
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 3, No. 3, September 2016, pp. 546 ~ 553
DOI: 10.11591/ijeecs.v3.i2.pp546-553  546

Received April 2, 2016; Revised July 25, 2016; Accepted August 10, 2016

Mining Association Rules: A Case Study on Benchmark
Dense Data

Mustafa Man
1
, Wan Aezwani Wan Abu Bakar

2
, Zailani Abdullah

3
, Masila Abd Jalil

4
,

Tutut Herawan
5

1,2,4
School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu,

 21030 Kuala Terengganu, Terengganu, Malaysia
3
Faculty of Entepreneur and Business, Universiti Malaysia Kelantan,

16100 Kota Bharu, Kelantan, Malaysia
5
Department of Information Systems, Faculty of Computer Science and Information Technology,

University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
Corresponding author, e-mail: mustafaman@umt.edu.my, beny2194@yahoo.com, zailania@umk.edu.my,

masita@umt.edu.my, tutut@um.edu.my

Abstract
Data mining is the process of discovering knowledge and previously unknown pattern from large

amount of data. The association rule mining (ARM) has been in trend where a new pattern analysis can be
discovered to project for an important prediction about any issues. Since the first introduction of frequent
itemset mining, it has received a major attention among researchers and various efficient and
sophisticated algorithms have been proposed to do frequent itemset mining. Among the best-known
algorithms are Apriori and FP-Growth. In this paper, we explore these algorithms and comparing their
results in generating association rules based on benchmark dense datasets. The datasets are taken from
frequent itemset mining data repository. The two algorithms are implemented in Rapid Miner 5.3.007 and
the performance results are shown as comparison. FP-Growth is found to be better algorithm when
encountering the support-confidence framework.

Keywords: data mining, association rule mining (ARM), frequent pattern mining (FPM), rapid miner,

apriori, fp growth

Copyright © 2016Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Data mining is the research area where the huge dataset in database and data

repository are scoured and mined to find novel and useful pattern. Association analysis is one of
the four (4) core data mining tasks besides cluster analysis, predictive modeling and anomaly
detection [1]. The task of Association Rule Mining (ARM) is to discover if there exist the frequent
itemset or pattern in database and if any, an interesting relationships between these frequent
itemsets can reveal a new pattern analysis for the next step of decision making.

Finding frequent itemsets or patterns (as shown in Figure 1) is a big challenge and has
a strong and long-standing tradition in data mining. It is a fundamental part of many data mining
applications including market basket analysis, web link analysis, genome analysis and
molecular fragment mining [2]. The idea of mining association rule originates from the analysis
of market basket data [3]. Example of simple rule is “A customer who buys bread and butter will
also tend to buy milk with probability s% and c%”. The applicability of such rule to business
problems makes the association rule to become a popular mining method.

The ARM that relates to frequent pattern is called Frequent Pattern Mining (FPM). The
state-of-the-art algorithms in FPM are based upon horizontal data format and vertical data
format. Most of previous frequent mining techniques are dealing with horizontal format of their
data repositories but suffer from the requirement of many database scans. However, current
and emerging trend exists where some of the research works are focusing on dealing with
vertical data format and the rule mining results are quite promising. Apriori [3, 4] that relies on
horizontal format and FP-Growth [5] that relies on vertical format are among the best-known
algorithms in FPM. Neither horizontal nor vertical data format, both are still suffering from the
huge memory consumption [3-5] with higher datasets.

IJEECS ISSN: 2502-4752 

Mining Association Rules: A Case Study on Benchmark Dense Data (Mustafa Man)

547

Figure 1. Frequent Itemset and Its Subset [2]

In this paper, we discover the performance and scalability measures of both algorithms
that represent both formats and compare their results in generating association rules based on
benchmark dense datasets. The datasets are taken from frequent itemset mining data
repository.

The rest of this paper is organized as follow. Section 2 describes rudimentary of
association rules. Section 3 describes Apriori and FP Growth algorithms. Section 4 describes
experimental results. Finally, the conclusion of this work is described in section 5.

1.1. Association Rules

Following is the formal definition of the problem in [3]. Let I = {i1, i2,…,im} be the set of

items. Let D is a set of transaction where each transaction T is a set of items such that An

association rule is an implication of the form where X represents the antecedent part of
the rule and Y represents the consequent part of the rule where and
The itemset that satisfies minimum support is called frequent itemset. The rule holds in
the transaction set D with confidencec if c% of transactions in D that contain X also contain Y.

