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 Cost and performance are considered important parameters to obtain an 

optimized configuration for smart grids. In this paper, a new optimization 

approach, based on a hybrid adaptive particle swarm with an adaptive neuro-

fuzzy inference system (ANFIS) algorithm, has been proposed. This 

approach allows optimizing demand side management (DSM) using the load 

shifting technique. The impact of the latter on consumer profile, electricity 

pricing mechanisms, and overall grid performance are illustrated. In this 

simulation, the focus lies on modeling DSM using a day-ahead load shifting 

approach as a minimization problem. Simulation experiments have been 

tested separately on three different demand zones, namely, residential, 

commercial, and industrial zones. A comparative study of solutions was 

performed, focusing on both reduced peak demand and operational costs. 

The obtained results demonstrate that the optimization presented in this 

article approach outperforms the other approaches by achieving greater 

savings in the residential and commercial sectors. The study proved a 

significant reduction in peak demand. In fact, values of 23.76%, 17.61% and 

16.5% in peak demand reduction are achieved in the case of residential, 

commercial, and industrial sectors, respectively. Furthermore, operational 

cost reductions of 7.52%, 9.6%, and 16.5% are obtained for the three 

different cases. 
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1. INTRODUCTION 

Increasing penetration of renewable energy sources and the growing complexity of modern power 

grids have led to the emergence of smart grids, enabling more efficient and sustainable energy management [1].  

In smart grids, the demand side management (DSM) strategy plays a crucial role in balancing the electricity 

supply. This strategy allows autonomous management for consumers. Also, the DSM strategy aims to 

optimize energy consumption patterns and peak loads and enhance grid reliability. The DSM strategy is 

based on many different techniques. The most effective DSM technique, which involves the adjustment of 

electricity consumption timing without altering the overall energy consumption level, is called “load 

shifting”. DSM optimization via load shifting improves energy efficiency, reduces costs, and enhances grid 

stability by transferring consumption from peak to off-peak hours, benefiting utilities and consumers with 

lower bills and promoting sustainability [2]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Many techniques have been developed recently, leading to cost savings and peak load reduction for 

appliances in different parts of smart grids. Layadi et al. [3] proposed optimization strategy considers fuel 

costs and aims to reduce greenhouse gas emissions. The hybrid regenerative power system (HRPS), powered 

by a central energy management system (CEMS), efficiently supports critical AC/DC loads and is improved 

by regenerative technology [4]. The study [5], [6], a summary of some techniques, based on linear and 

dynamic programming, has been discussed in much detail. However, these techniques are considered less 

efficient when the number of loads is important. Different methods like the mixed integer linear 

programming referenced in [7], and the non-linear mixed-integer wind driven optimization (WDO) 

mentioned in [8], have been applied to manage flexible and time-shiftable home devices. A study in [9] 

compares the harmony search algorithm (HSA) with the firefly algorithm (FA), finding that the FA is 

superior for reducing the peak-to-average ratio (PAR) while the HSA excels in cost-effectiveness. The 

usefulness of this study could be enhanced by including data on how quickly each algorithm converges. This 

paper [10] introduces a DSM framework that utilizes the ant colony optimization (ACO) approach within a 

smart grid context. Nonetheless, the ACO method initially faced issues with early convergence. The 

convergence process was refined by incorporating a mutation mechanism into the standard ACO algorithm [11]. 

Consequently, this modified approach is employed to achieve cost reductions and lower the PAR. 

The implementation of DSM using a genetic algorithm (GA) has been used to allocate residential 

loads. The objective here is to enhance user satisfaction and minimize energy costs simultaneously. This 

approach involves deriving a cost-per-unit satisfaction index, which serves as an estimator for user 

satisfaction during load shifting [12]. Load shifting DSM was applied to traditional, smart, and solar 

photovoltaic (PV)-integrated homes using binary particle swarm optimization (BPSO), GA, and Cuckoo 

search algorithms, resulting in reduced peak loads and costs, with the Cuckoo search algorithm 

outperforming the others [13]. 

The study presented in [14] uses the GA for DSM to lower peak loads in an industrial DC micro-

grid with solar power and batteries. Significant peak load and cost reductions were achieved, benefiting 

various sectors. A DSM strategy using the moth flame optimization (MFO) algorithm effectively reduced 

peak loads in residential and commercial areas [15]. Binary grey wolf optimization (BGWO) algorithm 

outperforms BPSO in optimizing residential electrical appliances, significantly reducing energy costs and 

lowering peak loads and PAR [16]. A hybrid GA-PSO algorithm is harnessed to effectively curtail energy 

costs through the optimal allocation of generations and loads in a day-ahead market [17]. Notably, PSO 

exhibits superior performance over GA in this context.  

In the scope of DSM techniques, diverse strategies including load shifting, peak clipping, valley 

filling, strategic conservation, and strategic load growth have been employed to modify consumer load 

behavior [18]. The core objective is to reduce peak energy demand by shifting it to off-peak times. Utilities 

can directly control consumer loads or indirectly guide consumers to self-manage usage, with incentives for 

compliance and penalties for non-compliance. Pricing schedules encourage consumption adjustment. Several 

techniques for demand-side management in smart grids are available as depicted in Figure 1 including, load 

shifting: moving energy use from peak to off-peak times; peak clipping: cutting down peak energy demand; 

valley filling: using extra energy during low-demand periods; load building: reshaping energy use to increase 

efficiency; strategic conservation: encouraging energy-saving behaviors; and flexible load management: 

working with consumers to adjust their energy use, offering incentives for cooperation. These methods 

enhance grid resilience and efficiency. However, load shifting stands out as the most extensively explored 

technique in existing literature [19]. The study’s simulation shows that DSM, as a minimization problem 

using the adaptive moth flame optimization (AMFO) algorithm, effectively reduces peak loads and energy 

costs in various sectors [20].  

