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 Real-time vehicle object detection in urban traffic is crucial for modern traffic 

management systems. This study focuses on improving the accuracy of vehicle 

identification and classification in heavy traffic during peak hours, with 

particular emphasis on challenges such as small object sizes and interference 

from light reflections. The use of multi-label images enables the simultaneous 

detection of various vehicle types within a single frame, providing more 

detailed information about traffic conditions. You only look once (YOLO) was 

chosen for its capability to perform real-time object detection with high 

accuracy. Multi-augmentation techniques were applied to enrich the training 

data, making the model more robust to varying lighting conditions, viewpoints, 

object occlusions, and issues related to small objects. YOLOv8n and 

YOLOv9t were selected for their speed and efficiency. Models without 

augmentation, 10 single-augmentation techniques, and 5 multi-augmentation 

techniques were tested. The results show that YOLOv8n with multi-

augmentation (scaling, zoom in, brightness adjustment, color jitter, and noise 

injection) achieved the highest mAP50-95 score of 0.536, surpassing 

YOLOv8n with single-augmentation Blur, which had an mAP50-95 of 0.465, 

as well as YOLOv8n without augmentation, which scored 0.390. Multi-

augmentation proved to significantly enhance YOLO’s performance. 
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1. INTRODUCTION 

As a developing country, Indonesia faces significant challenges related to high population growth, 

inadequate infrastructure, and increasing traffic congestion [1]. According to the Directorate General of Land 

Transportation of the Ministry of Transportation of the Republic of Indonesia, traffic accidents in 2019 were 

primarily caused by motorcycles, which accounted for more than 70% of total traffic accidents [2]. Research 

conducted in Indonesia, specifically on the Transyogi Cibubur road, shows that vehicle volume increases 

significantly during peak hours [3]. Estimating traffic density is crucial for improving transportation systems as 

it helps design more efficient traffic management strategies. Vehicle recognition and counting are the two 

primary steps in estimating traffic density [4]. The main challenge in this technology is achieving fast, accurate 

detection in complex environments. State-of-the-art (SoTA) models, trained on diverse datasets such as MS 

COCO, are robust but often struggle with monotonous backgrounds in surveillance or road videos, leading to 

reduced performance [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The inability to obtain images that meet desired criteria is problematic, resulting in dataset bias, 

overfitting, and inaccurate outcomes [6]. While deep learning algorithms have demonstrated outstanding 

performance in various computer vision tasks, limited labeled data can lead to overfitting, hindering the 

network’s generalization to unseen data [7], [8]. Data augmentation is one of the most widely used tools in deep 

learning, underpinning many recent advances in fields such as classification, generative models, and 

representation learning [9]. Augmentation modules significantly reduce the need for manual labeling and 

facilitate the adoption of real-world applications [10]. Additionally, augmentation techniques are highly 

effective in addressing data scarcity challenges [11]. Data augmentation is applied to increase the number of 

images in the dataset, as the distribution of images across classes is often uneven [11]. Image augmentation 

techniques artificially expand the dataset, enabling systems to learn how images appear from different 

perspectives, such as when viewed from various angles or blurred due to adverse weather conditions [12]. 

One of the augmentation methods used in intelligent transportation case studies includes horizontal 

flipping, rotation, and Gaussian noise. In this research, data augmentation methods are applied to expand the 

dataset and address class imbalance issues [4]. Furthermore, in vehicle speed detection research, techniques 

such as Mosaic, random perspective, Mixup, HSV adjustments, vertical flip (Flipud), and horizontal flip (Fliplr) 

are employed for detecting three types of vehicles: cars, buses, and trucks [12]. Other studies employ brightness 

and contrast adjustment techniques for recognizing black smoke from vehicles in road traffic monitoring videos 

[13]. Research related to road areas involves dividing the road into sections and augmenting them using 

methods such as horizontal flipping, color jitter, AutoAug, and Mixup [14]. Additionally, in flood depth 

detection studies, augmentation techniques such as Mosaic, label smoothing, and cosine annealing are applied 

independently, with Mosaic proving most effective for this case [15]. In a study aimed at increasing training set 

diversity and preventing overfitting, multi-label data augmentation techniques such as random cropping, 

flipping, rotation, and color jittering were applied to improve the accuracy and efficiency of image annotation 

processes [16].  

