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Abstract
As part of a detailed study on blind identification of Gaussian channels, the main purpose was

to propose an algorithm based on cumulants and fuzzy number approach involved throughout the whole
process of identification. Our objective was to compare the new design of the algorithm to the old one using
the higher order cumulants, namely Alg1, Algat and the Giannakis algorithm. We were able to demonstrate
that the proposed method -fuzzy number error correction- increases the performance of the algorithm by
calculating the ratio of squared errors of ALGaT and AlgatF. The method can be applied to any algorithm for
more improvement and effinciency.
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1. Introduction
process of identification has now become crucial and is prominent in several fields, in-

cluding astrophysics, geology, data transmission, radio communication, mobile radio. Thanks to
Y.Sato that the issue of identification in its various aspects was raised. It has contibueted to the
resolution of many problems [1].

The transmission of information through a physical medium may undergo several physical
alterations or modifications, affecting the nature and even the direction of the initial information.
They are essentially physical phenomena whose impact is quite considerable on the authenticity
of the message induced by the information. Major examples include absorption, refraction, re-
flection or diffusion. These cases of impact generate a signal distortion through attenuation and
interference between symbols (IES). Moreover, in digital communication, such phenomena alter-
ing the amplitude and the phase can be modeled by a multi-path transmission channel infected
with a white noise. Such a model uses digital Finite Impulse Response filter (FIR) infected by a
Gaussian white noise [2, 3, 4, 5, 6, 7].

Identification methods allow us to determine the channel impulse response of FIR. Tack-
ing into account on related literature, one can identify more methods and identifications that can
be classified into three categories according to resolution methods [8] [9]. This involves the use
of oversized linear algebraic systems, explicit solutions and solutions using cumulants which are
easy to implement throughly. However,for the first two methods of resolution there is a clear ineffi-
ciency since minimizing functions presents many neighboring local minima whose computational
complexity is big. The third method of resolution using a higher order cumulant is also unreliable
and less efficient. It is for this reason that we think action should be taken to improve the reliability
of the identification through the use of fuzzy number method in the implementation of higher order
cumulants used in the case of non-Gaussian frequency distributions. The fuzzy number error cor-
rection method allows us to eliminate extreme values that may affect the calculation of targeted
values.

Our goal is to optimize efficiency the processes of blind identification and the sensible use
of higher order cumulants whose value for a Gaussian distribution is zero. Moreover, their use in
the case of identification of the noisy channel by a Gaussian white noise is very frequent. Our
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study will focus on the blind identification of linear non-Gaussian process adjusted average (MA)
[2, 3, 4, 6, 7].

To achieve this goal,we will present a typology of order cumulants, algorithm using three
and four cumulants to improve the performance of standard algorithms. Next, we will implement
the assumptions related to the channel model (MA) to identify it with its useful relationships.
We will move on to the presentation of two estimation methods based on cumulants including
Alg1 algorithm [10] et al, the algorithm C (q, k) Giannakis [3]. Finally, we will provide a detailed
presentation of our algorithm, which will be followed by a simulation to compare and assess the
effectiveness of different algorithms presented in this work.

2. Model and Fundamental realtionships
2.1. Hypothesis and model

We always design a model of a Single Input and Single Output (SISO) channel with a
multipath phenomenon,Fig.1, by using a linear digital FIR.
The equation of the finite differences model for the FIR moving average channel (Mobile Average:

x(k) y(k) z(k)
+

additive noise

Canal( )

n(k)

B

Figure 1. FIR Model channel

MA), is represented by the following [10], [11], with out noiseless:

Y (k) =

q∑
j=0

b(j).X(k − j), b(0) = 1 (outnoiseless; ) (1)

and with noise:
Z(k) = Y (k) + n(k) (2)

where X(k) is a non-Gaussian excitation inaccessible to independent components and identically
distributed (iid) with zero mean, of variance σ2

x,with at least one non-zero m > 2 order and
checking E[X2m(k)] < ∞.
n(k) is a white Gaussian noise, independent of the input X(k) and unknown power spectral den-
sity.
B = [b(0), b(1), .., b(q)] represent the impulse response of FIR channel. b(i) are constant for a
stationary time-invariant channel. q is the order of the channel, assumed to be known [12].

2.2. Fundamental Relationships
Related literature shows that there are many important algorithms based on higher order

cumulant. In this paragraph, we present the fundamental relationships using the cumulants in the
case of a stationary time-invariant Gaussian noisy channel.