The rule has supports in the transaction set D if s% of transaction in D contains
The illustration of support-confidence notions is given as below:

a) The support of rule is the fraction of transactions in D containing both X and
Y.

 ()

| |
.

Where | | is the total number of records in database.

b) The confidence of rule is the fraction of transactions in D containing X that
also contain Y.

 ()
 ()

 ()
.

The rules which satisfy both a minimum support threshold (min_supp) and minimum

confidence threshold (min_conf) are called strong rule where min_supp and min_conf are user
specified values.

1.2. Apriori and FP Growth Algorithms

Since the introduction of frequent itemset mining by [3], it has received a major attention
among researchers and various efficient and sophisticated algorithms have been proposed to
do frequent itemset mining. Among the best-known algorithms are Apriori and FP-Growth.

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

  ISSN: 2502-4752

 IJEECS Vol. 3, No. 3, September 2016 : 546 – 553

548

1.2.1. Apriori Algorithm
The Apriori algorithm [3, 4] uses a breadth-first search and the downward closure

property, in which any superset of an infrequent itemset is infrequent, to prune the search tree.
Apriori usually adopts a horizontal layout to represent the transaction database and the
frequency of an itemset is computed by counting its occurrence in each transaction. Apriori uses
a "bottom up" approach, where frequent subsets are extended one item at a time (a step known
as candidate generation, and groups of candidates are tested against the data). The algorithm
terminates when no further successful extensions are found. The key idea is such that the
apriori property (downward closure property) states that any subsets of a frequent itemset are
also frequent itemsets. The best known algorithm that involve two steps:

1) Step 1: Find all itemsets that have minimum support (frequent itemsets, also called
large itemsets).

2) Step 2: Use frequent itemsets to generate rules.

1.2.2. Apriori Pseudo-code
Ck: Candidate itemset of size k
Lk : frequent itemset of size k
L1 = {frequent items};

for (k = 1; Lk !=; k++) do begin
Ck+1 = candidates generated from Lk ;
for each transaction t in database do
 increment the count of all candidates in Ck+1 that are contained in t
Lk+1 = candidates in Ck+1 with min_support
 end

returnkLk;

1.2.3. Apriori principle
1) If an itemset is frequent, then all of its subsets must also be frequent. Apriori

principle holds due to the following property of the support measure:

2) Support of an itemset never exceeds the support of its subsets

1.2.4. FP-Growth Algorithm
The FP-Growth [5-7] employs a divide-and-conquer strategy and a FP-tree data

structure to achieve a condensed representation of the transaction database. It has become
one of the fastest algorithms for frequent pattern mining. In large databases, it’s not possible to
hold the FP-tree in the main memory. A strategy to cope with this problem is to firstly partition
the database into a set of smaller databases (called projected databases), and then construct
an FP-tree from each of these smaller databases. The steps are as follows:

1. Scan DB once, find frequent 1-itemset (single item pattern)
2. Sort frequent items in frequency descending order, f-list
3. Scan DB again, construct FP-tree
The algorithm of FP-Growth is given as below and Figure 2, 3 and 4 show the steps in

constructing FP Tree from a transaction database.

1.2.5. FP Growth (Tree, α) Pseudocode

if Tree contains a single path P then
for each combination (denoted as β) of the nodes in the path P do

 generate pattern β α with support = min_supp of nodes in β;
else for each αi in the header of Tree do {

 generate pattern β = αi α with support = αi.support;
 construct β’s conditional pattern base and then
 β’s conditional FP tree Treeβ;
 if Treeβ ≠ then

 call FP-Growth (Treeβ, β) }

)()()(:, YsXsYXYX 

IJEECS ISSN: 2502-4752 

Mining Association Rules: A Case Study on Benchmark Dense Data (Mustafa Man)

549

Figure 2. Construct FP-tree from a Transaction Database [5]

Figure 3. Finding Patterns Having P from P-conditional Database [5]

Figure 4. From Conditional Pattern-bases to Conditional FP-trees [5]