YOLO is a SoTA, real-time object detection algorithm that has gained significant attention in the 

computer vision community. YOLO is a single-stage detector, meaning it detects all objects in an image with a 

single forward pass through the convolutional neural network (CNN) [17]. Its real-time detection capability 

makes it ideal for applications requiring high-speed processing. In one study, YOLOv4 proved effective for 

real-time traffic sign detection in autonomous vehicles [18]. Additionally, YOLO has been successfully used to 

detect and classify human hand actions in egocentric videos [19]. Another study showed that the YOLO model 

significantly improved Ball Tracking, Goal Alignment, and Robot Avoidance tasks in humanoid robot soccer 

[20]. An enhanced version of YOLOv4 with SemiDSConv and the FIoU loss function demonstrated significant 

performance in underwater target detection [21]. In medical imaging, YOLO achieved faster computation times 

compared to SSD networks for ovarian tumor classification in ultrasound images [22]. A systematic literature 

review (SLR) of studies on traffic sign detection and recognition using YOLO, published between 2016 and 

2022, highlighted advancements in detection, classification, and processing speed for traffic sign recognition 

systems across various YOLO versions. The results show that YOLO is capable of detecting and recognizing 

traffic signs with high accuracy and fast processing times [23]. Furthermore, research using the latest YOLO 

model, YOLOv9, has shown that it can handle multiple adverse conditions simultaneously in object detection 

tasks [24]. 

Many studies have demonstrated that data augmentation can significantly improve YOLO’s 

performance in object detection and classification. For instance, research using YOLOv5 employed traditional 

data augmentation methods such as noise addition, cropping, flipping, rotation, brightness, and contrast 

adjustments to enrich the dataset [25]. These techniques have been applied to YOLOv5, as well as YOLOv6, 

YOLOv7, and YOLOv8, to enhance vehicle detection and classification in surveillance footage [26]. 

Specifically, in YOLOv7, researchers expanded the DAWN dataset by applying augmentation techniques such 

as blur, saturation, brightness, darkness, noise, exposure, hue, and grayscale [27]. Additionally, for pothole 

detection using YOLOv8, techniques such as rotation, scaling, and flipping were applied to create more image 

variations, thereby improving detection performance [28]. In vehicle detection case studies, augmentation 

methods such as rotation, width and height shifts, brightness adjustments, zooming, and horizontal flipping were 

used to enhance the accuracy of YOLOv2 and YOLOv4 [29]. During traffic vehicle dataset augmentation, 

multi-label challenges arise, and training CNN models on small datasets is also challenging. Therefore, model 

enhancement through multi-augmentation techniques is necessary to further improve performance [16]. 

The contribution of this research is the development of the YOLO model using multi-augmentation 

techniques to enhance real-time detection accuracy of vehicle types and counts from CCTV footage. The model 

is expected to improve accuracy under diverse and complex urban traffic conditions. The development primarily 

focuses on addressing challenges related to traffic density during peak hours, small object detection, and varying 

lighting conditions. 
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2. METHOD 

2.1.  Methodology 

We present a workflow for real-time multi-label vehicle detection in traffic using the YOLO model 

enhanced with multi-augmentation techniques. The diagram below illustrates each stage, from raw data 

acquisition to model evaluation, with an emphasis on the use of multi-augmentation techniques to improve 

the YOLO model’s performance. The workflow diagram is shown in Figure 1. 

Figure 1 illustrates the workflow for vehicle detection in traffic using the YOLO model enhanced 

with multi-augmentation techniques. The process begins with video capture from CCTV cameras recording 

vehicle traffic for analysis. The video is then processed in the data preprocessing stage to prepare it for 

annotation. Images are acquired by splitting the video recordings into frames at 5-minute intervals during 

data preprocessing. Each vehicle in the images is then annotated by type, including detailed information such 

as location and bounding box coordinates. This ensures the data is ready for further analysis or model 

training. After annotation, the data is split into 80% for training and 20% for validation, ensuring the model is 

properly trained and evaluated on unseen data [30]-[32]. Next, various augmentation techniques are applied 

to the dataset to increase data variability and improve model performance. The applied augmentation 

techniques include blur, brightness adjustment, contrast adjustment, color jitter, cropping, flipping, noise 

injection, rotation, scaling, and zoom in. The implemented augmentation techniques are illustrated in Figure 2. 