These studies focus on cost reduction in smart grids and home energy systems across various 

sectors, using optimization algorithms like BGWO and HSA, as well as the utilization of symbiotic 

organisms search (SOS) and Cuckoo search (CS) algorithms [21]. Optimized energy storage and 

management are critical for effective DSM in smart grids [22]. They enable load balancing by storing excess 

energy during low-demand periods and releasing it during peak times, which reduces grid stress and 

operational costs. This optimization enhances demand response programs, promotes renewable energy 

integration, and allows consumers to participate in energy arbitrage, leading to cost savings and greater grid 

resilience [23]. By reducing reliance on the grid during high-demand periods, optimized storage strengthens 

DSM's role in ensuring a stable and efficient energy system [24]. A multi-objective optimization model for 

hybrid power systems, considering fuel cost variations and employing various algorithms, has been created 

[25]. Additionally, a tool to estimate the lifespan of lead-acid batteries in these systems is developed. A 

comparative study between lithium and lead-acid batteries in hybrid multi-source systems is developed [26]. 
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Figure 1. DSM techniques 

 

 

The present paper focuses on optimizing DSM using the load shifting technique in smart grids. It 

explores the impact of load shifting on consumer behavior, electricity pricing mechanisms, and overall grid 

performance. Among the examined papers, certain authors have focused on optimizing the cost-minimization 

objective function, while others concentrated solely on minimizing peak loads. These objective functions can 

be categorized as single-objective minimization problems. In the context of a single objective, optimizing 

costs inherently leads to a reduction in peak loads, and vice versa optimizing peak loads contributes to 

decreased energy costs. Some researchers have investigated the amalgamation of renewable energy with 

DSM within home energy management systems.  

However, when dealing with vast areas and a multitude of devices, the integration of renewable 

energy with DSM has not been extensively explored thus far. Through a comprehensive review of existing 

literature, case studies, and simulation-based analyses, this article aims to provide an effective adaptive PSO 

strategy. An algorithm-based load shifting technique is used to reduce operational costs and peak demand in 

different consumption areas. The findings and recommendations presented in this paper demonstrate the 

advancement of DSM strategies, enabling stakeholders to make informed decisions regarding load shifting 

optimization and ultimately fostering a more sustainable, reliable, and economically efficient smart grid 

ecosystem. The need for integrating adaptive neuro-fuzzy inference system (ANFIS) in adaptive PSO is that 

this method can outperform PSO alone by combining the strengths of both methods. PSO, a global 

optimization algorithm, is effective at exploring complex, multi-dimensional search spaces and finding 

optimal solutions, but it can sometimes struggle with slow convergence or getting trapped in local optima, 

particularly in highly non-linear systems. On the other hand, ANFIS integrates neural networks with fuzzy 

inference systems, allowing it to model complex, non-linear relationships by learning from data and adjusting 
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itself accordingly. In the PSO–ANFIS hybrid, PSO optimizes the parameters of the ANFIS model, such as 

fuzzy membership functions, while ANFIS refines these results through adaptive learning based on real-

world data. This hybrid approach provides the advantages of global search from PSO and local tuning from 

ANFIS, resulting in faster convergence, improved accuracy, and better adaptability to changing or uncertain 

environments. Figure 2 illustrates the use of an intelligent algorithm for DSM in a smart grid. This algorithm 

optimizes the balance between electricity supply and fluctuating consumer demand, a critical aspect of 

modern grids due to the increasing reliance on variable renewable energy. By analyzing real-time data, the 

smart algorithm adjusts DSM strategies to manage these fluctuating loads, ensuring grid stability and 

efficiency. The smart grid network, equipped with advanced communication and automation technologies, 

enables real-time interaction between energy providers and consumers, allowing for dynamic adjustments 

that reduce peak demand, improve energy utilization, and enhance overall grid performance. The 

organization of this paper is given as follows: the methods summarizing the main keys of the contribution are 

presented in section 1. Also, the problem formulation is illustrated. Section two is concerned with the 

description of simulation scenarios, modeling, and simulation data organization. The proposed algorithm of 

optimization and optimization diagram are given in section three. The results of the simulation are discussed 

in section four. Finally, a conclusion is presented summarizing the findings, and discussing the implications. 

 

 

 
 

Figure 2. Application of a smart algorithm for DSM within a smart grid network that handles fluctuating 

loads 

 

 

2. MATERIALS AND METHODS 

The suggested method introduced in this paper consists of investigating optimization of the DSM in 

various smart grid areas, including residential, commercial, and industrial sectors. The smart grid is 

integrated with the primary grid, operating at a voltage of 410 V. The link lengths for the different sectors are 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

 A hybrid APSO–ANFIS optimization based load shifting technique for … (Mohamed Faradji) 

49 

2 km for residential, 3 km for commercial, and 5 km for industrial zones. Uniform market prices for 

electricity are applied to all sectors within the smart grid. By analyzing and optimizing energy consumption 

in these distinct sectors, this study aims to contribute valuable insights into effective load management and 

cost-saving strategies within smart grid environments. 

Figure 2 depicts the (DSM) framework within a multi-sector smart grid. In this framework, energy 

is provided to three sectors: residential, commercial, and industrial, all sourced from the grid. The 

optimization introduced in this study is a multi-strategy adaptive PSO load shifting technique for the 

aforementioned DSM. The modelling and simulation of the smart grid as well as the optimization algorithm 

implemented in this study are implemented on MATLAB software. Figure 2 shows a general description of 

the proposed approach. 

