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NOMENCLATURE

T,, T, :Electromagnetic torque and resistance. Lg,L,  : Stator and rotor inductances.
las: igs - Stator currents. L, : Mutual inductance.

igr, iqr - Rotor currents. p : Number of pole pairs.

D5, By Stator flux. Ji : Moment of inertia.

@y, B,y RoOtOF Flux. f : Friction coefficient.

Wg : Stator angular electrical speed. Sa:Sp.Sc : Sequence of the DTC.

ab
R, R, : Stator and rotor resistances. E, vqc :The DC voltage of the battery.
V4,V Ve : Inverter output voltages
1. INTRODUCTION
The pivotal initiation of artificial intelligence (Al) research during the 1950s served as the
foundational catalyst for an enduring, sweeping trend toward the diminution of mandatory human effort
across all major economic spheres, including industrial manufacturing, modern agricultural processes, and
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the expansive service sector [1], [2]. Artificial intelligence fundamentally constitutes a sophisticated,
forward-looking analytical technology. Its core strength lies in its ability to meticulously process and
interpret extensive volumes of data to produce reliable, well-grounded projections, simultaneously
formulating and providing operationally effective and prompt solutions directly extracted from its data-
processing outputs. Within control engineering, numerous methodologies exist for intelligent system
regulation. In the context of the present investigation, the adaptive neuro-fuzzy inference system (ANFIS) a
particularly robust hybrid control methodology will be precisely implemented and evaluated. The central
objective of applying ANFIS is the maximization and refinement of the operational effectiveness and
performance characteristics of the photovoltaic pumping system [3], [4].

The basis of the ANFIS control is a hybridization of two intelligent controls, fuzzy logic and neural
networks. Hybrid neuro-fuzzy networks learn reports and models using a supervised learning algorithm that
examines data from a training set consisting of sample inputs and their associated outputs [5]. The ANFIS
represents a hybrid architecture that integrates the learning capabilities of an artificial neural network (ANN)
with the structured logic of a fuzzy inference system (FIS), leveraging the strengths of each. In an ANFIS
framework, the artificial neural network component derives fuzzy rules from the input dataset, while the
membership function parameters are adaptively adjusted during the integrated learning procedure. This
hybrid system establishes relationships between inputs and outputs through paired input—output data and
combines data-driven learning with human expertise [6], [7].

The PV system photovoltaic pumping has different applications. In this work, we focus on of
photovoltaic water pumping system. Thanks to its economical price, the induction motor is frequently chosen
for use in photovoltaic (PV) water pumping applications, minimal maintenance requirements, and high
efficiency. In such systems, the PV module operates near its optimal point, making the additional expense of
an inverter relatively insignificant. Recent advancements in efficient inverter technologies for motor speed
control have further promoted the use of induction motors in solar pumping applications [8]. The system
incorporates a centrifugal pump, which is actuated by a three-phase asynchronous motor [8].

The technique of direct torque control (DTC), which invented by TAKAHASHI In 1985, it use an
attractive approach due to its efficiency and simplicity of implementation [9]. Several works allow a rigorous
modeling of this approach [10]. This technique makes it possible to calculate the control quantities, which are
the stator flux and the electromagnetic torque from the measurements of the stator currents without using a
mechanical sensor. In the DTC structure [11], [12]. In DTC, the appropriate voltage vector is directly
selected from a predefined switching table according to the DTC principle to regulate the converter
operation. This approach enables the system to achieve a fast dynamic torque response. The torque and stator
flux errors are maintained within a specified band using hysteresis controllers; however, this method
inherently produces significant torque ripple [13], [14].

2. METHODE
2.1. Hardware modeling
2.1.1. Stat representation of IM in Parck’s reference system

In order to control and observe the behaviour of the asynchronous machine, a state representation is
required. To accomplish this objective, we have considered the state vector, which is consisting of the stator
currents, and the rotor fluxes.

