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 Plant disease detection is a critical task in modern agriculture, directly 
impacting crop yield, food security, and sustainable farming practices. 

Traditional methods rely on expert visual inspection, which is time-
consuming, inconsistent, and inaccessible in remote areas. This study 
introduces an advanced deep learning (DL) framework, the adaptive multi-
scale convolutional network (AMS-ConvNet), optimized for accurate and 
efficient plant disease identification. hierarchical feature extraction network 
(HFEN) integrates the multi-domain attention framework (MDAF) and 
adaptive scale fusion module (ASFM) to enhance feature extraction and 
address challenges such as complex natural backgrounds, non-uniform leaf 

structures, and varying environmental conditions. The proposed framework 
employs pre-trained knowledge adaptation (PTKA) techniques to improve 
generalization and overcome data scarcity. Comprehensive evaluations on 
multiple datasets demonstrate the model's better performance, achieving 
state-of-the-art metrics in precision, recall, F1-score, and accuracy. 
Furthermore, this approach ensures scalability and adaptability, making it 
suitable for real-field conditions. The study emphasizes the importance of 
robust, automated solutions in minimizing crop losses, reducing labor costs, 

and enhancing agricultural sustainability through precision disease 
management. 
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1. INTRODUCTION  

Finding and diagnosing plant leaf diseases is essential to maintaining crop resilience and production 
in contemporary horticulture and agriculture [1]. Computer vision and machine learning (ML) are two 

examples of advanced technologies that provide useful tools for precise illness identification. In recent years, 

visual symptoms on leaves, stems, and fruits have been analyzed using automated imaging systems and 

smartphone applications that use image recognition algorithms for quick pattern identification. Improvements 

in deep learning (DL) and pre-trained knowledge adaptation (PTKA) models have enhanced the capacity to 

identify illnesses in plant leaves. The study's main focus is on the decline in agricultural production. A plant 

eventually dies when a disease or other condition prevents its leaves from carrying out photosynthesis, which 

is necessary for the production of chlorophyll. Visual evaluations of disorders are performed by experts 

according to recognized standards [2]. When opposed to automated procedures, the identification of the 

ailment takes more time. Experts could only be available in certain nations. Image analysis-based automated 

plant disease detection systems must be put in place to solve this problem. A comprehensive evaluation of the 
condition's severity is necessary for both accurate yield prediction and the selection of the best treatment. 

https://creativecommons.org/licenses/by-sa/4.0/
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Internal causes of plant illnesses include pathogens, which include molds, viruses, and fungus. On 

the other hand, environmental elements including precipitation, humidity, and temperature may also 

contribute to their occurrence. These diseases can have a substantial financial impact on farmers' livelihoods. 

Crops are seriously threatened by plant diseases, which might result in a food catastrophe. The security and 

sustainability of human food systems are impacted by this issue. For agricultural disease management and 

intervention to be effective, plant illnesses must be identified promptly. Plant disease diagnosis requires 
human skill, but in rural and isolated parts of developing nations, this information has to be improved and 

standardized. The development of quick and precise techniques for identifying plant diseases is made easier 

by artificial intelligence technology. Modern image processing and pattern recognition algorithms allow 

farmers and agricultural experts to spot diseases using a variety of techniques. Plant diseases have been 

identified using a variety of methods [3]. By using ML and DL techniques to analyze visual data, models 

may be created to detect plant illnesses. Recent developments in agriculture have concentrated on using 

different DL techniques to tackle a range of problems. Insect detection, fruit and disease identification, plant 

leaf categorization, and leaf disease identification are among the difficulties. When using conventional ML 

techniques for real-time disease diagnosis, a number of challenges need to be overcome. Engineers can thus 

overcome these obstacles and develop the agriculture industry thanks to DL techniques. It is crucial to gather 

a range of photos showing various plant sections in order to create a model that can recognize plant  

illnesses [4], [5]. The leaves of a plant are the main area used to determine whether disease is present. 
Variations in leaf shape, texture, color, picture noise, and other characteristics might confound image 

processing techniques, which are useful for recognizing plant illnesses. It is possible to identify the main 

signs of illness by methodically examining photos of plant leaves. Several ML algorithms have shown to be 