The proposed strategy for demand management revolves around implementing load shifting 

measures on appliances. The objective is to optimize the load consumption profile, bringing it as closely 

aligned as possible with the predetermined objective load curve. To achieve this alignment, a specific 

minimization equation is employed as part of the strategy:  

 

∑ (𝑆𝑙𝑜𝑎𝑑(t) − objective(t)
𝑇

𝑡−1
)2  (1) 

 

In this context,  𝑆𝑙𝑜𝑎𝑑(t) signifies the real energy usage at the time (t), and ‘𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑡)’ indicates the 

targeted energy usage at that same moment. The cumulative energy usage at the time (t) is determined by 

summing up the predicted load for that time with the loads that were either connected or disconnected before 

the load shifting operation. The load’s mathematical expression is presented as (2).  

 

𝑆𝑙𝑜𝑎𝑑(𝑡) =  𝑆𝑓𝑜𝑟𝑐𝑎𝑠𝑡𝑒𝑑(𝑡) + 𝑆𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑡) + 𝑆𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑡)  (2) 

 

The term “Connection(t)” means the load increment at a time “𝑡” resulting from the adjustment of 

connection time to that specific moment. It encompasses both the load increase at a time “𝑡” caused by 

devices scheduled for times preceding “𝑡” and the load increases due to the shifting of their connection.  

The connection formulation is shown in (3). 

 

Connection (t) = ∑ ∑ 𝐺𝑛𝑚𝑡 . 𝐶1𝑛 +𝑀
𝑛=1

𝑡−1
𝑚=1 ∑ ∑ ∑ 𝐺𝑛𝑚(𝑡−1). 𝐵(1+𝑣)𝑛 𝑀

𝑛=1
𝑡−1
𝑚=1

𝑘−1
𝑣=1  (3) 

 

Where, 𝐺𝑛𝑚𝑡 represents the count of devices of type “𝑛” that are shifted from instance “m” to “t”. The 

variable “𝑀 ” denotes the device type. 𝐶1𝑛 and 𝐵(1+𝑣)𝑛 correspond to the power consumption of device type 

“𝑛” at time instances 1 and (1 +  𝑣), respectively. The variable “𝑘” signifies the total duration of 

consumption for devices of type “𝑛”. The term “Disconnection(t)” refers to the reduction in load caused by 

delayed connection timings of devices, which were originally scheduled to start their consumption at a time 

“𝑡”. It also encompasses the load decrease resulting from delayed connection times of devices that were 

expected to commence consumption at times preceding “𝑡”. The mathematical expression of the 

disconnection term is given as (4). 

 

Disconnection (t)  = ∑ ∑ 𝐺𝑛𝑡𝑥. 𝐵1𝑛 +𝑀
𝑛=1

𝑡+y
𝑥=t+1 ∑ ∑ ∑ 𝐺𝑛(𝑡−1)x. 𝐵(1+𝑣)𝑛

𝑀
𝑛=1

𝑡+y
𝑋=t+1

𝑘−1
𝑣=1  (4) 

 

In the provided equations, 𝐺𝑛𝑡𝑥 denotes the number of devices of type “𝑛” that have been transferred 

from time instance “𝑡” to “𝑥”. To clarify the process of load shifting, Figure 3 displays the timeframes during 

which loads are connected or disconnected. There are two categories of loads: fixed and movable. Fixed 

loads remain constant and unalterable within their original periods, while movable loads can be rescheduled 

to different time slots due to their controllable characteristics.  

In Figure 3, the loads are initially depicted according to their original operating schedules before any 

connection or disconnection events. The shift in loads is illustrated after the disconnection phase has been 

completed. This problem is structured as a minimization challenge, with the stipulation that the device count 

should never be allowed to become negative. To satisfy this condition, the number of available controllable 

devices 𝐺𝑛𝑚𝑡 should consistently exceed the count of devices meant to be shifted away 𝐺𝑛𝑚𝑡 at any given 

moment, which is expressed by (5). 

 
∑ 𝐺𝑛𝑚𝑡 < 𝐵𝑡 (𝑛)𝑇

𝑡=1  (5) 

 

𝐵𝑡(𝑛) denotes the count of devices of type “𝑛” available for control at time instance “𝑗”. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 1, July 2025: 45-61 

50 

 
 

Figure 3. Connection and disconnection of loads in DSM 

 

 

3. DESCRIPTION OF SCENARIOS FOR SIMULATION 

The study was carried out across various sectors of the smart grid, including residential, 

commercial, and industrial zones. Operating alongside the main grid, the system functions at a voltage level 

of 410 V. The sectors are positioned at distances of 2 km, 3 km, and 5 km, respectively. A uniform market 

price is applied across all sectors. The primary aim is to reduce utility costs by structuring the objective 

function to be inversely related to the market price. 

The power demand for the residential, commercial, and industrial sectors is 1.5 MW, 2 MW, and  

3 MW, respectively. It is important to note that electricity demand is lower during off-peak morning hours, 

typically before 8 am. As a result, this period is excluded from high-peak load shifting. The time window for 

load shifting begins at the eighth hour of the current day and continues into the next day.  

The objective function, which seeks to maximize consumer savings, is modeled as the inverse of 

electricity prices [19]. This is represented by (6) in the study, with the goal of reducing electricity costs for 

utility companies by setting the objective curve opposite to the market price. 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
𝑆𝑎𝑣𝑔

𝑆𝑚𝑎𝑥
 ×  ∑ 𝐹𝑜𝑟𝑐𝑎𝑠𝑡𝑒𝑑𝐿𝑜𝑎𝑑 ×

1

𝑆(𝑡)
24
𝑡=1  (6) 

 

In this context, 𝑆𝑎𝑣𝑔 refers to the average electricity price over a 24-hour period, 𝑆𝑚𝑎𝑥  denotes the maximum 

price during this time, and 𝑆(𝑡) represents the price at any given time “t”. This study takes into account the 

energy consumption of various types of devices, considering factors such as the number of device types 

within the system, the daily operational hours for each device type, the maximum duration a device can 

operate continuously, the forecasted load for each type, the initial-hour consumption, continuous operation 

hours, and the start time for each device. 