2. Experiment Results
2.1. Experimentation Platform and Datasets

All experiments are performed on a DELL Inspiron 620, Intel ® Pentium ® CPU G630
@ 2.70 GHz with 4GB RAM in a Win 7 64-bit platform. The tool used is Rapid Miner (RM)
5.3.007. The raw benchmark data are retrieved from http://fimi.ua.ac.be/data/ in a *.dat file
format. For the ease of use in RM, we convert to Comma Separated Value (CSV) format. For
experimentation purposes, some datasets have been modified by removing instances that have
incomplete data and removing attributes that have only one categorical value. In RM itself, we
have to perform data transformation in order to be processed through the specified algorithm.
When importing data into RM, we have to specify what parameter to be set as ID, label, or
attributes. There are five (5) datasets include chess, connect, mushroom, pumb_star and
T40I10D100K. All selected datasets are different from one another in terms of size, either
horizontally or vertically aimed to analyze the performance of selected algorithms when
involving a huge number of records as well as very high number of attributes. Table 1 shows the
characteristics of datasets.

  ISSN: 2502-4752

 IJEECS Vol. 3, No. 3, September 2016 : 546 – 553

550

Table 1. Database Characteristic
Datasets Size (KB) Average Length (Attribute) Records (Transaction)

Chess 335 37 3196
Connect 9039 43 67558
Mushroom 558 23 8125
Pumb_star 11028 50 49047
T40I10D100K 15116 32 100001

2.2. RM Development and Results

The results of the experiments are summarized in three (3) tables and six (6) figures.
Figure 5 illustrates the processes involved in deploying Apriori algorithm.

Figure 5. Rapid Miner Processes by W-Apriori algorithm

The W-Apriori process is an extension of Weka-Apriori into the RM tool. First, the
benchmark data (in csv) is retrieved by calling retrieve() process. Then data transformation has
to be constructed through descretizebyfrequency() process. This operator converts the selected
numerical attributes into nominal attributes by discretizing the numerical attribute into a user-
specified number of bins. Bins of equal frequency are automatically generated, the range of
different bins may vary. Then data is converted from nominaltonumerical() to
numericaltopolynominal(). The process nominaltonumerical() is to change the nominal attributes
to numerical attributes while the process numericaltopolynominal() is to change the numerical
attributes to polynominal attributes, that is allowed in Apriori algorithm. Then we call the Weka
extension, W-Apriori() to generate the best rules. The parameter is set to be a default value.

Figure 6 depicts on the processes involved in deploying the Weka extension W-FP-
Growth algorithm.

Figure 6. Rapid Miner Processes by W-FPGrowth Algorithm

The root process starts with retrieving the csv dataset. Then the discretizeby
frequency() is selected to change the real attributes to nominal. Next, the NominaltoBinominal()

IJEECS ISSN: 2502-4752 

Mining Association Rules: A Case Study on Benchmark Dense Data (Mustafa Man)

551

process is called to change the nominal attributes to binominal attributes which is allowed in
FPGrowth algorithm and lastly W-FPGrowth() process is called to find frequent pattern and
generate the rules.

The performance of the Apriori and FP-Growth algorithms are measured in terms of
total execution time and total generated rules. The running time is subjected to factors such as
different search method in both algorithms and also the size of dataset itself.

Figure 712 illustrate the graphs of the results obtained. From these figures which
representing 3 different values of min_conf (i.e. 0.9, 0.5 and 0.1), it can be seen that the
patterns plotted are almost similar. The graphs show that W-FPGrowth outperforms W-Apriori
where more number of rules generated within lesser execution time. From the detailed result in
RM, between W-Apriori and W-FPGrowth, there are almost similar attributes interpreted to be
the antecedent and consequent. With W-FPGrowth, there are more attributes found to be the
interesting rules as compared to W-Apriori. For any mining algorithm, it should find the same set
of rules although their computational efficiencies and memory requirements may be different [5].

Figure 7. W-Apriori vs. W-FPGrowth: Execution
time (in seconds) when min_conf = 0.9

Figure 8. W-Apriori vs. W-FPGrowth: Rules
generated when min_conf = 0.9

Figure 9. W-Apriori vs. W-FPGrowth: Execution
time (in seconds) when min_conf = 0.5

Figure 10. W-Apriori vs. W-FPGrowth: Rules
generated when min_conf = 0.5

Figure 11. W-Apriori vs. W-FPGrowth: Execution
time (in seconds) when min_conf = 0.1

Figure 12. W-Apriori vs. W-FPGrowth: Rules

generated when min_conf = 0.1

  ISSN: 2502-4752

 IJEECS Vol. 3, No. 3, September 2016 : 546 – 553

552

The results of scalability measures on Apriori and FP Growth algorithm are depicted in