an effective method for automated plant disease identification in precision agriculture. Plant diseases have 

been categorized and identified using a variety of ML techniques, such as support vector machines and K-

means clustering. Potential problems in the pre-processing and feature extraction phases restrict the efficacy 

of these techniques in real-time illness diagnosis. Changes to traditional ML techniques are required due to 

the intricacy and unpredictability of real-world detecting situations. A variety of illnesses may affect crops, 

and each one has its own characteristics. There are several obstacles in the way of creating a reliable system 

that can detect different types of illnesses in a variety of crop species. It is crucial to personally check large 

agricultural fields for signs of illness on a regular basis [6]. 
Citrus, rice, cassava, PlantVillage, iBean, and AI Challenger 2018 are the most well-known plant 

disease datasets that contain laboratory images. The datasets were used to train the convolutional neural 

network (CNN), which made it easier to identify and categorize plant illnesses. The neural networks used on 

these datasets demonstrated a notable degree of classification accuracy throughout the training stage. 

However, when tested in real-world scenarios, these gadgets' efficacy dramatically declined. Unlike 

laboratory photography, field photography has more intricate background components, including extra 

leaves, stems, fruits, soil, and mulch. The main cause of declining performance in outdoor photography, 

according to research, is complicated backdrops. Excluding these backdrops has been shown to improve the 

accuracy of sickness detection [7]. The are 759 photos of both healthy and sick citrus fruits and foliage make 

up the citrus dataset. The information includes diseases, including melanose, canker, scab, greening, and 

black spot that impact citrus plants. using the help of an expert, the photographs in the dataset were manually 
taken using a DSLR. 

According to recent research, the new DL approach outperforms conventional hand-engineered 

feature approaches when data volume exceeds a certain threshold. The use of CNN techniques might make it 

easier to exclude important sources that significantly affect the major elements shown in pictures. In order to 

properly diagnose a variety of plant diseases, recent research has focused on developments in deep learning, 

image fusion techniques, encoder-decoder network designs, and computer vision approaches [8]. Detection 

techniques based on vision improve precision and dependability in agricultural applications. It is anticipated 

that the application of these techniques will improve crop quality, reduce labor expenses, and eliminate time 

inefficiencies. The application of suitable management techniques improves the efficacy of disease control, 

especially when guided by prior experiences in an infected setting. Plant disease identification by image 

analysis is a multi-step procedure with a number of obstacles to overcome. These problems include illnesses 

with similar symptoms, the possibility of many diseases affecting the same crop, and symptoms with 
different visual features [9]. Picture processing methods including feature engineering, preprocessing, 

classification, and picture segmentation have been used in recent breakthroughs in the diagnosis of plant 

diseases. Picture fusion algorithms have been investigated by researchers as a potential disease diagnosis 

technique. Furthermore, sophisticated CNN-based DL techniques were widely used by researchers to identify 

plant illnesses [10]. The study team focused on improving the group's categorization accuracy, which 

produced favorable results. On the other hand, it will classify the different illnesses that affect a single leaf or 

several types. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 3, September 2025: 1976-1989 

1978 

The motivation for this research lies in addressing the pressing challenges of plant disease detection, 

which is critical for ensuring crop resilience, productivity, and food security in modern agriculture. 

Traditional diagnostic methods are constrained by limitations such as time-intensive processes, dependency 

on expert availability, and inconsistent outcomes, particularly in remote or resource-limited regions. These 

limitations underscore the need for advanced, automated, and scalable solutions. Leveraging cutting-edge 

developments in DL and computer vision, this research aims to overcome challenges such as non-uniform 

leaf structures, complex natural backgrounds, and varying environmental conditions, which often impede 
real-world applicability of disease detection systems. This study focuses on the development of a robust and 

optimized DL framework that bridges the gap between laboratory-grade accuracy and field-level deployment, 

facilitating precise, real-time plant disease identification and classification. By addressing these challenges, 

this work contributes significantly to the advancement of precision agriculture, enabling proactive disease 

management and sustainable crop production. 

 Development of an enhanced DL framework: The study introduces a robust adaptive multi-scale 

convolutional network (AMS-ConvNet) integrated with advanced attention mechanisms such as the 

multi-domain attention framework (MDAF) and the adaptive scale fusion module (ASFM). These 

innovations significantly improve feature extraction, focusing on diverse scales of lesion characteristics 

and addressing challenges posed by complex natural backgrounds in plant disease detection. 