Table 1 outlines the hourly electricity consumption predictions for residential, commercial, and 

industrial microgrids, alongside the corresponding wholesale electricity prices (in cents per kWh) throughout 

the 24-hour period where the first hour is 8.00 - 9.00 AM. Each hour is matched with a specific wholesale 

price and the projected energy consumption (in kWh) for each microgrid category. This table is useful for 

analyzing load patterns and price dynamics across different sectors in the grid. 
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Table 1. Forecasted load consumption data categorized by zones 
Time Wholesale price (ct/kWh) Forecasted hourly load (kWh) 

Residential microgrid Commercial microgrid Industrial microgrid 

1st hour 12 729.4 923.5 2045.5 

2nd hour 9.19 713.5 1154.4 2435.1 

3rd hour 12.27 713.5 1443 2629.9 
4th hour 20.69 808.7 1558.4 2727.3 

5th hour 26.82 824.5 1673.9 2435.1 

6th hour 27.35 761.1 1673.9 2678.6 
7th hour 13.81 745.2 1673.9 2678.6 

8th hour 17.31 681.8 1587.3 2629.9 

9th hour 16.42 666 1558.4 2532.5 
10th hour 9.83 951.4 1673.9 2094.2 

11th hour 8.63 1220.9 1818.2 1704.5 

12th hour 8.87 1331.9 1500.7 1509.7 
13th hour 8.35 1363.6 1298.7 1363.6 

14th hour 16.44 1252.6 1096.7 1314.9 

15th hour 16.19 1046.5 923.5 1120.1 

16th hour 8.87 761.1 577.2 1022.7 

17th hour 8.65 475.7 404 974 

18th hour 8.11 412.3 375.2 876.6 
19th hour 8.25 364.7 375.2 827.9 

20th hour 8.1 348.8 404 730.5 
21th hour 8.14 269.6 432.9 730.5 

22th hour 8.13 269.9 432.9 779.2 

23th hour 8.34 412.3 432.9 1120.1 
24th hour 9.35 539.1 663.8 1509.7 

 

 

3.1.  Residential case 

The operational scope of this region encompasses household appliances characterized by modest 

power consumption and limited operating durations. A total of 2,600 controllable devices, spanning across  

14 distinct types, compose this inventory. Table 2 provides a comprehensive overview of these controllable 

devices, alongside their corresponding consumption data. 

 

 

Table 2. Controllable device data in the residential area 
Type Device’s hourly consumption (kW) 

1st 2nd 3rd Device 

Dryer 1.2 - - 189 

Dish washer 0.7 - - 288 

Washing machine 0.5 - - 268 
Oven 1.3 - - 279 

Iron 1 - - 340 

Vacuum cleaner 0.4 - - 158 
Kettle 2 - - 406 

Toaster 0.9 - - 48 
Rice cooker 0.85 - - 59 

Hair dryer 1.5 - - 58 

Blender 0.3 - - 66 
Frying pan 1.1 - - 101 

Coffee maker 0.8 - - 56 

Total - - - 2605 

 

 

3.2.  Commercial case 

In contrast, the commercial domain showcases higher utilization ratings in comparison to the 

residential sector. Here, over 800 devices representing 8 diverse types contribute to the potential for load 

management. Table 3 provides a detailed overview of these controllable devices and their associated energy 

usage figures. 

 

3.3.  Industrial case 

Within this context, the industrial sector maintains a notably smaller device count when juxtaposed 

with the broader spectrum of controllable devices; however, it compensates with substantial consumption 

levels and extended device operational durations. Industrial devices within this zone exhibit prolonged 

continuous operation, often critical regardless of load control methodologies. Within this scope, a collection 

of 100 controllable devices spanning 6 distinct types emerges. These devices, alongside their respective 

consumption data, are enumerated in Table 4. 
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Table 3. Controllable device data in the commercial area 
Type Device’s hourly consumption (kW) 

1st 2nd 3rd Device 

Water dispenser 2.5 - - 156 

Dryer 3.5 - - 117 

Washing machine 0.5 - - 268 
Kettle 3 2.5 - 123 

Oven 5 - - 77 

Coffee maker 2 2 - 99 
Air conditioner 4 3.5 3 56 

Lights 2.5 1.75 1.5 87 

Total - - - 808 

 

 

Table 4. Controllable device data in the industrial area  

Type 
Device’s hourly consumption (kW) 

1st 2nd 3rd 4th 5th 6th Device 

Water heater 12.5 12.5 12.5 - - - 39 
Welding machine 25 25 25 25 - - 35 

Fan AC 30 30 30 30 - - 16 

Arc furnace 50 50 50 50 50 50 8 
Induction motor 100 100 100 100 100 100 5 

DC motor 150 150 150 - - - 6 

Total - - - - - - 109 

 

 

4. A HYBRID APSO–ANFIS OPTIMIZATION ALGORITHM 

The presented PSO-fuzzy hybrid algorithm integrates PSO and fuzzy logic to tackle optimization 

problems. Initiated by setting parameters for both PSO and fuzzy logic, the algorithm initializes particles 

with random positions and velocities. In the main PSO loop, fitness is evaluated, and personal and global best 

positions are updated based on the objective function. Notably, the algorithm incorporates fuzzy logic by 

using each particle's position as input to a fuzzy logic system, influencing the particle's position update. This 

integration enhances adaptability and accommodates uncertainties within the optimization process. The 

global best position and value, representing the optimized solution, are displayed at the conclusion of the 

iterations. The algorithm's strength lies in the collaborative decision-making synergy between PSO's global 

optimization and fuzzy logic's interpretability, making it effective for navigating complex search spaces and 

addressing problems with inherent uncertainties. 