 

 

 
 

Figure 1. Model workflow 

 

 

 
 

Figure 2. Implemented augmentation techniques 
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Figure 2 shows that each augmentation technique triples the dataset size, expanding 576 frames into 

1,728 augmented frames to simulate real-world conditions like lighting changes, color variations, and visual 

disturbances, enhancing the model’s accuracy and robustness. The next stage involves testing YOLOv8n and 

YOLOv9t with these augmentations to evaluate vehicle detection in traffic videos. The process includes 

training evaluation, testing on varied road conditions, and final assessment using testing metrics to measure 

accuracy and identify areas for improvement. This workflow, from data acquisition to model evaluation, 

emphasizes augmentation’s role in enhancing YOLO’s performance, as illustrated in Figure 3. 

Figure 3 shows the design for testing the flipping augmentation technique with YOLO. The process 

begins with traffic image training samples undergoing horizontal flip (𝑥_𝑐𝑒𝑛𝑡𝑒𝑟 =  1.0 −  𝑥_𝑐𝑒𝑛𝑡𝑒𝑟) and 

vertical flip (𝑦_𝑐𝑒𝑛𝑡𝑒𝑟 =  1.0 −  𝑦_𝑐𝑒𝑛𝑡𝑒𝑟), producing transformed images. The augmented images are fed 

into the YOLO feature extractor to capture essential features. The YOLO output is processed by three main 

heads: the classification head for object classification, the detection head for object detection and marking, 

and the appearance embedding head for object embedding. This technique aims to enhance YOLO model 

performance by recognizing objects from various orientations. 
 

 

 
 

Figure 3. Flipping augmentation technique model design with YOLO 

 

 

2.2.  Research instrument 

The dataset was collected from surveillance cameras at the Fatmawati traffic lights in Semarang 

City between December 19, 2023, and February 15, 2024, from 06:00 to 07:00 WIB. Videos were recorded 

in H.264 format at 1280×960 resolution and 25 FPS, focusing on vehicles in the right lane. Frames were 

extracted every 5 minutes using a calculated interval of 7500 frames, yielding 720 images categorized into 

motorcycles (31,481), cars (12,402), trucks (1,184), and buses (280). For training, 576 samples were used, 

while 144 samples were allocated for validation. Annotation was conducted using Roboflow [33]. Model 

analysis was performed on Google Colab using Python 3.10.12 and PyTorch 2.3.0 with CUDA 12.1 support. 

 

2.3.  Data analysis techniques 

The data analysis began with collecting frames from CCTV traffic videos, which were uploaded to 

Roboflow for dataset management and annotation [34]. Vehicle classes motorcycles, cars, buses, and trucks 

were created to categorize and train the model effectively. Each image was annotated by marking vehicles 

according to their class, ensuring accurate labeling for training. The dataset was then split into 80% training 

(576 images) and 20% validation (144 images). Augmentation was performed using Python, tripling the 

dataset by applying two augmentation techniques per image while keeping one as the original. The 

augmentation technique values are detailed in Table 1. 

Each augmentation technique from Table 1 uses specific values to generate image variations.  

The blur technique uses kernel sizes of 1 for image 2 and 2 for image 3. For brightness adjustment, the 
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brightness factors are 0.8 for image 2 and 1.2 for image 3. Contrast adjustment uses alpha values of 1.5 for 

image 2 and 2.0 for image 3. In color jitter adjustment, a combination of brightness, contrast, and saturation 

factors is randomized within a range of 0.6 to 1.4, while the hue factor is randomized between -0.1 and 0.1. 