 Integration of advanced image processing techniques: The proposed method incorporates augmented 
convolutional block attention modules and depthwise separable convolutions, optimizing computational 

efficiency while maintaining high accuracy. These modifications effectively enhance disease 

classification performance, especially in real-field conditions where existing approaches often fail due to 

environmental complexities. 

 Extensive evaluation and adaptation for practical deployment: The proposed framework is thoroughly 

validated on multiple datasets, showcasing significant improvements in precision, recall, F1-score, and 

overall accuracy compared to state-of-the-art models. Furthermore, the method is designed with 

scalability and robustness, ensuring its adaptability to real-field conditions, thereby advancing the 

practical implementation of automated plant disease detection systems in precision agriculture. 

The research work is organized in 4 sections: the first section gives a brief description of the 

overview and background of plant disease detection and classification. The second section gives a brief 

description of the related work, the third section discusses the proposed methodology. The fourth section 
discusses the performance evaluation where the results are displayed in the form of graph and tables. 

 

 

2. RELATED WORK 

There has been plenty of related work developed in the past for individual leaf disease detection 

using the DL and some of them included multiple plants; considering our research some of them are 

discussed. The DAC-PPYOLOE model was created by [11] to increase the accuracy of apple pest diagnosis 

under difficult circumstances. This model recognizes small objects using both shallow and deep feature maps 

using an adaptive feature fusion method that combines deep separable convolution and residual connectivity. 

[12] presented the enhanced SE-YOLOv5 network for tomato disease and pest detection. The SE attention 

mechanism overcomes the limitations of existing feature screening and model generalization methods by 
enhancing critical feature extraction. In [13] developed an enhanced R-CNN model employing federated 

learning (FL) to solve issues with data imbalance, variety, and complex detection settings in traditional plant 

disease and pest detection. This paradigm reduces communication and data storage expenses by leveraging 

FL's distributed computing characteristics. Additionally, ResNet-101 enhances multiscale detection accuracy 

for a range of diseases and pests by substituting VGG-16 in the convolutional layer. To increase the detection 

accuracy of maize diseases, in [14] proposed a technique for corn leaf disease diagnosis utilizing fuzzy C-

means (FCM) and long short-term memory (LSTM) algorithms. The gray-level co-occurrence matrix was 

used to extract texture information from illness pictures. The LSTM algorithm was then used to classify these 

texture properties. The accuracy rating obtained by using this strategy was 80.24%. In [15] created an edge 

feature guidance (EFG) module to enhance the model's ability to extract local edge features in order to get 

over the challenges presented by complex plant disease characteristics and sparse datasets. The overall 

performance of the model may be improved by including multiscale features and edge information by 
integrating the EFG module into vision transformers like ViT and Swin.[16]  

The diagnosis of plant diseases has been transformed by recent advances in deep learning, which 

have also introduced new methods for a variety of crops, including maize, potatoes, tomatoes, sugarcane, and 

groundnuts. According to research, AI-powered models can effectively address significant agricultural issues 

including the prompt and precise identification of diseases. A thorough assessment of more than 160 studies 

on deep learning-based plant disease detection highlighted the need of diverse, high-quality datasets in 
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developing reliable models that can detect diseases early. With this method, farmers and agricultural experts 

may employ quick and efficient management strategies. Real-time disease detection systems based on mobile 

devices have emerged as promising alternatives, particularly for maize. A study [17] demonstrated how to 

integrate object recognition and transfer learning methods to develop a system that effectively detects 

diseases in maize leaves. These instruments enhance disease management and expedite field decision-making 

by providing farmers with instant feedback. The combination of artificial intelligence and the internet of 
things (IoT) has significantly altered large-scale agricultural surveillance. Drones equipped with advanced 

imaging technology and artificial intelligence might swiftly and precisely identify diseases over vast 

agricultural areas, optimizing resource utilization and reducing crop losses. 