The full mathematical representation of the asynchronous machine, derived from the work of [15], is
presented below:
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2.1.2. Centrifugal pump modelling

In PV water pumping systems, the hydraulic pump plays a crucial role. The centrifugal pump is the
most commonly employed type due to its simple operation and modular design flexibility. Based on the
principles of the Bernoulli equation, the rotodynamic pump converts the electrical power delivered by its
drive unit into the kinetic energy of the working fluid by accelerating the fluid's rotation [16]. The
corresponding pump characteristic curve defines the correlation connecting the volumetric flow and the net
differential head at a fixed rotational speed, which may be approximated as [16], [17]:

Hpump =a0+a10+a202 )
Hpipline =Hg+AH 3)
Q@ _w. H _(w\ .1 _(w\ P _(w)’

Q_O_WO'HO_(WO) 'To_(wo) 'PO_ (Wo) (4)

ay, a4, a,: Are the specific constants defining the pump's performance
Q, H: Are defined as the pump's discharge head and flow capacity, respectively
Hy: 1s the geometric level of the system
AH: Represents the total head loss attributable to friction and local resistance within the pipeline.

Typically, hydraulic pump manufacturers provide only the nominal performance characteristics
corresponding to the rated operating speed w,, which are respectively, frequency T,, power P,, flow rate Q,
and the head H, [17].

2.1.3. Modeling the two-level voltage source inverter

A static DC/AC power electronic converter, a three-phase inverter is configured to generate three
balanced output voltages, allowing for precise adjustment of both their magnitude and frequency. The
converter's operation is effectively modeled as a conventional two-level voltage source inverter (VSI-2L) for
simulation purposes. Figure 1 presents the equivalent schematic of the VSI-2L, which draws its power from a
continuous DC supply specifically, a PV panel in this application. This DC/AC converter then acts as the
electrical energy source for the induction machine [18].
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Figure 1. Voltage source inverter
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The following section details the mathematical model for the two-level voltage inverter, as
established by [17]:
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2.1.4. PV array modelling

The mathematical representation of a PV module begins with the single-diode model for a PV cell.
This electrical analog is comprised of a current generator (I,,), an inversely connected diode (D), a series
resistance (Rs), and a shunt resistance (R,,), as depicted in Figure 2 [18].
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Figure 2. Equivalent circuit of photovoltaic cell

The output current of the PV cell represented by the following expression:

V+IRg

I=1p,,—15{exp( a V+IRS)—1}—

AKTgN;

(6)

Rp

where:

I;: The reverse saturation current of the photovoltaic cell
A: The diode ideality factor of the joint

g: Electron charge

K: Boltzmann constant

N,: The number of series connected cells

The light generated current (I,,,,) in (7) expressed as:

Ipv = [Isc + KI(TC - Tref)]G (7)

where:

K;: The thermal coefficient associated with the cell's short-circuit current

T,.r.T,: Correspond to the operating and reference temperatures of the cell, respectively
G: Corresponds to the level of solar irradiance, given in w/m?

The saturation current of the photovoltaic cell's diode, denoted as (I) is defined as:

3
= (<Y o [ (2
Is = Inc (Tref) exp Ak (Tc Tref)] (8)

The reverse saturation current is:

Isc
Ips = ——¢ 9
B8 exp(gigsVoc) -1 ©)

To reduce the number of PV panels required, a boost converter is employed to increase the output voltage of
the DC source. The circuit diagram of the boost converter is presented in Figure 3 [19].
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Figure 3. Boost converter circuit
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2.2. Technical control system
2.2.1. The direct torgue control

Based on the decoupled control of electromagnetic torque and stator flux linkage, the fundamental
principle of DTC involves the direct selection of stator voltage vectors. The control mechanism is realized by
instantaneously varying the stator voltage vectors in response to the errors observed in the torque and stator
flux [18], [19].

Figure 4 shows a diagram summarizing the general principle of the DTC technique. Currents
1., 1,, 1. and voltages V,, V,, V. are measured at the output of the inverter, and after passing through the park
transformation we obtain currents I4, I,and voltages Vg, V;;, which are used to estimate the electromagnetic
torque and flux in the relationships (10), (11). The estimated torque and flux will compared with the
reference torque and flux, and the results of the comparison are the inputs of the hysteresis controllers, which
will give the output either 1,-1 or 0. The switching states for the voltage source inverter are determined by a
selected voltage vector, which is then decomposed and used to apply the correct switching table, as shown in
Table 1 [20], [21].