2.2.1. Moment and Cumulant

In this section, we present some definitions of higher order statistics, moments and cu-
mulants. Let x(k), where 1 ≤ k ≤ N, is a real discrete stationary process with N length, so its
moment of order m is given by [3] [4] [10] [5]

Mm,x(t1, t2, ..., tm−1) = E{x(k)x(k + t1)x(k + t2)...x(k + tm−1)} (3)
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Where E{.} represents the mathematical expectation.
The cumulant of order n of a non-Gaussian stationary process is given by:

Cm,x(t1, t2, ..., tm−1) =
Mm,x(t1, t2, ..., tm−1)−Mm,G(t1, t2, ..., tm−1)

(4)

This relationship shows the importance of cumulants estimators relatively to the time when it
comes noise Gaussian in nature.

2.2.2. Higher order cumulants

The most used moments in practice are moments of order m lower or equal to 5. In this
section we give the expression cumulant based moments. The given expressions are simplified
in the case of the samples adjusted to a zero mean (centered System C.S).

The cumulant of order m = 1 is given by:

C1,x = M1,x = E{x(k)}. (5)

is equal to 0 for a zero-mean sample: centered sample. The expression (5) is equal to 0 for a
zero-mean sample: centered sample (C.S).

The cumulant of order m = 2 is given by:

C2,x(t1) = M2,x(t1)− (M1,x)2 (6)

In the case of a system (C.S) expression (6) becomes:

C2,x(t1) = M2,x(t1) (7)

The cumulant of order m = 3 is written as:

C3,x(t1, t2) = M3,x(t1, t2)−M1,x(M2,x(t1)+
M2,x(t1 − t2)) + 2(M1,x)2

(8)

For a system (C.S) expression (8) becomes:

C3,x(t1, t2) = M3,x(t1, t2) (9)

For a system (C.S), the cumulant of order m = 3 is written as:

C4,x(t1, t2, t3) = M4,x(t1, t2, t3)−M2,x(t1)M2,x(t3 − t2)−
M2,x(t2)M2,x(t3 − t1)−M2,x(t3)M2,x(t2 − t1)

(10)

2.2.3. Brillinger and Rosenblatt Equation

The common point of all conventional methods of identifying adjusted average (MA) mod-
els is the use of Brillinger and Rosenblatt formula [2] which, under the above assumptions is:

Cm,Z(τ1, ..., τm−1) = Cm,Y (τ1, ...τm−1)
= γm,x

∑q
i=0 b(i)b(i+ τ1)...b(i+ τm−1)

(11)

For m = 2, the autocorrelation is:

C2,Z(τ) = C2,Y (τ) + C2,N (τ) (12)

where C2,N (τ) is the autocorrelation of the noise skewing results and C2,Y (τ) is the autocorrela-
tion of the non-noisy signal expressed by:

C2,Y (τ) = γ2,x

q∑
i=0

b(i)b(i+ τ), (γ2,x = σ2
x) (13)
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According to (11), one can easily demonstrate that the order cummulants m et n, with (m > n),
meet the following relationship:∑q

i=0 b(i)Cm,Y (i+ τ1, ..i+ τn−1, τn, ..., τm−1) =

εm,n
∑q
i=0 b(i)

[∏m−1
j=n b(i+ τj)

]
Cn,Y (i+ τ1, ..i+ τn−1)

(14)

Where εm,n =
γm,x

γn,x
. This general equation establishes several basic algorithms and will also be

the basis of our proposed algorithm.

2.3. Based unique order cummulants algorithms
The algorithms based only on higher order cummulants are interesting when the pro-

cessed signal is contaminated by an additive Gaussian noise. Indeed cummulants of higher or
equal to three orders of a Gaussian distribution is zero.

2.3.1. Algorithm Based on 4th Order Cumulant using equations 2q +1: Alg1

From equation (11) The matrix form of the algorithm is given by Alg1 [11]

0 · · · 0 C4,y(q, q, 0)
...

. . .
...

0
C4,y(q, q, 0) · · · C4,y(q, q, q)

...
. . . 0

...
C4,y(q, q, q) 0 · · · 0





1
b2(q)

...
b3(i)
b2(q)

...
b3(q)
b2(q)


=



C4,y(0, 0,−q)
...

C4,y(0, 0, 0)
...