Sugarcane illnesses are being managed with the use of advanced AI technology. Researchers in [18] 

described a technique that employs multispectral satellite imagery and artificial intelligence to detect Ratoon 

Stunting Disease in sugarcane. This satellite-based method facilitates the early detection of disease hotspots 

on big plantations by permitting targeted treatments and stopping the spread of diseases. Furthermore, 

advancements in AI frameworks are making it simpler to identify diseases in crops like potatoes and 

tomatoes. Researchers are employing ML and DL models to detect agricultural illnesses in order to solve 

significant issues such as varying climatic conditions and diverse disease presentations. The combination of 

cutting-edge AI technology with practical applications highlights the potential of these tools to transform 

modern agriculture. As AI-powered systems advance, they might enhance food security, disease prevention, 
and crop monitoring, facilitating the widespread adoption of more resilient and sustainable agricultural 

practices. In [19], [20] proposes a novel lightweight deep CNN model to learn high-level hidden feature 

representations. Local texture information is extracted from plant leaf images using deep features and 

conventionally constructed local binary pattern (LBP) features. Three openly accessible datasets, apple leaf, 

tomato leaf, and grape leaf, are used to train and assess the proposed model. The proposed technique achieves 

validation accuracies of 99%, 96.6%, and 98.5% and test accuracies of 98.8%, 96.5%, and 98.3% across the 

three datasets. Pajany et al. [21] proposed a model ensemble method for accurately identifying and 

classifying plant diseases based on field pictures. The segment anything model allows for the recognition and 

delineation of any discernible item inside an image. The highlighted components are then extracted from the 

original image using image processing techniques. The fully convolutional data description is an explainable 

deep one-class classification model for anomaly detection. It aids in differentiating between background 
objects and actual leaf things. Finally, a categorization model created by Plantvillage is used to infer 

conclusions from the selected leaves. Taji et al. [22] recommend utilizing UAV-based remote sensing data in 

combination with optimal fuzzy deep neural networks (OFDNN-PDDC) to identify and categorize plant 

illnesses. The OFDNN-PDDC method may be used to efficiently identify and classify a range of plant 

diseases.  

The hybrid framework employed in this study is based on a hybrid preprocessing technique that 

incorporates an ensemble features engineering phase that focuses on texture features together with two 

distinct forms of deep feature extraction [23]. The LBP characteristics are integrated with the CNN qualities. 

Three distinct meta-heuristic algorithms the binary dragonfly algorithm (BDA), the ant colony optimization 

technique, and the moth flame optimization method (MFO) are used to optimize the ensemble feature vector. 

Modern ML methods are used to classify the enhanced feature vector. 
 

 

3. PROPOSED METHODOLOGY 

AMS-ConvNet enhances the superior feature extraction capabilities and reduced training 

requirements. It performs better than the bulk of traditional CNN models as well as a few of transformer 

models. The AMS-ConvNet is made up of a feature extraction layer at the head, a feature classification layer 

at the end, and four stacked AMS-ConvNet blocks of varying sizes in the center. The intra-layer architecture 

and stacking technique of AMS-ConvNet are different from those of the general architecture. Among the 

modifications are the following: In each of the four stages, three, four, six, and three blocks are stacked, 

resulting in a ratio of around 1:1:2:1. AMS-ConvNet employs a block stacking ratio of 1:1:3:1 and modifies 

the stacking to 3, 3, 9, and 3, drawing inspiration from the transformer idea. 

AMS-ConvNet performs the Patchify process in parallel, substituting a 4 x 4 convolutional kernel 
size and a stride of 4 for the Stem. Dimensionality expansion follows dimensionality reduction in the 

bottleneck design of CNN, and feature extraction follows. Using an inverted bottleneck, AMS-ConvNet 

performs feature extraction first, followed by dimensionality reduction and dimensionality increase. A depth-

separable convolution is also employed, which is comparable to the Transformer's Self-attention and the the 

activation function is employed infrequently. In the normalizing layer, layer normalization has taken the role 

of batch normalization, and the frequency of normalization applications has decreased. AMS-ConvNet 

incorporates a downsampling layer with layer normalization and a convolution operation with a kernel size of 
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2 and a stride of 2 at the same time. AMS-ConvNet employs a 7x7 convolution kernel rather than the 3x3 

convolution kernel.  