 

4.1.  A multi-strategy adaptive particle swarm optimization algorithm 

An effective DSM technique should be capable of handling a variety of controllable loads, each with 

unique characteristics. Linear programming and dynamic programming prove inadequate for managing a 

considerable number of diverse loads simultaneously [27]. The PSO algorithm functions as a population-

based stochastic search technique. Within this framework, each particle’s position signifies a potential 

solution to the optimization problem at hand. Evaluation of a particle’s position occurs through an assessment 

of its merit, quantified by the fitness value extracted from the optimization function. In the initialization 

phase of the PSO algorithm, the particle population is randomly established as a collection of candidate 

solutions. Subsequently, each particle traverses the search space at a specific velocity, subject to dynamic 

adjustments based on its individual flight history and that of its companions [27]. 

The algorithm converges toward the optimal solution through iterative cycles until the predefined 

convergence condition is satisfied. This iterative refinement process collectively contributes to the attainment 

of the most favorable solution. PSO stands as an intelligent algorithm exhibiting global convergence, 

minimizing the need for extensive parameter adjustments. Nonetheless, conventional PSO encounters 

challenges like susceptibility to local optima and gradual convergence. The hybrid APSO–ANFIS 

optimization algorithm (HAPA) addresses these issues by mitigating the search process’s inherent 

limitations, leading to enhanced convergence precision and speed. This adaptation empowers the algorithm to 

efficiently tackle intricate optimization problems, reducing search process bias and enhancing its suitability 

for complex scenarios [27]. The velocity expression of the algorithm is given in (7), and the estimated 

position is illustrated by (8).  

 

𝑣𝑖(𝑡 +  1) =  𝜔 ×  𝑣𝑖(𝑡) +  𝑐1 ×  𝑟𝑎𝑛𝑑() ×  (𝑝𝑖(𝑡) −   𝑥𝑖(𝑡)) +  𝑐2 × 𝑟𝑎𝑛𝑑() ×  (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) (7) 

 

𝑥𝑖(𝑡 +  1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 +  1) (8) 
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Where “𝑥” is the supposed population with “𝑛” particles is the velocity of 𝑖𝑡ℎ particle, 𝑝𝑖(𝑡) signifies the 

personal best position that particle “𝑖” has encountered since the initial time step. Furthermore, “𝑔𝑏𝑒𝑠𝑡” 

designates the most optimal position discovered by the collective particles up to that point in the process. In 

this context, where i ranges from 1 to 𝐷, certain variables are defined. The inertia weight is represented as 

“𝜔”, with “c1”, and “𝑐2” serving as constants intrinsic to the PSO algorithm and taking values within the 

range of [0,2]. Meanwhile, “𝑟𝑎𝑛𝑑()” stands for random numbers confined within the interval [0,1]. An 

illustrative representation of the particle movement process based on PSO iterations is presented in Figure 4. 

 

 

 
 

Figure 4. A sequential progression of particle motion within the PSO framework 

 

 

The strategies for enhancing inertia weights “𝜔” and learning factors (𝑐1, 𝑐2) encompass a spectrum 

of classifications, including constancy or stochasticity, linearity or non-linearity, and adaptability. Existing 

research has experimentally demonstrated the efficacy of non-linearly decreasing weights over linearly 

decreasing ones within the context of the dual dynamic adaptation mechanism. The utilization of nonlinear 

learning factors offers heightened compatibility with intricate optimization objectives, aligning well with the 

complexities inherent in such pursuits. A noteworthy approach leverages inertia weights to fine-tune learning 

factors, thereby achieving a balance between individual particle learning capabilities and collective group 

learning capabilities. This equilibrium significantly enhances the algorithm’s optimization accuracy. In this 

paper, a hybrid approach amalgamating both strategies has been adopted, yielding superior results. The 

flowchart depicted in Figure 5 demonstrates the proposed optimization algorithm. The parameter “𝜔” serves 

as a pivotal determinant influencing the performance and efficacy of the PSO algorithm. Reduced values of 

“𝜔” bolster the algorithm’s capacity for local search, elevating convergence accuracy. Conversely, larger 

“𝜔” values enhance global search capabilities, preventing particles from being confined to local optima; 

however, this might result in a slower convergence rate. A significant proportion of ongoing enhancements in 

PSO pertain to the optimization of “𝜔”. 

 

𝜔 =  𝜔𝑚𝑖𝑛 + (𝜔𝑚𝑖𝑛 + 𝜔𝑚𝑖𝑛  ) × exp[ −20 × (
𝑡

𝑇
)6] (9) 

 

Where T is the maximum number of time steps, usually. The learning factor (𝑐1, 𝑐2) varies according to “𝜔”. 

The values of “𝑐1” and “𝑐2” within the velocity update equation plays a crucial role in determining the 

degree of learning exhibited by a particle toward its optimal position. Specifically, “𝑐1” governs the degree 

of self-learning of the particle, while “𝑐2” influences the extent of its social learning. These coefficients also 

contribute to altering the particle’s trajectory over time. 

Building upon prior insights, this study adopts an enhanced adjustment strategy for these learning 

factors and inertia weights. This strategy capitalizes on the advantages of employing non-linear functions. 

The coefficients are harmonized with the values “A = 0.5”, “B = 1”, and “C = 0.5”, resulting in formula 10. 

By leveraging this refined combination, the PSO algorithm can achieve improved performance and 

convergence outcomes. Formulations of the factors “C1” and “C2” are respectively given by (10) and (11). 

