and MAE

Determine system

location

Data filtering

v

Develop simulations in
PVGIS PVsyst and

Analysis of results

I

Data collection of SAM
environmental
variables and solar
inverter.
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Figure 1. Overall methodology flowchart

2.1. Location of the system

The solar PV power plant in Monteria, Colombia (8° 48' 13,5" S, - 75° 51' 0,45" O), located on the
rooftop of a building in Monteria, Colombia as shown in Figure 2, a region known as for its tropical climate
and high relative humidity, varying between 76 and 82% [27]. The technical characteristics of the plant solar
PV are listed in Table 1. The solar inverters were placed inside an inverter room on the same floor as the PV
module.

Figure 2. Roof-mounted PV plant
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Table 1. Technical specifications of PV system components

Item Specifications
Module PV LR6-720PH(SI) LONGI
Solar inverter Yaskawa PVI 36 TL-480
Module rated maximum power 400 W
Module open circuit voltage 36.2V
Module current at Pmax 11.05 A
Inverter power input voltage range 540-800 VDC
Inverter ambient temperature range (-25 °C to +60 °C)
Continuous output power 36 kW
System no of modules 240
Inverter peak efficiency 98%
Tilt 90
Number of inverters 2
Azimut N 28°0
Number of modules per inverter 120
Transformer for coupling to the electrical network 80 kVA 460 V/120 V

2.2. Data acquisition

The internal information from the solar inverters is transmitted through a GSM module, which sends
data to a cloud-based computer system for downloading and analysis as shown in Figure 3. Monthly
temperature data were obtained from the Los Garzones weather station near the solar PV plant using the
Meteostat.net website.

During the two years of monitoring, maintenance activities required the disconnection of data
transmission, and these days were excluded from the analysis. To avoid introducing possible inaccuracies,
missing values were left unfilled. This method is consistent with suggestions from earlier research [28],
prioritizing maintaining data integrity over filling in missing values, especially in applications requiring high-
precision modeling [29].

Figure 3. The internal data transmission system for solar investors is based on GSM

2.3. Simulations

The simulations were carried out using the program versions and meteorological databases indicated
in Table 2. In particular, PVGIS 5.2 and SAM 2017.9.5 were used together with the NSRDB database, while
PVsyst 7.4 was run with the Meteonorm 8.1 database. These versions were selected due to their widespread
use in solar resource studies.

Table 2. Versions and databases of the analyzed programs
Metric PVGIS PVsyst SAM
Version 5.2 7.4 2017.9.5
Database NSDRB Meteonorm 8.1 NSDRB
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2.4. Evaluation metrics

RMSE measures the magnitude of the errors between the values predicted by the model (Vyreaictea)
and the actual values (Viq,gee)- It is calculated by taking the square root of the average of the squared
differences between these values. A lower RMSE indicates higher model accuracy. The calculation method is
presented in (1) [30].

1
RMSE = \/Ezgzl(vpre’dicted - Vt’arget)2 (1)

Model validation is a crucial aspect of scientific research, and various methods are used. MAE
and Spearman correlation coefficients are some of the most widely used techniques for model
validation. These methods apply to different fields and have been proven effective in assessing models'
accuracy. MAE measures the average magnitude of errors in a set of predictions without considering
their direction. In contrast, the correlation coefficients quantify the degree to which the two variables
are linearly related [31]. The method for calculating MAE is presented in (2), while the Spearman
correlation is depicted in (3).

MAE = -3t _ly; - 9il 2)

Where n denotes the number of observations, y; represents the actual value, and y; denotes the predicted
value. The RSME and MAE provide a clear perspective when comparing the electricity production data from
the case study's PV plant with those obtained from the PVsyst, PVGIS, and SAM simulations.

n 42
p — 1 _ 6Z:L=1dl (3)

nnz-1)

For (3), n corresponds to the total number of observations in the data set, and d; is the difference between the
x and y ranges for each observation.

2.5. Experiment design

The research design focused on collecting data on the electricity production of solar inverters over
two years. The unit of measurement was the monthly energy production. Additionally, ambient temperature
data were collected monthly over the same two years.

- Data collection frequency: monthly (accumulated energy production and averaged ambient temperature).

- Measurement periods: March 2021 to February 2022 (Period 1) and March 2022 to February 2023
(Period 2).

- Location: rooftop of a five-story building with solar inverters located within an enclosed installation.