 

3.1.  Architecture 

The background of the plant disease dataset is complex, and characteristics like tiny, dispersed 

disease spot patches make disease classification more challenging. To address this, this study suggests a 

high-performance plant disease classification network that makes use of an improved AMS-ConvNet 
architecture. The augmented convolutional block attention module is first included after the second 1×1 

convolution of the AMS-ConvNet Block and at the conclusion of each Stage in order to improve the 

network's emphasis on diseased spot information and lessen the influence of unrelated elements. Second, to 

improve the network's capacity to extract feature information related to illnesses of varied sizes. In the end, 

the AMS-ConvNet Block model's repetition count is decreased in order to lower the model's complexity. 

Figure 1 shows the AMS-ConvNet and Figure 2 shows the proposed model. 

 

3.2.  MDAF 

MDAF is an attention module consisting of spatial and channel mechanisms. The attention is levied 

on channel information within the position target information, this is embedded within the CNNs with added 

computation. The channel attention module performs information combination through average max pooling 

operations, then forwards it to a shared network, which creates a channel attention map by combining the 
input feature maps and compressing their spatial dimensions, however like this the channel attention model is 

evaluated.  

 

𝑂𝑒(𝐻) = 𝜗 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐻)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐻)))  

𝜗(𝑌1 (𝑌𝑜(𝐻𝑎𝑣𝑔
𝑒 )) + 𝑌1(𝑌𝑜(𝐻𝑚𝑎𝑥

𝑒 )) (1) 

 

In (1) 𝐻 denotes the input feature map, 𝜗 denotes the activation function, MLP depicts multilayer 

perceptron, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 is the average pooling operation, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 is the maximum pooling operation, 
𝑌0𝜖𝑇𝐸

𝑡
∗

𝐸,
𝑌1𝜖𝑇𝐸

𝑡
∗ 𝐸. 𝐻𝑎𝑣𝑔

𝑒  and  𝐻𝑚𝑎𝑥
𝑒  upon compression of spatial feature map by global max pool and global average 

pool. The spatial attention module considers the importance of pixels at different locations in the same 

channel, compresses the channel, and performs average pooling and maximum pooling in the channel 

dimension to concentrate the information at the spatial locations of important features. The spatial attention 

module is calculated as follows. 

 

𝑂𝑒(𝐻) = 𝜗(ℎ7∗7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐻), 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐻)]))  

𝜗(ℎ7∗7([𝐻𝑎𝑣𝑔
𝑢 , 𝐻𝑚𝑎𝑥

𝑢 ]))) (2) 

 

Here in (2) 𝑂𝑒  denotes the feature map, as a result of the spatial attention module, 𝐻 is the input 

feature map, 𝜗 is the sigmoid function, ℎ7∗7 depicts the convolution operation and the convolutional kernel of 

size 7, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 depicts the pooling operation and 𝑚𝑎𝑥 𝑝𝑜𝑜𝑙 depicts the maximum pooling operation. The 

MDAF channel attention module and the spatial attention module are serially connected. Channel attention is 

carried out prior to the application of spatial attention. The latter's input comes from the previously altered 

features, which will affect how spatial features are learned and might cause the attention module to function 

erratically. Multilayer perceptrons (MLPs) are used in tandem to reduce the dimensionality of channel 

attention, which results in a loss of features and an increase in the number of parameters. By switching from 

a serial connection to a parallel connection, this study addresses the difficulties found and enhances MDAF. 

This ensures that channel attention and spatial attention inputs come from the same source, continue to be 

non-interfering, and provide better feature weight information. To increase the model's cross-channel 

interaction capabilities, simplify the algorithm, improve information sharing across channels, and reduce 
feature degradation, a one-dimensional convolution operation simultaneously serves as the perceptron layer. 