C4,y(0, 0, q)



(15)

in a more compact form, the system of equations (15) can be written as follows:

Mbq = d (16)

withM , and hq are defined in the equation system (15). The solution in the sense of least squares,
LS, of the system of equation (16) is given by:

ĥ(q) = (MTM)−1MT d (17)

this solution gives us an estimate of the quotient of parameters b3(i) and b3(q), by:

hq(i) =
̂( b3(i)

b3(q)

)
, i = 1, ..., q. (18)

So, to estimate the parameters b̂(i) , i = 1, ..., q we proceed as follows:

• The parameters b(i) for i = 1, ..., q − 1 are estimated from estimates of ĥq(i) values using
the following equation:

b̂(i) = sign
[
ĥq(i)(ĥq(q))

2
]
{abs(ĥq(i))(ĥq(q))2}1/3 (19)

avec sign(x) =

 1, if x > 0;
0, if x = 0;
−1, if x < 0.

and abs(x) = |x| indicates the absolute value of x.
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• The parameter b̂(q) is estimated as follows:

b̂(q) =
1

2
sign

[
ĥq(q)

]abs(ĥq(q)) +

(
1

ĥq(1)

)1/2
 (20)

2.3.2. Algorithme ’C(q,k)’ of Giannakis

From (11), Giannakis showed that the coefficients (FIR) can be expressed by the following
formula:

b(τ) =
Cm,Y (q, τ, 0, ..., 0)

Cm,Y (q, 0, ..., 0)
(21)

with τ = 0,...,q and the cumulant of order m of excitation is:

γm,x =
C2
m,Y (q, 0, ..., 0)

Cm,Y (q, q, ..., 0)
(22)

For m = 3, we have: b(τ) =
C3,Y (q,τ)
C3,Y (q,0) et γ3,x =

C2
3,Y (q,0)

C3,Y (q,q)

2.4. Proposed Algorithm
In this section the impulse response B = [b(0), b(1), ..., b(q)] is proposed to estimate a q

order RIF channel using an algorithm that combines cumulants of order 3 and 4, as a previously
proposed hypothesis. It also explains the method that improves the proposed algorithm.

2.4.1. General equation

Equation (14) is transformed into an equation which links m and n such that m = n + 1
as following: ∑q

i=0 b(i)Cm,Y (i+ τ1, ..i+ τn−1, τn) =
εm,n

∑q
i=0 b(i)b(i+ τn)Cn,Y (i+ τ1, ..i+ τn−1)

(23)

2.4.2. Approach combining 3 and 4 cumulants order

Especially m = 4 et n = 3, Equation (23) becomes:∑q
i=0 b(i)C4,Y (i+ τ1, i+ τ2, τ3) =

ε4,3
∑q
i=0 b(i)b(i+ τ3)C3,Y (i+ τ1, i+ τ2)

(24)

We take τ1 = τ2 = q et τ3 = τ , the equation (24) becomes:

q∑
i=0

b(i)C4,Y (i+ q, i+ q, τ) = ε4,3

q∑
i=0

b(i)b(i+ τ)C3,Y (i+ q, i+ q) (25)

given that C4,Y (τ1, τ2, τ3) = C3,Y (τ1, τ2) = 0, si τi > q; the equation (25) becomes:

b(0)C4,Y (q, q, τ) = ε4,3b(0)b(τ)C3,Y (q, q) (26)

We deduce:

b(τ) =
C4,Y (q, q, τ)

ε4,3C3,Y (q, q)
(27)

with
ε4,3 =

γ4,x
γ3,x

(28)
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According to equation (22), we deduce:

ε4,3 =
C2

4,Y (q, 0, 0)

C4,Y (q, q, 0)

C3,Y (q, q)

C2
3,Y (q, 0)

(29)

then

b(τ) =
C4,Y (q, q, 0)

C2
4,Y (q, 0, 0)

C2
3,Y (q, 0)

C3,Y (q, q)

C4,Y (q, q, τ)

C3,Y (q, q)
(30)

2.4.3. AlgatF

The reduction of numerical calculations and the performance of the used statistical es-
timator can be a source of some divergence of values compared to the true value. To minimize
these error differences sign we will also proposes a selective choice of estimated values of im-
pulse responses from the previous algorithms in the following format:

Since each calculated value is accompanied by an error, it is therefore considered as a
fuzzy number [13] defined by an interval in the set R by the following figure,Fig.2:

xx x x x

Figure 2. Fuzzy number representation

Fig.3, represents fuzzy values obtained by iterative simulation. Fuzzy values may be
intersecting or not. We removed fuzzy extreme values having a zero intersection with the other
fuzzy values. Indeed, these fuzzy values are far from the true value. Note that the number of fuzzy

xx x x x

Figure 3. Representation of a fuzzy number of estimated series

values, remaining after removal of the end must be greater than at least half of the iterations.
AlgatF is the method of selection applied on ALGaT given that the fuzzy variable is se-

lected by:

B =

q∑
i=0

b(i) (31)

where 2x∆B is the size fuzzy interval. The sum is fed to remove the divergence due to the
undesired occurrence of the minus sign in one of the component of the impulse response.