t
Pas = fo (Vay — Rs [as)dt

t (10)
pps =J, (Vg —RslIg)dt

Com = p((pas Iﬁs — Pp, Ias) (11)

Table 1. The takahashi vector selection chart

N 1 2 3 4 5 6

Hr,=1 H,=1 v, Vs v, Vs Ve Vi
H, =0 v, A v, A v, v,

Hy=-1 Vs Vi v, Vs v, Vs

Hre=0 H,=1 A v, Vs Ve v, v,
H, =0 A v, A v, A v,

Hy=-1  V, /A Vi v, /A v,

To control speed, we integrate a Pl controller, which uses at its input the variation between the set
speed and the measured speed, which will define at its output the reference torque. The relationship (12)
presents the transfer function of the PI controller [14], [19].
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Figure 4. Block diagram of DTC-PI applied on induction machine
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2.2.2. MPPT technique

Due to the non-linearity of PV power and voltage variation, solar power systems need to maximum
power point tracking (MPPT) control, which depends on photovoltaic insolation and temperature, With the
objective of operating photovoltaic modules at maximum power points to produce maximum power with the
use of less expensive and more efficient equipment [22], [23]. There are a number of conventional
algorithms, such as perturbation and P&O observation [24]. Figure 5 presents the disturbance and
observation algorithm applied to the photovoltaic panel.
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Figure 5. Flowchart of the conventional perturb and observe algorithm [25]

2.2.3. Adaptive neuro-fuzzy inferencing systems

Computational intelligence techniques such as artificial neural networks (ANN), fuzzy systems, and
ANFIS are well-suited for modeling and control of nonlinear systems. ANFIS operates as a hybrid controller
that integrates the advantages of both fuzzy logic control (FLC) and neural networks (NN) [26]. In this
approach, neural networks are employed to generate fuzzy membership functions and construct the rule base
through a supervised training process [27]. Two fuzzy if—then rules are considered in the ANFIS structure, as
illustrated in Figure 6 [24], [28].
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Figure 6. Global architecture for Neuro-Fuzzy ANFIS [28]
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The ANFIS architecture is composed of five distinct layers. Within the model's antecedent, Ai and Bi
represent the fuzzy sets. Concurrently pi, qi, and ri function as the design parameters whose values are
determined during the training phase [29]. The first of the five structural elements is designated as the
fuzzification layer. The output generated by the node in this initial layer is expressed using the subsequent
[30], [31]:

—c\2
Ol,i=p,,(x)=exp {— [(XULC’) ]},where,i (13)
= 1,20r0,,i = yBi(y),i =34,

x=node input, {ci, bi, ci} =starting parameter

If u,; and u . are Gaussian MFs, they are specified by two parameters {c, c}.

Layer 2: Each node determines the firing strength of a rule, and the output of node i is expressed by the
following [32]:

OF = w; = (1) prg; (x2). 1 = 1,2 (14)

Layer 3: The nodes normalize the firing strengths of the rules, and the output of node i is given by the
following [33]:
—_ wi

w; = (15)

— yn
Zk:lwk

Layer 4: This layer performs the defuzzification and produces the final results. The weighted consequent
values for each rule are computed at every node within this layer, using (16) for their calculation [34].

Oy =wifi =wi(pix + q;y +17) (16)

To optimize the parameters of ANFIS, both least squares estimation and back-propagation methods
adopted. Figure 7 shows the explanatory diagram of neural networks. Figures 7(a) represents the result of
training stage is five Gaussian membership functions for DTC-ANFIS, and Figures 7(b) represents the result
of training stage is three Gaussian membership functions for MPPT-ANFIS [34], [35].

(b)
Figure 7. Network structure for (a) DTC-ANFIS and (b) MPPT-ANFIS

As depicted in Figure 8, the photovoltaic water pumping system is usually structured around two primary

subsystems:

—  The power circuit, which includes the solar panels, a parallel (boost) converter, a two-level inverter, an
asynchronous motor coupled to acentrifugal pump.
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—  The control circuit, which integrates: An MPPT-ANFIS controller applied to the boost converter to
optimize maximum power extraction from the solar panels. a DTC-ANFIS controller applied to the
inverter to ensure DTC of the motor.