The feature extraction procedure successfully resolves the interference problems brought on by the 

network's intricate natural environment by allowing the network to concentrate on lesion characteristics via 

the attention mechanism. An improved MDAF attention module that is included into the AMS-ConvNet 

model is shown in this work. Focusing on the extraction of visual data, allocating weights between sick 

patches and background information optimally, and enhancing adaptation to a variety of contexts are all 

crucial for improving network identification accuracy. The number of model parameters stays roughly 

constant. 
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Figure 1. AMS-ConvNet Figure 2. Proposed model 

 

 

3.3.  ASFM 

This module increases the network width upon replacing the sparse and dense structures that 

enhances network performance by voiding computational time. the input further extracts various features 

through various sizes of convolutional kernels in the adjacent branches, the four branches are then spliced in 

channel dimension and is further fused with the feature matrix is given as output. The model's size may be 

decreased and the computational complexity decreased via depthwise separable convolution, which includes 

depthwise and point-wise convolution. Assume that the input feature matrix's width and height correspond to 

the convolution kernel's size, that the input feature matrix's number of channels is 𝑂, and that the output 

matrix's number of channels is 𝑃. 
 

𝐹𝑀 ∗ 𝐹𝑀 ∗ 𝑂 ∗ 𝑃 ∗ 𝐹𝐻 ∗ 𝐹𝐻  (3) 
 

𝐹𝑀 ∗ 𝐹𝑀 ∗ 𝑂 ∗ 𝐹𝐻 ∗ 𝐹𝐻 + 𝑂 ∗ 𝑃 ∗ 𝐹𝐻 ∗ 𝐹𝐻  (4) 
 

(𝐹𝑀 ∗ 𝐹𝑀 ∗ 𝑂 ∗ 𝑃 ∗ 𝐹𝐻 ∗ 𝐹𝐻)/(𝐹𝑀 ∗ 𝐹𝑀 ∗ 𝑂 ∗ 𝐹𝐻 ∗ 𝐹𝐻 + 𝑂 ∗ 𝑃 ∗ 𝐹𝐻 ∗ 𝐹𝐻)  

=
1

𝑃
+

1

𝐹𝑀∗𝐹𝑀
=

1

𝑃
+

1

9
 (5) 

 

In (3) denotes the amount of convolutional computation, in (4) is a seperable convolution 

computation. in the (5) represents separate convolution that saves more parameters in comparison with the 

conventional convolutional computation. The ASFM structure implemented in this study is founded on 

depthwise separable convolution and the Inception architecture. Initially, the 1 × 1 and 3 × 3 ordinary 

convolutions in Inception are substituted with a 3 × 3 depthwise convolution and a 1 × 1 point-wise 

convolution. Subsequently, a 5 × 5 convolution is replaced by two 3 × 3 convolutions. Lastly, multiple small-
kernel convolution operations can introduce increased nonlinearities while maintaining the same receptive 

field with reduced computational requirements. The model encounters challenges in extracting lesion 

characteristics within a complex natural environment, which affects recognition accuracy. Enhancing the 

process is challenging; however, it is equally difficult to improve the extraction of disease information using 

only a single convolutional kernel size is utilized due to the variability in size and shape of the disease spots. 

This study represents a ASFM module designed to extract deeper characteristics of illness pictures. The 

performance of the AMS-ConvNet network can be improved through the integration of the ASFM module, 

which facilitates the extraction of diverse scales of illness spot information. Figure 3 shows the HFAM 

model. 

 

3.4.  PTKA 
The model is vulnerable to issues like overfitting and poor generalization ability in the field of 

disease recognition since it is challenging to gather further citrus disease leaf data. A technique for moving 

pre-training weights from the source domain to the target domain is called PTKA, and it can help with small 
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sample issues and enhance network performance. Usually, a sizable dataset is utilized as the source domain 

to first train the model. A data collection that you wish to apply to a limited number of samples is known as 

the target domain. ImageNet is the biggest image recognition database and is frequently used for picture 

categorization, detection, and placement. To pre-train the model in this study, the ImageNet data set was used 

as the source domain. Then, among freezing and fine-tuning techniques, the PTKA approach appropriate for 

diagnosing plant disease dataset was used. Freezing is the process of setting the weights in the source 

domain's network model, freezing all of the network's convolutional layers, and only modifying the fully 
connected ones. Fine-tuning is the process of keeping some of the network's convolutional and fully 

connected layers for additional training and fine-tuning while freezing some of the network's convolutional 

layers. Figure 4 shows the PTKA mechanism. 
 