Figure 1316 by taking min_conf as 0.9. The scalability is measured in two different types. The
first is the scalability of both algorithms in dataset size on execution time and the second is the
scalability of both algorithms in dataset size on rules generated. From the plotted graphs, it can
be observed that the scalability of both algorithms in dataset size on execution time is almost
similar and tends to non-linear, but there is a slightly different of pattern plotted on the number
of rules generated. In Apriori, the pattern plotted on rules generated is similar with the pattern on
execution time, but in FP Growth, the pattern plotted on rules generated is slightly different
where in pumb_star with total of 15116 size (in KB), the number of rules generated shows quite
a huge number which is 18860 rules.

In reviewing the scalability of Apriori and FP Growth on five (5) datasets, taking the
value in dataset size, there is only small variation on execution time or number of rules
generated. However on the whole, these algorithms have a good scalability to data size. This

can be seen through Figure 1316 where the good scalability of algorithm to the data size is
highly desirable in real data mining applications [8].

Figure 13. Scalability of Apriori vs data size on
executing time when min_conf=0.9

Figure 14. Scalability of FP Growth vs data
size on executing time when min_conf=0.9

Figure 15. Scalability of Apriori vs data size on
rules generated when min_conf=0.9

Figure 16. Scalability of FP Growth vs data
size on rules generate when min_conf=0.9

3. Conclusion

In this paper, we have explored two well-known benchmark association rules mining
algorithms. The experiment conducted in this paper has shown a comparison results between
Apriori and FPGrowth algorithms using the benchmark dense datasets. It is clearly imitated from
the graphs that FP Growth outperforms W-Apriori in terms of lesser execution time with more
rules generated. The W-FPGrowth is found to be better algorithm when encountering the
support-confidence framework. Originally, W-FPGrowth only performs 2 passes over datasets
and, the datasets are already “compressed” with the generation of the FP-Tree by reducing
irrelevant information. This is done through removing infrequent items. While for W-Apriori, it
requires multiple database scans and a candidate generation approach by self-joining (by
generating all possible candidate itemsets) before pruning (by removing those candidates that is
not frequent). Therefore, it results in more execution time and generated rules are always 10
because the size of largest itemset is bound to 10. The more execution time generated, the
higher of memory consumption of the machine.

IJEECS ISSN: 2502-4752 

Mining Association Rules: A Case Study on Benchmark Dense Data (Mustafa Man)

553

There are many other interestingness measure that can be imposed to the algorithm
and see whether the performance result between Apriori and FPGrowth are still the same or
otherwise. For the future analysis, there are few alternatives we might want to tackle either in
the same interestingness measure with vertical data format approach of Eclat algorithm [2] or
with different interestingness measure but with similar ARM rule and compare the outcome.

Acknowledgements

We wish to thank Prof. Dr. Mohd Yazid Mohd Saman for his insightful comments and
suggestions and a credit also to MyPhD scholarship under MyBrain15 of Kementerian
Pendidikan Malaysia (KPM) for the financial foundation of this work.

References
[1] Tan PN, Steinbach M, Kumar V. Introduction to Data Mining. First Edition. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc. 2005.
[2] Trieu TA, Kunieda Y. An improvement for declat algorithm. Proceedings of the 6th International

Conference on Ubiquitous Information Management and Communication (ICUIMC’12). 2012; 54: 1-
06.

[3] Agrawal R, Srikant R, et al. Fast algorithms for mining association rules. In Proc. 20th int. conf. very
large data bases, VLDB. 1994; 1215: 487–499.

[4] Agrawal R, Imieli´nski T, Swami A. Mining association rules between sets of items in large
databases. In SIGMOD Rec. 1993; 22: 207–216.

[5] Han J, Kamber M, Pei J. Data mining: concepts and techniques. Morgan Kaufmann. 2006.
[6] Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In ACM SIGMOD Record.

ACM. 2000; 29(2): 1-12.
[7] Han J, Pei J, Yin Y, Mao R. Mining frequent patterns without candidate generation: A frequent-pattern

tree approach. In Data mining and knowledge discovery. 2004; 8(1): 53–87.
[8] Mamat R, Herawan T, Deris MM. MAR: Maximum attribute relative of soft set for clustering attribute

selection. In Knowledge-Based Systems. 2013; 52: 11–20.