The boost converter is directly powered by the solar panels and, thanks to the MPPT-ANFIS control,
delivers an optimal DC voltage to the inverter. The two-level inverter then converts this voltage into a three-
phase sinusoidal AC voltage to drive the induction motor. The inverter receives its switching signals from the
DTC-ANFIS controller, which provides accurate torque control. The motor then drives the centrifugal pump,
enabling water to be pumped into a well or a storage tank.

Induction

e
Converter Inverter motor

It 7

MPPT-ANFIS| [DTC-ANFIS

DC/DC v L Two level
T

Figure 8. Block diagram of the ANFIS-based control applied to a photovoltaic pumping system [36]

2. RESULTS AND DISCUSSION

To gain a deep and precise understanding of the dynamic characteristics of the photovoltaic water
pumping system, its target circuit was meticulously replicated within the MATLAB/Simulink simulation
environment. This comprehensive simulation was designed to explore how the system's performance evolves
over time, particularly under fluctuating operational conditions. For manageability and clarity, the overall
model has been systematically organized into a modular framework consisting of five primary functional
blocks. This architectural breakdown is visually represented and detailed for reference in Figure 9, outlining
the key components and their interconnections.

— DC Power Supply Block: This subsystem includes the photovoltaic panels, connected to a Boost
converter (parallel chopper) controlled by an MPPT-ANFIS controller. The controller dynamically
adjusts the operating point of the PV generator based on solar irradiance and ambient temperature, in
order to provide a stable and optimal DC voltage to the inverter input.

— DTC-ANFIS Control Block: This block implements a DTC strategy enhanced by an ANFIS. It
generates in real-time the switching signals (Sa, Sh, Sc) for the inverter, ensuring fast and robust
regulation of the motor’s torque and stator flux.

—  Two-Level Inverter Block: This static converter receives both the DC voltage from the MPPT block and
the modulation signals from the DTC-ANFIS controller. It converts the DC power into a three-phase
sinusoidal AC voltage suitable for driving the induction motor.

— Induction Motor Block: This block simulates the electromechanical behavior of the asynchronous
machine. It is powered by the inverter and subjected to a variable load torque imposed by the
centrifugal pump. The dynamic equations account for the electromagnetic interactions between the
stator and rotor.

—  The Centrifugal Pump Block represents and simulates the entire hydraulic load which the induction
motor directly drives and mechanically couples to the machine's shaft. This crucial modeling
component receives the measured rotor speed from the motor as its sole input signal. In direct response
to this rotation, the block then calculates and produces a specific resistant torque. This resistant torque
effectively opposes the motor's maotion, accurately reflecting the mechanical demand that the pump
places on the motor drive system as it works to move the fluid.

This section is dedicated to the rigorous validation of the proposed system through a series of
simulations meticulously executed within the MATLAB/Simulink environment. To accurately construct and
configure the computational models necessary for these tests, we have relied upon two critical sets of
specifications. Specifically, the dynamic behavior of the motor components is modeled using the detailed
induction motor parameters comprehensively enumerated in Table 2, while the power generation
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characteristics are defined by the specific photovoltaic (PV) panel specifications as outlined in Table 3. These
simulation runs are intentionally conducted under standardized, repeatable operating conditions to ensure
consistent and comparable results. These controlled environmental inputs are set at an ambient temperature
of $22~{\circ}\text{C}$ and a peak solar irradiance level of $1000\text{ W} \text{m}*{2}$. This defined
environment allows for a clear assessment of the system's performance before considering more variable
real-world conditions.

solar irradiance|
Solar panel with MPPT control

v
temperature
Solar panel with MPPT control

QI—DQIQ] - -
Cr —DC I

2 =

SO

INDUCTION MACHINE

w N Centrifugal pump

Direct Torque control

;

Direct Torque control

Figure 9. Global block diagram of the neuro-fuzzy control applied to a photovoltaic pumping system in
MATLAB/Simulink