Image cropping is done with two types of crops: top crop from (0,0) to (width, height * 0.5) on image 2, and 

bottom crop from (0, height * 0.5) to (width, height) on image 3. Flipping includes both horizontal and 

vertical flips, with the horizontal flip center at x_center = 1.0 for image 2 and -x_center for vertical flip on 

image 3. Noise injection adds Gaussian noise with values randomized between 0 and 0.1 for both image 2 

and image 3. Rotation is applied at 90 degrees for image 2 and 270 degrees for image 3. Scaling applies a 

factor between 0.8 and 1.2 for both image 2 and image 3, while zoom-in uses a factor of 1.2 for image 2 and 

1.5 for image 3. Each value is carefully designed to create significant image variations, improving model 

performance under various vehicle recognition conditions. An example of the output from each data 

augmentation technique using the second value can be seen in Figure 4. 

 

 

Table 1. Augmentation values 
No Aug Value Augmentation factor (image) References 

1 2 3 

1 Blur Kernel size - 1 2 [35] 

2 Brightness Adjustment Brightness factor - 0.8 1.2 [36] 

3 Contrast Adjustment Alpha - 1.5 2.0 [37] 
4 Color jitter (Brightnes, contrast, 

saturation) and hue 

- Rand (0.6,1.4) and  

Rand (-0.1,0.1) 

Rand (0.6,1.4) and  

Rand (-0.1,0.1) 

[38] 

5 Cropping Crop height fraction - Top crop 

(0,0) to (width, height 

* 0.5) 

Bottom Crop 

(0, height * 0.5) to 

(width, height) 

[39] 

6 Flipping Horizontal and vertical 

flip 

- Horizontal flip 

x_center = 1.0 - 

x_center 

Vertical flip 

y_center = 1.0 - 

y_center 

[40] 

7 Noise injection Gaussian noise - Rand (0,0.1) Rand (0,0.1) [39] 

8 Rotation Rotation - 90’ 270’ [41] 

9 Scaling Scale image - Rand (0.8, 1.2) Rand (0.8, 1.2) [42] 
10 Zoom in Zoom in - 1.2 1.5 [43] 

 

 

 
 

Figure 4. Example of data augmentation outputs 
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2.4.  Multi-augmentation 

Multi-augmentation in image dataset processing enhances model adaptability to real-world 

conditions by increasing dataset variability without additional data collection. Applying multiple techniques 

simultaneously improves object recognition under different lighting, sizes, orientations, and image qualities, 

making the model more robust. The augmentation techniques used in this study address key object 

recognition challenges and are listed in Table 2. 

Table 2 shows that the first combination focuses on small objects and lighting, while the second 

deals with variations in angle and lighting. The third combination targets size and color variations, while the 

fourth focuses on detail enhancement. The final combination incorporates all augmentation techniques to 

ensure overall robustness. Mathematically, if 𝑋 is the original dataset, then after applying the augmentation 

combinations, the new dataset 𝑌 can be represented as Y = ∑ Ai(X)n
i-1 , where 𝐴𝑖  is the i-th augmentation 

technique applied to dataset 𝑋. This results in a larger and more varied dataset, enhancing the model’s ability 

to generalize. 
 

 

Table 2. Multi augmentation technique 
No Augmentation technique combination Focus Reference 

1 
Scaling + Cropping + Brightness adjustment + Noise 

injection + Blur 

Small objects and 

lighting 
[44], [45], [46] 

2 
Rotation + Flipping + Brightness adjustment + Contrast 

adjustment + Color jitter 
Angle and lighting 

variation 
[45], [47] 

3 

Scaling + Zoom in + Brightness adjustment + Color 

jitter +  
Noise injection 

Size and color 

variation 
[45], [48] 

4 
Cropping + Zoom in + Contrast adjustment + Noise 

injection + Blur 
Detail enhancement [45], [48], [49], [40] 

5 
Scaling + Rotation + Brightness adjustment + Contrast 

adjustment + Noise injection 

Complete 

combination for 

robustness 

[40], [50], [51] 

 

 