- Operating period: the plant operated almost continuously, with minimal downtime (five days in the first
and four days in the second year).

- Energy production hours: between 6 AM and 6 PM, the inverters automatically switched off outside this
timeframe.

- Ambient temperature data source: Los Garzones weather station, less than 2 km from the PV plant.

The primary objective of the experimental design was to evaluate the difference between the actual
production of the PV plant over two years and the results of the simulations using PVGIS, PVsyst, and SAM.
The comparison of the data collected in both scenarios aimed to identify the distinctions and similarities
between the resulting data Figure 4. It is essential to note the limitations associated with the experiment that
are listed below:

- The experiment's outcomes are influenced by the unique climatic and geographical features of the
location where the study is conducted (Monteria, Colombia).

- This could restrict the applicability of the findings to other areas with unique environmental conditions,
such as elevated altitudes or extended periods of drought. Secondly, the analysis did not consider factors
like dust accumulation and pollution on panels or the effects of shading, even though these could impact
the temperature of the modules and the absorption of irradiance.

- No allowance was made for cable temperature losses, panel degradation, roof floor temperature, and
maintenance periods, which could add deviations in the final results.
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Figure 4. Description of the experiment

3. RESULTS AND DISCUSSION

After processing the solar PV plant production data and environmental factors, power generation
decreased from Period 1 to Period 2 from 127,211 kWh per year to 100,645 kWh per year, coinciding with an
average increase in ambient temperature of 0.7 °C during Period 2 (Figure 5). The Spearman correlation
between ambient temperature and energy production was 0.55 for Period 1 and 0.53 for Period 2; this
decrease could result from the increase in ambient temperature for Period 2. The correlation of the
temperature data between the measurement periods was 0.85.

Simulations using PVsyst, PVGIS, and SAM predicted an annual energy production of 152,432
kWh for PVsyst, 100,299 kWh for PVGIS, and 117,321 kWh for SAM as shown in Figure 6. The highest
correlation between the simulations was found between PVGIS and PVsyst, with a correlation coefficient of
0.65, which proves that the results of both tools are in close agreement with each other, as demonstrated in
previous studies [20]. Both periods reflect an inverse correlation between ambient temperature and energy
production, where significant increases in ambient temperature tend to coincide with decreases in energy
production.

This pattern suggests that, in addition to the higher average temperatures, other environmental or
operational factors may be affecting the efficiency of the PV system during Period 2. This is related to the
fact that the inverter installation is on the rooftop and is enclosed without air conditioning, which can
significantly increase the operating temperature of the inverters and decrease their efficiency due to the
temperature derating process in Figure 4. The variability in energy production associated with temperature
fluctuations underscores the need to implement design and operational strategies that minimize the thermal
impact on solar modules and inverter installations.

The RMSE between the actual data and simulation results showed that for Period 1, the lowest
error was for the simulation developed in SAM, with a value of 1,621.17 kWh; for Period 2, the lowest
error was for the simulation developed in PVGIS, with a value of 1,680.99. Additionally, the best
performance for MAE was for SAM, with 1,278.70 in Period 1, and for PVGIS, it was 1,419.00 in Period
2 as shown in Table 3.

When analyzing the simulation models in SAM, PVGIS, and PVSyst, the superiority of SAM can be
justified based on the overall results of the key statistical metrics: RMSE and MAE. When considering both
analysis periods, SAM shows superior performance, with an overall RMSE of 1,993.71 kWh and an overall
MAE of 1,615.87 kWh, compared to PVGIS, which presents an overall RMSE of 2,076.65 kWh and an
overall MAE of 1,830.84 kWh. PVSyst, on the other hand, showed a significantly lower performance, with
an overall RMSE of 3,546.18 kWh and an overall MAE of 3,250.17 kWh. These values indicate that the
SAM predictions are, on average, closer to the actual values and present a lower dispersion, reaffirming its
superior accuracy and reliability in the PV energy production simulation as shown in Table 4. The findings of
this study align with previous research in tropical regions, highlighting variability in the accuracy of
simulation models.
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Figure 5. Comparative graph of average temperature and energy production during the periods of analysis
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Figure 6. Comparison of actual and simulated energy production