Table 2. Characteristics of the induction machine

Greatness Value Greatness Value
Rated power 1.5kw Rotor resistance 3.805Q
Rated voltage 220V Cyclic stator inductance 0.274H
Rated speed 1428rpm Cyclic rotor inductance 0.274H
Nominal frequency 50Hz Mutual inductance 0.258H
Rated stator current 3.64A Number of pole pairs 2
Stator resistance 485Q Moment of inertia 0.031kg/m2
Friction coefficients 0.00114Nm.s/rd

Table 3. Characteristics of photovoltaic panel

Greatness Value
Maximum Power (W) 213W
Open circuit voltage 36.3V
Voltage at maximum power point 29V
Cells permodule 60
Short-circuit current 7.84A
Current at maximum power point Imp 7.35A

Figure 10 shows the MPPT control results by displaying the evolution of the photovoltaic voltage. It
compares two control strategies: the ANFIS-based MPPT control, represented by the solid red line, and the
conventional P&O-based MPPT control, represented by the dashed blue line. The analysis highlights that the
MPPT-ANFIS approach tracks the maximum power point (MPP) more quickly and accurately, significantly
reducing steady-state oscillations compared to the P&O method. This improvement enhances both the
system’s stability and energy conversion efficiency.

Figure 11 shows the MPPT control results by displaying the evolution of the photovoltaic power. It
compares two control strategies: the ANFIS-based MPPT control, represented by the solid red line, and the
conventional P&O-based MPPT control, represented by the dashed blue line. The observation confirms that
the ANFIS-based control extracts energy more efficiently by ensuring more accurate and stable MPP

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 3, December 2025: 1270-1284



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 a 1279

tracking. Additionally, it improves power quality by reducing oscillations and delivering a faster, more
responsive dynamic behavior than the P&O strategy.
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Figure 10. The voltage delivered by the photovoltaic panel
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Figure 11. The generated power of the photovoltaic module

This analytical section examines and dissects the behavior of the machine's primary dynamic
quantities, specifically focusing on the rotor speed, the developed electromagnetic torque, and the
instantaneous stator current. We compare the performance achieved by the two tested control strategies: the
intelligent DTC with adaptive neuro-fuzzy inference system (DTC-ANFIS, which the solid red curve
represents), and the conventional DTC with Proportional-Integral regulator (DTC-PI, which the dashed blue
curve represents). Beyond the electrical and mechanical aspects, this analysis presents the evolution of the
hydraulic flow rate that the centrifugal pump generates. This comprehensive evaluation ultimately
demonstrates how the intelligent ANFIS control significantly improves the overall operational performance
of the photovoltaic pumping system when benchmarked against the limitations of the traditional Pl-based
control scheme.

Figure 12 shows the dynamic response of the rotor speed. Between 0 s and 0.03 s, the system
exhibits an initial delay, mainly due to the transient behavior of the DC voltage generated by the photovoltaic
panels, which determines the inverter’s power supply. In steady state, the intelligent control strategy based on
the ANFIS algorithm reaches a stable rotor speed of 148 rad/s with a response time of 0.19 s. In comparison,
the conventional control using a PI regulator reaches a maximum speed of only 144 rad/s, with a response
time of 0.17 s. This limitation results from the resistive torque caused by the pump's loaded startup. Although
both methods offer similar response times, the 4 rad/s difference in steady-state speed directly impacts the
hydraulic flow rate, which is proportional to the motor shaft speed. Therefore, the ANFIS-based control
stands out for its better adaptability to load variations, more efficient use of the available solar energy, and a
significant improvement in the overall efficiency of the pumping system.

Optimization of photovoltaic pumping system using neuro fuzzy inference system ... (Laoufi Abdelhaq)



1280 O ISSN: 2502-4752

Figure 13 illustrates the evolution of the electromagnetic torque for both control strategies. During
the startup phase, both controllers produce an initial torque of approximately 40 Nm to overcome the
resistive torque generated by the loaded startup of the centrifugal pump. Under steady-state conditions, the
electromagnetic torque stabilizes at around 6.3 Nm, which compensates for fluctuations in the load torque
and ensures a constant rotor speed.

However, a comparative analysis reveals that the conventional control strategy, based on the PI
controller and the P&O algorithm produces more pronounced harmonics in the torque profile, as shown in
Figure 14. These fluctuations indicate a less consistent response and may lead to undesirable mechanical
vibrations within the machine. In contrast, the ANFIS-based control yields fewer harmonics compared to
conventional control, thereby reducing mechanical disturbances, improving user comfort, and extending the
lifespan of the system’s electromechanical components.