2.5.  YOLO models 

YOLO is widely used in transportation systems for its high detection accuracy and real-time 

performance [52]. YOLOv8 introduces five scaled versions-YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, 

and YOLOv8x-catering to different applications, with YOLOv8n optimized for speed, achieving 80.4 ms on 

a CPU using ONNX and 0.99 ms on an A100 GPU using TensorRT. Trained on the COCO dataset, which 

includes 80 object classes such as cars, motorcycles, buses, and trucks, YOLOv8n is ideal for real-time traffic 

monitoring on low-power devices [53], [54]. Similarly, YOLOv9 offers five variants-YOLOv9t, YOLOv9s, 

YOLOv9m, YOLOv9c, and YOLOv9e-designed for various needs, with YOLOv9t balancing speed and 

accuracy, featuring 2M parameters, 7.7B FLOPs, and a mAPval 50-95 score of 38.3% [55]. This study 

focuses on YOLOv8n and YOLOv9t, selecting lightweight models optimized for real-time use while 

maintaining sufficient accuracy, with adjusted default YOLO parameters detailed in Table 3. 

The default batch size in YOLO was reduced from 64 to 8 to minimize overfitting, particularly on 

unclear or overly bright images, while the patience size was increased from 5 to 10 to prevent premature 

stopping. The dropout value was adjusted from 0.0 to 0.2 to enhance robustness, and the image size was set 

to 640×640 pixels to balance small object detection and inference speed [59]-[62]. The analysis process 

follows structured stages, including preprocessing, labeling, annotation, data augmentation, and dataset 

splitting for training and validation. Model training uses 80% of the dataset over 64 epochs with  

parameters listed in Table 2, while validation with the remaining 20% assesses precision, recall, and mAP.  

Finally, testing with 10 selected frames evaluates the best model’s reliability, ensuring robust real-world 

performance. 
 

 

Table 3. Adjusted parameters 
Parameter Value References 

Batch 8 [56] 
Patience 10 [57] 

Dropout 0.2 [58] 

Image size 640 [59] 

 

 

2.6.  Performance evaluation measures 

Evaluating a classification model requires a comprehensive analysis using several key metrics. 

Precision, which measures the accuracy of positive predictions among all predicted positives, and recall, 
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which evaluates the proportion of correctly identified positives out of all actual positives, are critical metrics. 

Additionally, the mean average precision (mAP) metric is used to evaluate detected bounding boxes by 

comparing them to ground-truth boxes and assigning a corresponding score [59]. The equations for precision, 

recall, and mAP can be seen in (1)-(3). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

 

mAP =
1

𝑛
∑ 𝐴𝑃(𝑗)𝑛

𝑗=1  (3) 

 

Where FP represents (false positive), TN indicates (true negative), TP means (true positive), and FN indicates 

(false negative). AP is (average precision), APj indicates the average precision for category i, and N is the 

number of classes. This study uses mean precision mAP50 and mAP50-95 as the primary metrics for 

measuring detection accuracy. Floating-point operations (GFLOPs), the number of parameters (Params), and 

detection frames per second (FPS) are used to assess efficiency and real-time performance. Additionally, the 

model’s weight size (Size) is considered to evaluate its suitability for edge device implementation [63].  

The equations for mAP50 and mAP50-95 are shown in (4) and (5). 
 

AP50 =
1

𝑛
∑ 𝑃𝑖

𝐼𝑜𝑈=0.5𝑛
𝑖=1 (𝑅𝑖

𝐼𝑜𝑈=0.5) (4) 

 

AP50 − 95 =
1

10
(𝐴𝑃50 + 𝐴𝑃55 + ⋯ + 𝐴𝑃95) (5) 

 

Where 𝑃 represents precision, the ratio of correctly predicted positive samples to all predicted 

positive samples. 𝑅 represents recall, the ratio of correctly predicted positive samples to all actual positive 

samples. AP50 refers to the mean AP across categories when the intersection over union (IoU) threshold is 

set at 50%. AP50-95 reflects the average AP as the IoU threshold increases from 50% to 95% in 5% 

increments. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Training validation 

This study trained and validated YOLOv8n and YOLOv9t using 32 scenarios. The training data 

included 1 non-augmented dataset (576 samples), 10 single-augmentation datasets (1,728 samples each),  

and 5 multiple-augmentation datasets (6,336 samples each). Validation used 144 samples (20% of the initial 

dataset) and measured precision, recall, mAP50, and mAP50-95, with mAP50-95 as the primary metric for 

performance evaluation. Table 4 presents the performance of each model with its respective augmentations. 