 

 
 

Figure. 3 HFAM model 

 

 

 
 

Figure 4. PTKA mechanism 
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4. RESULTS AND DISCUSSION 

The performance evaluation reveals that models achieve varying levels of effectiveness across 

different datasets, with metrics such as precision, recall, F1-score, and accuracy reflecting the complexity of 

the tasks. Datasets like sugarcane leaf disease show relatively lower performance, indicating challenges in 

accurate detection, while better results are observed for Corn, Potato, and Groundnut datasets. Advanced 

architectures like MobileNetV2 and EfficientNetB5 demonstrate strong performance, showcasing the 
benefits of modern designs. 

 

4.1.  Dataset details 

 Groundnut dataset [23]: The dataset used for this research includes digital images of groundnut leaves 

captured under varying weather conditions and diverse lighting environments in the Koppal area of 

Karnataka, India. It consists of a total of 10,361 images, which have been divided into separate training 

and test sets. The test dataset, on the other hand, consists of 2,451 photos, with each class including, 

depending on the category, 409 or 405 images. 

 Sugarcane leaf disease dataset [24]: the sugarcane leaf disease dataset comprises 2,567 images distributed 

across five distinct classes: Healthy, Mosaic, Red Rot, Rust, and Yellow. This dataset is designed to 

capture a wide variety of visual features associated with these conditions, offering a comprehensive 
resource for the development of ML models for disease classification. The inclusion of diverse disease 

types ensures robust training and testing capabilities for algorithms targeting sugarcane leaf health. 

 Corn (or maize) leaf disease dataset [25]: the corn (or maize) leaf disease dataset contains 4,188 images 

categorized into four groups: Common Rust, Gray Leaf Spot, Blight, and Healthy. This dataset provides a 

rich and diverse set of visual patterns for disease and healthy leaf identification. It plays a critical role in 

advancing precision agriculture, enabling the development of accurate and efficient models for early 

disease detection and effective crop management in maize farming. 

 Potato leaf disease dataset [26]: the potato leaf disease dataset consists of 4,062 images classified into 

three categories: early blight, late blight, and healthy. It serves as a vital tool for studying the visual 

distinctions between different types of blights and healthy potato leaves. This dataset is instrumental in 

facilitating the development of automated disease detection systems, helping to reduce crop loss and 

improve productivity in potato cultivation. 
 

4.2.  Metrics comparison 

4.2.1. Precision 

Precision measures the proportion of correctly identified positive instances among all instances 

predicted as positive by the model. It focuses on the accuracy of positive predictions and is particularly 

important in scenarios where false positives carry significant consequences. For example, in spam detection, 

a high precision means the model effectively avoids labeling legitimate emails as spam. Precision provides 

insight into the reliability of the model's positive predictions, indicating how well the model discriminates 

between relevant and irrelevant positive classifications. 

 

4.2.2. Recall 
Recall, also known as sensitivity or the true positive rate, evaluates the model’s ability to correctly 

identify all actual positive instances in the dataset. It measures how well the model captures positive cases 

and is crucial in applications where missing a positive instance can have severe consequences, such as in 

medical diagnoses or fraud detection. A high recall indicates the model successfully identifies most of the 

true positives, ensuring that critical cases are not overlooked, even if it includes some irrelevant positives. 

 

4.2.3. F1-Score 

F1-score is the harmonic mean of precision and recall, providing a balanced evaluation of a model's 

performance when dealing with imbalanced datasets. It is particularly useful when both false positives and 

false negatives carry significant consequences, and a balance between precision and recall is needed. A high 

F1-score indicates that the model maintains a good trade-off, capturing most positive cases while minimizing 
incorrect predictions. This metric is ideal for applications like medical diagnoses or spam detection, where 

both types of errors must be carefully managed. 

 

4.2.4. Accuracy 

Accuracy is the proportion of correctly predicted instances (both positive and negative) out of the 

total instances in the dataset. It is a straightforward and widely used metric that measures the overall 

effectiveness of a model. However, it can be misleading in imbalanced datasets where one class significantly 

outweighs the other. For example, in a dataset with 95% negatives, a model predicting all negatives achieves 
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95% accuracy but fails to identify positives. Thus, while accuracy is a helpful metric for balanced datasets, it 

is often supplemented by other metrics like precision, recall, and F1-score to provide a more comprehensive 

evaluation of model performance. 