 

𝐶1 = 𝐴𝜔2 + 𝐵𝜔 + 𝐶 (10) 

 

𝐶2 =  2.5 + 𝐶1 (11) 
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The algorithm’s convergence and the speed at which it converges are significantly intertwined with 

the position weighting factor. However, the primary parameter-tuning approach often concentrates solely on 

refining velocity updates, neglecting position updates. To address this limitation and regulate the impact of 

velocity on position, an innovative position update formula incorporates a constraint factor “𝛼”. The 

introduction of “𝛼” serves the purpose of calibrating the influence of velocity, aiming to mitigate search 

process limitations and subsequently enhance the algorithm’s convergence rate. 

In the basic PSO framework, a particle’s new position is determined by adding its current velocity to 

its present position. However, the direct addition of position and velocity vectors requires the introduction of 

a constraint factor within the position update formula. Traditionally, this constraint factor in the PSO 

algorithm is typically set to 1. The role of “α” is to steer the particle toward proximity to its optimal position, 

and its enhancement controls the degree to which velocity influences position. By regulating this influence, 

the algorithm’s convergence is notably enhanced. In this study, an “𝛼” that evolves based on changes in 𝜔 is 

employed. During the initial stages, “𝛼” is heavily influenced by particle velocity, facilitating robust 

exploration. Subsequently, in later stages, 𝛼’s sensitivity to particle velocity diminishes, reinforcing its 

efficacy in local search activities. 

 

𝑥𝑖𝑗(𝑡 +  1) = 𝑥𝑖𝑗(𝑡) + 𝛼 𝑣𝑖𝑗(𝑡+1) (12) 

 

𝛼 = 0.1 + 𝜔 (13) 

 

 

 
 

Figure 5. Flowchart for HAPA algorithm 

 

 

4.2.  An adaptive network-based fuzzy inference system 

Neural networks (NN) represent potent and versatile tools for forecasting, leveraging simplicity 

alongside remarkable capabilities. Their effectiveness hinges on the availability of sufficient training data,  

a judicious selection of input-output samples, an appropriate number of hidden units, and ample 

computational resources. Notably, NN possesses the ability to approximate any nonlinear function and tackle 
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problems with ill-defined or challenging-to-compute input-output relationships, owing to their data-driven 

nature [28]. 

Predictive models benefit from multi-layer feedforward neural networks that utilize sigmoid 

activation in the hidden layers and linear activation for the output layers. Concurrently, fuzzy logic systems 

provide a nonlinear conversion of input arrays into single output values, integrating both quantitative data 

and verbal insights. A standard fuzzy logic system includes four main parts: a fuzzifier, a set of rules, an 

inference engine, and a defuzzifier. The fuzzifier converts precise input values into fuzzy terms, using 

membership functions to express how closely a variable relates to a certain characteristic. Fuzzy rules, 

formulated as ‘if-then’ propositions, can be based on empirical data or the linguistic expertise of specialists. 

The Mamdani and Sugeno inference systems serve as essential tools and vary in their 

methodologies. The Mamdani system transforms fuzzy input values into fuzzy output values, whereas the 

Takagi-Sugeno model associates fuzzy inputs with definite outputs. Subsequently, the defuzzifier translates 

fuzzy values into precise numbers based on different measures such as the area’s centroid, area’s bisector, 

average of maximum values, or the utmost value. The Figure 6 depicts the structure of an ANFIS controller.  

It shows the integration of fuzzy logic and neural networks to create a hybrid control system. This structure 

allows the ANFIS controller to adapt and improve its performance over time, making it effective for 

complex, nonlinear control tasks. 

 

 

 
 

Figure 6. Block diagram of ANFIS controller 

 

 

Despite the automatic knowledge acquisition during the learning process, NN functions as a "black 

box," making it challenging to extract knowledge from them. In contrast, fuzzy systems are more 

interpretable through their rules, though defining these rules becomes intricate with numerous variables and 

complex relations. Combining NN and fuzzy systems provides a synergistic advantage. In a neuro-fuzzy 

system, NN automatically derives fuzzy rules from numerical data, and through the learning process, 

adaptively adjusts membership functions [29]. 

ANFIS, which belongs to the class of adaptive multi-layer feedforward networks, is used for 

nonlinear prediction tasks, leveraging historical data to forecast future values. It merges the autonomous 

learning capabilities of neural networks with the descriptive power of fuzzy inference systems. The structure 

of ANFIS includes five distinct layers, each consisting of nodes characterized by specific node functions, 

with Oji representing the output from the ith node in the jth layer. 

The ANFIS architecture combines two intelligent techniques: artificial neural networks (ANN) and 

fuzzy logic. ANFIS is often regarded as an adaptive network closely associated with ANN. The foundation of 

neuro-fuzzy modeling is rooted in a unified framework known as the adaptive network, which integrates both 

neural network and fuzzy model concepts [29]. 

 

 

5. RESULTS AND DISCUSSION 

These simulations were executed using the MATLAB platform, and the load profile was sourced 

from [30]. The simulation outcomes vividly illustrate the effectiveness of the introduced DSM technique. 

Table 5 depicts the parameters used for simulation for APSO. 

The technique proved the capability to substantially curtail the aggregate usage of end consumers, 

closely approximating the pre-defined objective load curve across all sectors within the smart grid. 
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Furthermore, the algorithm showcased its adeptness in efficiently managing a diverse array of loads. The 

depiction of the search space pertinent to the optimization function, facilitated by the HAPA algorithm, is 

presented in Figure 5. The objective curve depicted in black in Figure 7 to 9 is a representation of the (6).  

 

 

Table 5. APSO parameters 
APSO parameter Value 

Maximum iterations 50 

Velocity clamping factor 2 
Cognitive constant 2 

Social constant 2 

Number of particles 20 

 

 

5.1.  Residential area case 

The results of applying HAPA optimization to the residential case are shown in Figure 7, Figure 7(a) 

illustrates the simulation outcomes for the proposed DSM technique applied within the residential domain. 