Table 4 shows that the YOLO model without augmentation achieved the highest mAP50-95 (0.390) 

in the YOLOv8n test, while the best single augmentation performance was with the blur technique (0.465), 

and multiple augmentations combining scaling, zoom in, brightness adjustment, color jitter, and noise 

injection reached the highest mAP50-95 (0.526). These results confirm that augmentation techniques enhance 

model performance, with multiple augmentations providing the best detection accuracy. In urban traffic 

during rush hours, where vehicles appear small and are affected by sunlight reflections, YOLOv8n 

outperformed YOLOv9t, demonstrating higher accuracy in complex conditions. The evaluation metrics for 

each class using multiple augmentations are detailed in Table 5. 

Table 5 presents the evaluation metrics for different object classes, showing that the ‘bus’ class 

achieves the highest mAP50-95 (0.626) and precision (0.977), indicating strong detection performance with 

minimal false detections due to its large, easily recognizable features. The ‘car’ class has the highest recall 

(0.763), suggesting effective detection, likely because of its frequent appearance in the dataset, while also 

leading in mAP50 (0.85), reinforcing its reliability at an IoU threshold of 0.50. Conversely, the ‘motorcycle’ 

class has the lowest mAP50-95 (0.359) and relatively low precision (0.831), indicating higher detection 

errors, likely due to its smaller size and reflections. Figure 5 highlights common misclassifications, with 

motorcycles often mistaken for cars (1,303 times) and cars misidentified as background (394 times). Despite 

strong overall performance, the model needs improvements in handling small objects and challenging 

lighting conditions. 
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Table 4. Comparison of performance metrics of the tested models 
No Augmentation Models Best epoch Precision Recall mAP50 mAP50-95 