Table 3. Comparing the RMSE and MAE of the actual data with the simulations

Metric Period 1 Period 2

PVGIS PVSyst SAM PVGIS PVSyst SAM
RMSE 2,472.30 2,337.85 1,621.17 1,680.99 4,754.50 2,366.24
MAE 2,242.67 2,184.75 1,278.70 1,419.00 4,315.58 1,953.04

Table 4. Average percentage deviation between measured data and simulations

Metric PVGIS PVsyst SAM
Period 1 -21.2% 51% 17%
Period 2 -0.34% 51.98% -23.03%
Average -10.7% 51.7% -3%

FEBRUARY

An increase in the ambient temperature causes higher temperatures in the PV modules, which
decreases the efficiency and overall system performance, as demonstrated by Roga et al. [32] and as shown
in Figures 5 and 6. In addition, Sekyere et al. [21] evaluated a 20 MW PV system in Ghana. They found that
PVsyst overestimated annual energy production by approximately 10% compared to measured data, a pattern
similar to that observed in this study for Period 1 and Period 2, see Table 3. This study extends these results
by including multi-platform comparisons (PVGIS, SAM, and PVsyst) and a 24-month evaluation period,
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which allows for capturing interannual climate variabilities not considered in previous studies such as

Sekyere et al. [21] and Kumara et al. [22].

In addition, Mohammadi and Gezegin [20] compared PVGIS and PVsyst in a grid-connected system
in Turkey, concluding that PVGIS showed greater consistency in climates with high irradiance. This study
corroborates those results (Table 3) but highlights that SAM outperforms both in equatorial contexts with
high humidity and intermittent cloudiness (as in Monteria, Colombia). On the other hand, Sancar and Yakut
[15] reported that SAM had a lower annual error in its calculations than PVsyst, which is corroborated in this
study (Table 3). On the other hand, the deviation in the SAM measurements reported by Paula [23] of -1.21%
in Brazil is close to those reported in this study (Table 3), using the same NSRDB meteorological database.
The accuracy of SAM in this context could be attributed to these key methodological factors:

i) Improved model: SAM is designed to model the performance of solar systems by considering local
climatic conditions, which inherently include factors such as cloudiness and humidity. This allows for
more accurate predictions of power generation [33]. This contrasts with PVGIS, which uses static satellite
data that is less sensitive to diurnal variations [34], and with PVsyst, whose thermal loss model does not
adequately consider the effect of high humidity on panel degradation [35].

ii) Meteorological database management: SAM allows the integration of multiple data sources (NSRDB,
Meteonorm) and prioritizes hourly rather than daily records, which reduces errors in regions with abrupt
irradiance patterns common in equatorial climates [36].

While SAM exhibited superior overall performance, its predictive accuracy decreased during
periods with ambient temperatures exceeding 28 °C. This limitation suggests the influence of unmodeled
thermal effects such as solar inverter cooling, panel maintenance cycles, and hardware degradation rates.
Future research should incorporate (1) validation across diverse tropical regions (e.g., Southeast Asia), (2)
long-term longitudinal analyses (5-10 years) to capture climate variability patterns, and (3) comparative
assessments with tools like HOMER or custom models developed for specific regional conditions.
Implementing real-time monitoring systems could enhance model accuracy by enabling dynamic
adjustments. These results highlight the critical dependence of simulation tools' accuracy on specific
environmental conditions, establishing the necessity of climate-adapted simulation tool selection in
photovoltaic system design.

4.  CONCLUSION

This study assessed the accuracy of the commercial simulation tools PVGIS, PVSyst, and SAM in
predicting the energy output of a photovoltaic system in a tropical climate. The findings revealed significant
variations in the precision of these tools compared with actual production data, highlighting the importance
of selecting appropriate simulation software based on specific environmental conditions. SAM demonstrated
superior performance with a global RMSE of 1,993.71 kWh and a global MAE of 1,615.87 kWh, indicating
that its predictions were, on average, closer to the actual production data and exhibited less dispersion
compared to PVGIS (global RMSE: 2,076.65 kWh, global MAE: 1,830.84 kWh) and PVSyst (global RMSE:
3,546.18 kWh, global MAE: 3,250.17 kWh). These results underscore the robustness and reliability of SAM
in providing more accurate simulations, which is crucial for optimizing the efficiency and sustainability of
PV systems in tropical climates. This study contributes to the body of knowledge on renewable energy by
providing a critical comparison of simulation tools, thereby enabling professionals and researchers to make
informed decisions based on the accuracy of simulations under specific conditions.
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