The graph showcases a conspicuous reduction in peak demand during the interval spanning from 10 am to  

3 pm a period characterized by heightened load owing to a surge in active appliances.  

This reduction is achieved by strategically redistributing the load to timeframes of diminished 

consumption, notably from 7 pm to 12 pm. However, it should be highlighted that the effectiveness of the 

algorithm is constrained during times when there is little variation in load, like the early hours before 10 am. 

This indicates that the optimized load for shifting is confined to an array defined by the anticipated load and 

the load curve applied in the optimization process. 

Figure 7(b) displays the convergence pattern of the HAPA algorithm applied in the residential 

context. It reveals a smooth convergence trajectory, stabilizing around the 15th iteration following an initial 

rapid convergence phase. The Figure 7 illustrates the effectiveness of the DSM approach, which substantially 

reduces peak demand during the period from 10 am to 3 pm when the system experiences maximum load due 

to a high number of appliances in the ON state. The load is intelligently shifted to periods of lower 

consumption, typically from 7 pm onwards. Significantly, the application of the HAPA technique leads to a 

substantial 7.25% reduction in the electricity bill, decreasing from 2302.9 to 2135.94. This notable financial 

enhancement underscores the efficiency and cost-saving potential of the HAPA technique when implemented 

in residential settings. 

 

 

  
(a) (b) 

 

Figure 7. DSM results of the residential area using HAPA optimization (a) optimized power consumption 

over a 24-hour period for residential area and (b) convergence curve of HAPA optimization for 

residential area 

 

 

5.2.  Commercial area case 

The results of applying HAPA optimization to the commercial case are shown in Figure 8, Figure 8(a) 

illustrates the simulation outcomes regarding the proposed DSM technique within the commercial sector. The 

convergence trajectory of the HAPA algorithm for the commercial sector is depicted in Figure 8(b), 
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showcasing a smoother convergence pattern. After an initial swift convergence phase, the algorithm 

stabilizes smoothly over 11 iterations, indicating improved convergence behavior compared to the residential 

sector. 

 

 

  
(a) (b) 

 

Figure 8. DSM results of the commercial area using HAPA optimization (a) optimized power consumption 

over a 24-hour period for commercial area and (b) convergence curve of HAPA optimization for  

commercial area 

 

 

Notably, the application of DSM leads to a reduction in peak demand during the 10 am to 4 pm 

interval a time when system load is at its zenith due to numerous appliances operating. Interestingly, during 

low consumption windows, such as 7 pm to 12 pm, the efficacy of DSM is comparatively diminished 

compared to the residential sector. The algorithm’s limitations are more pronounced when dealing with 

minimal load variations, as experienced in early morning periods before to 10 am. Remarkably, the 

utilization of the adaptive PSO dual-update (HAPA) technique results in a significant 9.6% reduction in the 

electricity bill declining from $3636.6 to $3315.12. This financial enhancement underscores the potential of 

HAPA in achieving cost savings within the commercial context.  

 

5.3.  Industrial area case 

Shifting focus to the industrial domain, the results of applying HAPA optimization to the industrial 

case are shown in Figure 9, Figure 9(a) outlines the simulation outcomes for the proposed DSM technique. 

Given the industrial sector’s substantial loads, the algorithm’s efficacy is notably less competitive in curbing 

consumption during this time frame. The convergence trajectory of the HAPA algorithm within the industrial 

sector is displayed in Figure 9(b), showcasing a convergence pattern that, although not entirely smooth, 

ultimately reaches a minimum value after 22 iterations.  
 

 

  
(a) (b) 

 

Figure 9. DSM results of the industrial area using HAPA optimization (a) optimized power consumption over 

a 24-hour period for industrial area and (b) convergence curve of HAPA optimization for industrial area 
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The summarized results of the PSO for load consumption across all three sectors are compiled in 

Table 6. Table 1 displays the load data prior to the implementation of DSM and the targeted load for all 

scenarios, accompanied by time-of-use (TOU) rates, which remain consistent across all regions. In this 

analysis, the maximum load recorded in the residential, commercial, and industrial sectors is 1,363.6 kWh, 

1,818 kWh, and 2,727.3 kWh respectively, with the total loads amounting to 17,666.21 kWh, 25,656.55 kWh, 

and 40,470.70 kWh.  
 

 

Table 6. HAPA optimized results for forecasted load 
Time Wholesale price (ct/kWh) HAPA optimized forecasted load (kWh) 

Residential microgrid Commercial microgrid Industrial microgrid 

1st hour 12 673 977.5 1541.9 
2nd hour 9.19 878.8 1276.4 2013.4 

3rd hour 12.27 658.2 956 1508 

4th hour 20.69 390.3 566.9 894.3 
5th hour 26.82 301.1 437.3 689.9 

6th hour 27.35 295.3 428.8 676.5 

7th hour 13.81 584.8 849.4 1339.8 
8th hour 17.31 466.5 677.6 1068.9 

9th hour 16.42 491.8 714.3 1126.8 

10th hour 9.83 821.5 1193.3 1882.3 
11th hour 8.63 935.8 1359.2 2144 

12th hour 8.87 910.4 1322.4 2086 

13th hour 8.35 967.2 1404.8 2215.9 
14th hour 16.44 491.2 713.5 1125.5 

15th hour 16.19 498.8 724.5 1142.8 

16th hour 8.87 910.4 1322.4 2086 
17th hour 8.65 933.6 1356.1 2139.1 

18th hour 8.11 995.8 1446.4 2281.5 

19th hour 8.25 978.9 1421.8 2242.8 
20th hour 8.1 997 1448.1 2284.3 

21th hour 8.14 992.1 1441 2273.1 

22th hour 8.13 993.3 1442.8 2275.9 
23th hour 8.34 968.3 1406.5 2218.6 

24th hour 9.35 863.7 1254.5 1978.9 

 
 

Table 6 summarizes the HAPA’s refined outcomes for energy consumption in these three sectors. It 

can be observed that the new peak loads are 997.0 kWh, 1448.1 kWh, and 2284.3 kWh respectively 

showcasing how the HAPA is successful in reducing load peaking considerably. The HAPA enhances the 

efficiency of energy use across all three smart grid areas, leading to cost savings. The projected energy 

demands for each of the three sectors, based on the same rate of electricity pricing, are detailed in the table. 