1 Without augmentation YOLOv8n 64 0.819 0.550 0.673 0.390 
2 Without augmentation YOLOv9t 64 0.825 0.556 0.669 0.378 

3 Blur YOLOv8n 64 0.825 0.674 0.767 0.465 

4 Blur YOLOv9t 64 0.830 0.642 0.746 0.443 
5 Brightness adjustment YOLOv8n 64 0.774 0.701 0.757 0.462 

6 Brightness adjustment YOLOv9t 62 0.880 0.619 0.749 0.449 

7 Contrast adjustment YOLOv8n 49 0.594 0.071 0.325 0.203 
8 Contrast adjustment YOLOv9t 10 0.481 0.097 0.280 0.167 

9 Color jitter YOLOv8n 61 0.861 0.648 0.755 0.461 

10 Color jitter YOLOv9t 46 0.878 0.565 0.713 0.411 
11 Cropping YOLOv8n 60 0.784 0.540 0.646 0.356 

12 Cropping YOLOv9t 64 0.740 0.559 0.635 0.349 

13 Flipping YOLOv8n 64 0.853 0.603 0.732 0.436 
14 Flipping YOLOv9t 62 0.785 0.633 0.719 0.411 

15 Noise injection YOLOv8n 51 0.870 0.619 0.739 0.433 

16 Noise injection YOLOv9t 64 0.864 0.625 0.715 0.422 

17 Rotation YOLOv8n 62 0.779 0.559 0.663 0.371 

18 Rotation YOLOv9t 63 0.766 0.545 0.653 0.366 

19 Scaling YOLOv8n 61 0.836 0.669 0.753 0.464 
20 Scaling YOLOv9t 64 0.812 0.663 0.741 0.459 

21 Zoom-In YOLOv8n 64 0.786 0.640 0.722 0.426 
22 Zoom-In YOLOv9t 64 0.792 0.625 0.716 0.421 

23 Scaling + Cropping + Brightness adjustment 

+ Noise injection + Blur 

YOLOv8n 63 0.893 0.677 0.777 0.511 

24 Scaling + Cropping + Brightness adjustment 

+ Noise injection + Blur 

YOLOv9t 64 0.888 0.681 0.784 0.503 

25 Rotation + Flipping + Brightness adjustment 
+ Contrast adjustment + Color jitter 

YOLOv8n 64 0.867 0.652 0.762 0.491 

26 Rotation + Flipping + Brightness adjustment 

+ Contrast adjustment + Color jitter 

YOLOv9t 63 0.890 0.651 0.768 0.480 

27 Scaling + Zoom in + Brightness adjustment + 

Color jitter + Noise injection 

YOLOv8n 61 0.872 0.715 0.792 0.526 

28 Scaling + Zoom in + Brightness adjustment + 
Color jitter + Noise injection 

YOLOv9t 64 0.838 0.695 0.776 0.506 

29 Cropping + Zoom in + Contrast adjustment + 

Noise injection + Blur 

YOLOv8n 63 0.872 0.668 0.774 0.498 

30 Cropping + Zoom in + Contrast adjustment + 

Noise injection + Blur 

YOLOv9t 62 0.835 0.645 0.747 0.469 

31 Scaling + Rotation + Brightness adjustment + 
Contrast adjustment + Noise injection 

YOLOv8n 64 0.882 0.670 0.784 0.511 

32 Scaling + Rotation + Brightness adjustment + 

Contrast adjustment + Noise injection 

YOLOv9t 63 0.897 0.643 0.777 0.493 

 

 

 
 

Figure 5. Confusion matrix 
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3.2.  Model testing 

The aim of this testing is to evaluate the developed model to determine whether it works efficiently 

and accurately in counting and classifying types of vehicles in traffic with multi-labels. In this experiment, 

we use the YOLO framework and multiple augmentations, which achieved the highest values in the training 

data. The 10 testing scenarios are listed in Table 6. 

Table 6 evaluates the object detection model in various traffic scenarios, including congested traffic 

with light reflection, optimal lighting, smooth traffic with light reflection, and rain, to assess its adaptability 

to real-world challenges like detection errors from light reflections or reduced visibility due to rain.  

By simulating these conditions, researchers can evaluate the model’s resilience and functionality under 

different weather and lighting conditions. Testing across all vehicle classes ensures accurate detection, even 

for small objects, helping to identify weaknesses and improve the model’s reliability and accuracy in real-

world applications. The test results are summarized in Table 7. 

The mAP calculations for each testing scenario are illustrated in the graph. The graph clearly 

demonstrates how the model’s performance varies across different traffic and lighting conditions. The mAP 

calculations for each testing scenario are presented in Figure 6.  
 
 

Table 5. Evaluation metrics class from Yolov8n using multi-augmentation 
Class Precision Recall mAP50 mAP50-59 

All 0.872 0.715 0.792 0.526 

Bus 0.977 0.788 0.850 0.626 

Car 0.866 0.763 0.834 0.538 

Motorcycle 0.831 0.559 0.672 0.359 
Truck 0.814 0.749 0.810 0.582 

 
 

Table 6. Model testing scenarios 
No Condition 

1 Congested traffic with light reflection 

2 Congested traffic with properly exposed 
3 Smooth traffic with light reflection 

4 Smooth traffic with properly exposed 

5 Congested traffic in rain 
6 Smooth traffic in rain 

7 Traffic with all vehicle classes, Congested with light reflection 

8 Traffic with all vehicle classes, Congested with properly exposed 
9 Traffic with all vehicle classes, Smooth with light reflection 

10 Traffic with all vehicle classes, Smooth with properly exposed 

 
 

Table 7. Model testing results 
No Condition Test results 

1 Congested traffic with light reflection 41 cars, 39 motorcycles, 4 trucks, 0 buses 

2 Congested traffic with properly exposed 36 cars, 107 motorcycles, 1 truck, 0 buses 

3 Smooth traffic with light reflection 6 cars, 26 motorcycles, 0 trucks, 0 buses 
4 Smooth traffic with properly exposed 9 cars, 20 motorcycles, 0 trucks, 0 buses 

5 Congested traffic in rain 43 cars, 86 motorcycles, 7 trucks, 0 buses 

6 Smooth traffic in rain 5 cars, 9 motorcycles, 0 trucks, 0 buses 
7 Traffic with all vehicle classes, Congested with light reflection 15 cars, 37 motorcycles, 9 trucks, 0 buses 