3. Simulation
In this simulation, we take 100 iterations and each time a new sample is taken by a noisy

Gaussian noise with zero mean. The different algorithms provide estimates for the same samples
in sizes 400, 800 and 1200 respectively. To compare the samples using the mean square error
defined as follows:

EQM =
1

q + 1

q∑
i=0

(b(i)− h(i))2 (32)
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Consider the channel, non-minimum phase (there is a zero of the transfer function outside the
unit circle), figure (4) below, having the impulse response H = [1 − 1, 083 − 0, 95 0, 95]. The
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Figure 4. The zeros and poles for channel

paragraphs below summarize simulation on channel 1 for the various algorithms presented above
in the case where the noise signal to noise ratio SNR equal to 10 dB and in case SNR equal to
20 dB. With

SNR = 10Log10

(
σ2
y

σ2
bruit

)
(33)

where σ2
i is the standard deviation of the statistical distribution (i).
Given that h(1) = 1. The least precise value of h(i) comes three significant digits. Our

choice of the error on B is also to 3 significant figures in the following is taken into simulation ∆B
= 0, 03.

3.1. Case SNR is 10 dB
The following table summarizes the results obtained for the proposed channel, the four

algorithms namely Alg1, Alg of Gianakis, AlgaT and AlgatF. The AlgaT corrected by the proposed
selection method in case SNR = 10 dB.

The descriptive data table (1), allows us to see a clear improvement of EQM. Indeed, for
a sample size of 400, we note that the proposed method ensures amelioration, EQM by a factor
of 2. In addition, the 800 sample reaches a factor of about 5.1, more than double. This factor
will increase and reach about 20 in the case of the size of the sample 1200 for the same method.
This increase ensures thereby a minimizing of the EQM versus other algorithm.

The improvement associated with, according to the variable fuzzifier, the method of the
problem of the sign is remarkable and is also the example of the estimated h4 AlgatF by the
sample size to 800. This error sign is corrected by AlgatF.

Thus the criterion of choice is crucial and even decisive in improving the divergence of
the calculation.

Note at this level the example of the estimated h4 by AlgaT at AlgatF for 1200. According
to the sample size Figure 5, we note that the curve coincides perfectly with the AlgatF ideal
channel curve.
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Figure 5. N = 1200 and SNR = 10 dB Magnitude and phase representation
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Figure 6. N = 800 and SNR = 20 dB
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Table 1. Estimed values of hi for SNR = 10 dB and N = 400,800,1200

Algorithms/Sample size h1 h2 h3 h4 EQM
Ideal channel 1 -1,083 -0,95 0,95 0
Alg1/400 1 -0,346 -0,253 0,553 0.488
AlgGianakis/400 1 2,119 -1,724 1,984 1,544
AlgaT/400 1 -0,240 -0,494 0,220 0,539
AlgatF/400 1 -0,672 -0,592 0,699 0,268
Alg1/800 1 -0,610 -0,434 0,734 0,328
AlgGianakis/800 1 -0,555 0,155 -0,672 0,909
AlgaT/800 1 -0,227 -0,342 -0,226 0,706
AlgatF/800 1 -1,317 -0,833 1,116 0,139
Alg1/1200 1 -0,904 -0,458 0,917 0,235
AlgGianakis/1200 1 1,150 -2,407 2,539 1,388
AlgaT/1200 1 -0,615 -1,566 3,554 1,215
AlgatF/1200 1 -1.121 -0.874 0,847 0,060

3.2. Case SNR is 20 dB
The obtained results are summarized in Table 2, for channel 1, for the four ALG1 algo-

rithms Alg of Gianakis, ALGaT and ALGatF the ALGaT corrected by the selection method pro-
posed in case SNR = 20 dB.

Table 2. Estimed values of hi for SNR = 20 dB and N = 400,800,1200

Algorithms/Sample size h1 h2 h3 h4 EQM
Ideal channel 1 -1,083 -0,95 0,95 0
Alg1/400 1 -0,417 -0,324 0,562 0,444
AlgGianakis/400 1 1,0773 -1,846 0,467 1,068
AlgaT/400 1 -1,340 -0,970 1,734 0,369
AlgatF/400 1 -0,986 -0,966 1,005 0,051
Alg1/800 1 -0,724 -0,562 0,845 0,242
AlgGianakis/800 1 -0,206 -0.080 0,045 0,685
AlgaT/800 1 -0,751 -0,720 1,063 0,188
AlgatF/800 1 -1,085 -1,040 0,871 0,053
Alg1/1200 1 -0,874 -0,487 0,961 0,227
AlgGianakis/1200 1 -0,055 -0,233 -0,253 0,777
AlgaT/1200 1 -2,572 -1,058 2,962 1,121
AlgatF/1200 1 -1,284 -0,935 1,177 0,136

According to the descriptive data Table 2, we can also see a big improvement in the EQM
for SNR = 20 dB. Indeed, for 400 the size sample, one notes that the proposed method ensures
the improvement of the EQM of a factor 7.3. Furthermore, the sample reaches 800 orders of a
factor 3.5, more than double.