Figure 15 visually details how the stator current evolves across the simulation time frame. The two
distinct control strategies—the standard DTC-PI and the advanced DTC-ANFIS—each generate a noticeable
transient response in the current signal. Crucially, the DTC-ANFIS control draws a measurably higher
current during this transient period compared to the current the DTC-PI control utilizes. While both signals
contain similar harmonic profiles, the difference in the controllers' time responses ultimately causes a minor,
yet detectable, phase shift between the two current waveforms.

Figure 16 offers a direct comparison, illustrating how the two distinct regulation strategies generate
the hydraulic flow rates throughout the operational cycle. During the initial system startup, both controllers
exhibit a necessary delay before achieving significant fluid movement. The conventional control incurs a
startup lag of 0.14s, while the intelligent ANFIS control shows a slightly longer initial delay, which reaches
0.15 s. This phenomenon occurs because the pumping system must first reach a specific rotational speed
threshold; only then can it produce the necessary head to establish an increased flow rate. Once the system
transitions into steady-state conditions, the ANFIS controller clearly outperforms its counterpart. The ANFIS
controller produces and maintains a highly stable flow rate of 1.8L/s, a performance level that significantly
exceeds the 1.6L/s flow rate which the conventional regulation strategy provides. This stable, higher output
demonstrates the superior efficiency of the ANFIS approach in sustained operation.
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Figure 12. Comparison of induction motor speed responses using DTC-PI and DTC-ANFIS techniques
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Figure 13. Comparison of torque responses using DTC-PI and DTC-ANFIS techniques

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 3, December 2025: 1270-1284



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

O 1281
14 T T T T T
== DTC-ANFIS
————— DTC-PI L
, é
i
H || | I!
R i ,.;;;..s,#é}ii;.;
£ it il ”I i
£ : ! A b "
3 .r!,-.;i.'.-.
EHAY A HHE
RN
] i
|
0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
Time(s)
Figure 14. Detailed view of torque responses
30 T T T T T T
----- DTC-ANFIS
20 - ———DTC-PI a

Isa(A)

t—7
Vi
=30 - o
40 | 1 | 1 | | 1 | 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(S)
Figure 15. Comparison of stator current using DTC-PI and DTC-ANFIS techniques
2
L DTCPI
=====DTC-ANFIS
@
d 10 a
o]
05 T
0 L | | | 1 1 1 |
0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

Figure 16. Comparison of the hydraulic flow rates DTC-PI and DTC-ANFIS techniques

This marked improvement in system output originates directly from the superior dynamic
performance inherent to the ANFIS control system. As previously established, this intelligent controller
excels at maintaining a higher and notably more stable rotor speed while concurrently achieving a crucial
reduction in electromagnetic torque oscillations. Given that the flow rate of a centrifugal pump is inherently
and directly proportional to its shaft rotational speed, this distinct operational advantage immediately
translates into a more optimal and efficient utilization of the available hydraulic power. Consequently, the
ANFIS control methodology decisively proves to be significantly more effective at maximizing the transfer
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of energy—from the intermittent photovoltaic source directly into the hydraulic load. The end result of this
optimized control loop is a substantial enhancement in the overall energy efficiency and performance
capacity of the entire photovoltaic pumping system.

3. CONCLUSION

This work focused on optimizing a photovoltaic water pumping system by integrating an intelligent
control strategy based on the ANFIS. We compared this approach with conventional methods that combine a
PI controller and the Perturb and Observe (P&O) algorithm. We applied the ANFIS controller to both DTC
and MPPT. The simulations performed in MATLAB/Simulink showed that the ANFIS-based controller
effectively tracked the maximum power point and significantly improved the quality of the energy extracted
through MPPT. On the machine side, it delivered a clearly superior dynamic response: it maintained a higher
and more stable rotor speed, reduced torque harmonics and ripple, and achieved a higher hydraulic flow rate
compared to the conventional controller. These improvements helped reduce mechanical vibrations, extend
motor lifespan, and enhance the overall utilization of the available hydraulic power.
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