8 Traffic with all vehicle classes, Congested with properly exposed 15 cars, 57 motorcycles, 3 trucks, 0 buses 

9 Traffic with all vehicle classes, Smooth with light reflection 10 cars, 16 motorcycles, 2 trucks, 1 bus 
10 Traffic with all vehicle classes, Smooth with properly exposed 6 cars, 21 motorcycles, 4 trucks, 1 bus 

 

 

The test results indicate that the model’s detection performance varies depending on traffic 

conditions. In dense traffic with light reflections, the mAP was 0.464, indicating that light reflections make 

object detection more challenging. Under optimal lighting conditions, the mAP increased to 0.623, 

suggesting that better lighting enhances detection accuracy. In smooth traffic with light reflections, the mAP 

increased to 0.825, and under smooth traffic with optimal lighting, the mAP reached 0.932, demonstrating the 

best performance. 

During rain and dense traffic, the mAP dropped to 0.724, indicating that rain diminishes detection 

accuracy. In smooth traffic during rain, the mAP rose to 0.817. In dense conditions with light reflections and 

various types of vehicles, the mAP was 0.887, suggesting that the model still performed well in these 

conditions. Under optimal lighting, the mAP slightly decreased to 0.809, indicating that vehicle complexity 

affects performance. In smooth traffic with various vehicle types and light reflections, the mAP reached 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Boosting real-time vehicle detection in urban traffic using a novel multi-augmentation (Imam Ahmad Ashari) 

665 

0.818, and under optimal lighting, it increased to 0.89. Overall, the best performance was achieved under 

optimal lighting and smooth traffic, while rain or light reflections reduced accuracy. 
 

 

 
 

Figure 6. mAP calculation for various traffic and lighting conditions 
 

 

3.3.  Challenges 

 The primary challenges in object detection within this dataset are the variations in lighting 

conditions and traffic density. The performance of object detection varies significantly depending on whether 

the images are affected by light reflections or are properly exposed. Object detection becomes more 

challenging under suboptimal lighting or disruptive light reflections, as well as in congested traffic conditions 

compared to smoother traffic. This suggests that poor lighting and high traffic density hinder the model’s 

ability to accurately detect objects. 

Moreover, the presence of all object classes in a single image further complicates the detection 

challenge. Images containing all types of objects (cars, motorcycles, trucks, and buses) show that the model 

struggles to identify and differentiate objects when there are multiple overlapping classes. Specifically, 

classes such as buses and trucks exhibit lower detection performance compared to cars and motorcycles, 

suggesting that the model may be less effective in detecting less common objects or those with less 

distinctive visual features. Improvement efforts should concentrate on adjusting for lighting variations, 

accommodating different road conditions, and enhancing the model’s ability to detect more challenging 

classes. Despite these challenges, the proposed model exhibits reasonably good performance. 
 

 

4. CONCLUSION 

This study successfully demonstrates that using YOLO and multi-augmentation techniques for real-

time vehicle detection in urban traffic can enhance accuracy and efficiency in identifying and classifying 

various types of vehicles. The utilization of multi-label images enables the detection of multiple vehicle types 

within a single frame, offering a more comprehensive view of traffic conditions. Implementing multi-

augmentation increases the diversity of the training data, making the model more robust to varying lighting 

conditions, angles, and object obstructions. 

The test results indicate that YOLOv8n with multi-augmentation (scaling, zoom in, brightness 

adjustment, color jitter, and noise injection) delivers the best performance, achieving a precision of 0.872, 

recall of 0.715, mAP50 of 0.792, and mAP50-95 of 0.526, surpassing other augmentation techniques. Traffic 

analysis shows that optimal lighting and smooth traffic yield the best detection performance, with a 

maximum mAP of 0.932, whereas poor lighting (glare) and high traffic density reduce detection accuracy, 

resulting in a minimum mAP of 0.464. It was also shown that multi-augmentation significantly outperforms 

single augmentation and no augmentation. In this study, YOLOv8n exhibited superior performance over 

YOLOv9t, particularly under complex traffic conditions and challenging lighting environments. 
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