This factor will increase and reach the 8.2 in the case of the sample size 1200. This
increase also ensures minimization of the EQM versus other algorithm. The improvement asso-
ciated with the so called problem of the method ensures good convergence to the true values of
the impulse response. Figure 6 show that the curves of AlgatF coincides perfectly with the curve
of the ideal channel.

IJEECS Vol. 3, No. 2, August 2016 : 410 ∼ 419



IJEECS ISSN: 2502-4752 � 419

4. Conclusion
Several blind identification algorithms based on higher order cumulants are usually used.

Among them three examples Alg1, Alg of Giannakis and AlgaT, were selected. We applied the
method based on the concept of fuzzy number on the latter one to obtain the corrected algorithm
AlgatF. In simulation, we considered a non-minimum phase channel and the estimated impulse
response of 100 iterations for SNR of about 10 dB and 20 dB for the various algorithms. We
were able to demonstrate that the proposed method increases the performance of the algorithm
by calculating the ratio of squared errors of ALGaT and AlgatF. The method can be applied to any
algorithm for more improvement and efficiency. For future research, we intend to test the effect of
the method on a small number of iterations so as to minimize the execution time of the algorithms.

References
[1] Y.Sato, “A method of self-recovering equalization for multilevel amplitude-modulation sys-

tems,” IEEE transaction, comm, vol. 23, no. 6, pp. pp 679 – 682, June 1975.
[2] D. Brillinger and L. Rosenblatt, Computation and interpretation of kth order spectra. Spectral

Analysis of Times Signals, New York : Wiley, 1967.
[3] G. Giannakis and A. Swami, “Higher order statistics,” Elsevier Science Publ, 1997.
[4] M. I.BADI, E.ATIFY and S.SAFI, “Blind identification of transmission channel with the method

of higher-order cummulants,” International Journal of Advances in Science and Technology,
vol. 6, no. 3, 2013.

[5] E. K.Abid-Meriam and F.Loubaton, “Predection erreur method for second-ordre blind identifi-
cation,” IEEE Transaction,Signal, Processing, vol. 45, no. 3, pp. pp 694 – 705, 1997 - March.

[6] S. Safi and A. Zeroual, “Blind parametric identification of linear stochastic non gaussian fir
systems using higher order cumulants,” International Journal of Systems Sciences Taylor
Francis, Signal Processing, vol. 44, no. 15, pp. pp:855–867, 2004.

[7] X. D. Zhang and Y. S. Zhang, “Fir system identification using higher order statistics alone,”
IEEE Transactions, Signal Processing, vol. 42, no. 12, pp. pp:2854 – 2858, 1994.

[8] D. Dembl, “Identification du modle arma lineaires l’aide de statistiques d’ordres elevs. appli-
cation l’egalisation aveugle,” Ph.D. dissertation, Juillet-1995.

[9] G.Favier, “Identification de modles paramtriques ar,ma et arma avec des statistiques d’ordres
suprieur et analyse des prformances,” GRETSI, pp. pp:137 – 140, Septembre-1993.

[10] I. Badi, M. Boutalline, S. Safi, and B. Bouikhalene, “Blind identification and equalization of
channel based on higher-order cummulants: Application of mc-cdma systems,” in Multimedia
Computing and Systems (ICMCS), 2014 International Conference on, April 2014, pp. 800–
807.

[11] A. S.Safi, “Ma system identification using higher ordre cumulants applications to modelling
solar radiation,” Journal of Statistical Computation and Simulation, vol. 72, no. 7, pp. pp 533
– 548, 2002.

[12] A. S.Alshebeili and F.Cetin, “Cumulant based identification approaches for minimum phase
fir system,” IEEE Transaction, Signal Processing, vol. 41, no. 4, pp. pp 1576 – 1588, 1993 -
Apr.

[13] A. N. Gani and S. N. M. Assarudeen, “An algorithmic approach of solving fuzzy linear system
using fourier motzkin elimination method,” Advances in Fuzzy Sets and Systems, vol. 10,
no. 2, pp. pp:95 – 109, 2011.

Fuzzy Number For Blind cumulants Identification (Elmostafa Atify)