The HAPA algorithm efficiently optimizes load consumption and leads to expenditure reduction in all three 

smart grid sectors. 

A comparative study with previous findings has been summarized in Tables 7 to 9 commencing 

with Table 7, which outlines the reduction in operational cost across different sectors, it is observed that the 

hybrid APSO–ANFIS optimization technique demonstrates significant effectiveness. In the residential sector, 

operational costs are reduced by 7.52%, while the commercial and industrial sectors experience even more 

substantial reductions at 9.6% and 16.83%, respectively. These findings highlight the economic advantages 

of implementing the proposed technique in managing and optimizing energy consumption.  
 
 

Table 7. Reduction in operational cost 
Sector Cost without DSM Cost with DSM Reduction percentage 

Residential 2,302.9 2,135.94 7.52 

Commercial 3,636.6 3,315.12 9.6 
Industrial 5,712 4,750.67 16.83 

 

 

Moving to Table 8, which provides insights into the reduction in peak demand, the hybrid APSO–

ANFIS approach continues to showcase its prowess. In the residential sector, a notable reduction of 23.25% 

in peak demand is achieved. Similarly, the commercial and Industrial sectors witness reductions of 17.61% 

and 16.5%, respectively. These results underscore the technique's adaptability across various sectors, 

contributing to the efficient management of peak electricity demands. 

This study compared our results with those of previous findings. To ensure a fair comparison, 

several critical factors are accurately considered. First, a problem formulation is aligned precisely, ensuring 
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consistency across studies. Second, we matched simulation conditions to guarantee comparability. Lastly, we 

meticulously accounted for data input consistency. By adhering to these stringent criteria, it is confidently 

evaluated the congruence and divergence between our results and the existing literature mentioned in Table 9. 

Table 9 consolidates the analysis by presenting a comprehensive comparison with previous findings. 

Focusing on reduction percentages of peak demand and operational costs, the HAPA method consistently 

outperforms other established techniques (APSO/DU, EA, AMFO) across all sectors. Noteworthy is the peak 

demand reduction in the residential sector at 23.76%, reinforcing the technique's efficacy in diverse 

household settings. Additionally, the HAPA method achieves a substantial reduction of 14.81% in 

operational costs within the Industrial sector, emphasizing its economic benefits. 
 

 

Table 8. Reduction in peak demand 
Sector Peak load without DSM Peak load with DSM Reduction Reduction percentage 

Residential 1,363.6 1,046.56 317.04 23.25 
Commercial 1,818.2 1,498.01 320.18 17.61 

Industrial 2,727.3 2276.6 450.7 16.5 

 

 

Table 9. Comparison with previous findings 
Sector Reduction percentage of peak demand Percentage of operational cost 

APSO/DU EA AMFO HAPA APSO/DU EA AMFO HAPA 

Residential 23.25 18.3 21.74 23.25 7.25 4.976 5.12 7.52 
Commercial 17.61 18.3 19.74 17.61 8.84 5.83 4.9 9.6 

Industrial 11.5 14.2 13 16.5 13.5 9.98 5.2 16.83 

 

 

In conclusion, the hybrid APSO–ANFIS optimization technique emerges as a robust solution for 

DSM in smart grids. Its demonstrated effectiveness in reducing both peak demand and operational costs 

positions it as a valuable tool for enhancing energy efficiency and economic savings across residential, 

commercial, and industrial sectors. The sequential analysis of Tables 7 to 9 provides a nuanced 

understanding of the technique's multifaceted contributions to smart grid management. Further validation 

through real-world implementations could solidify its standing as a significant advancement in the field. 

the HAPA optimization approach has the potential to ameliorate this scenario. The results of the 

simulation highlight significant savings for consumers and benefits for utility companies, including improved 

grid reliability and better management of electricity demand. Consumer cost savings fall within the range of 

7.5–16.83%, while generation companies experience improved grid stability and optimized load 

management. The HAPA algorithm mitigates search process blindness, enhancing both the accuracy and 

speed of convergence in the algorithm. This adaptability significantly improves its performance when 

addressing intricate optimization problems. 

 

 

6. CONCLUSION AND PERSPECTIVES 

In this paper, a new hybrid optimization algorithm has been proposed to optimize important 

performances in smart grids. The simulation tests were conducted across three distinct smart grid categories: 

domestic, business, and manufacturing sectors (residential, commercial, and industrial). These profiles are 

considered as loads and consumption patterns. The proposed optimization algorithm is based on 

hybridization between demand-side management and multi-strategy adaptive PSO techniques.  

The hybrid optimization algorithm has demonstrated its effectiveness in enhancing the control 

parameters of the smart grid’s distribution network, leading to notable improvements. In this research, a 

population-based metaheuristic technique was developed as a minimization method. The study demonstrates 

a significant reduction in peak demand by using a hybrid optimization algorithm (HAPA). Values of 23.25%, 

17.61%, and 16.5% are achieved in the case of residential, commercial, and industrial sectors, respectively. 

Furthermore, operational cost reductions of 7.52%, 9.6%, and 16.83% are obtained for the three different 

cases. As a perspective work, to improve the proposed algorithm convergence a new vision has been 

suggested. Also, the optimization study will be extended to a large scale of smart grids. 
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