 

4.3.  Groundnut dataset results 

Table 1 and Figure 5 illustrate the precision rates (%) of various models in a comparative analysis. It 

shows that traditional models like VGG16 exhibit relatively lower precision (85.863%), while advanced 
architectures like DenseNet161, EfficientNetB5, and MobileNetV2 demonstrate improved performance, with 

MobileNetV2 achieving 93.852%. EfficientNetB5 shows slightly less precision (93.155%) than 

MobileNetV2. Remarkably, the custom or experimental models labeled ES and PS achieve significant 

precision improvements, with ES reaching 97.365% and PS achieving the highest precision at 98.34%. This 

analysis suggests that while modern DL architectures enhance performance, custom models like PS and ES 

outperform standard pre-trained models, indicating potential optimizations tailored to the specific dataset or 

task. 
 
 

Table 1. Metric comparison on groundnut dataset 
Model Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

DenseNet161 92.145 91.84 91.83 91.84 

EfficientNet 93.155 94.084 94.064 94.084 

VGG16 85.863 85.597 85.422 85.597 

MobileNetV2 93.852 93.798 95.588 93.798 

InceptionResNetV2 88.471 88.29 88.255 88.29 

ES 97.365 97.756 97.225 97.225 

PS 98.34 98.76 98.98 98.43 

 

 

 
 

Figure 5. Precision metric comparison on groundnut dataset 
 
 

Figure 6 presents the recall (%) performance of various DL models. Among the listed models, 

VGG16 demonstrates the lowest recall at 85.597%, while newer architectures like InceptionResNetV2 

(88.29%) and DenseNet161 (91.84%) show incremental improvements. MobileNetV2 and EfficientNetB5 

achieve notable recall values of 93.798% and 94.084%, respectively, indicating their effectiveness in 
identifying true positives. The custom models ES and PS significantly outperform the standard architectures, 

with ES achieving an impressive 97.756% recall and PS attaining the highest recall of 98.76%. This analysis 

highlights the evolution of model performance and underscores the superior recall achieved by the 

specialized models, suggesting their adaptation to specific dataset characteristics or task requirements. 

Figure 7 showcases the F1-score performance of various DL models. The F1-score, which balances 

precision and recall, indicates that VGG16 has the lowest performance at 85.422%. Improvements are 

observed with InceptionResNetV2 (88.255%) and DenseNet161 (91.83%), while EfficientNetB5 and 

MobileNetV2 demonstrate strong performance at 94.064% and 95.588%, respectively. However, the custom 

models ES and PS significantly outperform these standard architectures, with ES achieving 97.225% and PS 

reaching an exceptional 98.98%. This analysis underscores the superior balance achieved by the custom 

models, especially PS, suggesting their enhanced optimization and suitability for the specific dataset or task 
compared to the traditional architectures. 
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Figure 8 summarizes the accuracy (%) of different DL models. VGG16 exhibits the lowest accuracy 

at 85.597%, indicating room for improvement in its performance. InceptionResNetV2 and DenseNet161 

demonstrate better results, with accuracy values of 88.29% and 91.84%, respectively. MobileNetV2 and 

EfficientNetB5 show even greater accuracy at 93.798% and 94.084%, showcasing the impact of 

advancements in architecture design. The custom model PS significantly surpasses all other models, 

achieving an exceptional accuracy of 98.43%, highlighting its superior adaptability and optimization for the 
specific dataset or task. This analysis underscores the evolutionary performance improvements, with PS 

emerging as the most effective model. 

 

 

 
 

Figure 6. Recall metric comparison on groundnut dataset 
 

 

 
 

Figure 7. F1-score metric comparison on groundnut dataset 

 
 

 
 

Figure 8. Accuracy metric comparison on groundnut dataset 
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4.4.  Dataset comparison 

Specifically, the precision for sugarcane leaf disease [PS] is 84.76%, an improvement over 

sugarcane [ES] at 83.127%. Similarly, recall improves from 82.669% for sugarcane [ES] to 84.54% for 

sugarcane leaf disease [PS], indicating better detection of relevant instances. The F1-Score, a harmonic mean 

of precision and recall, shows a notable increase from 82.61% to 84.65%, highlighting a better balance 

between precision and recall in sugarcane leaf disease [PS]. Finally, accuracy improves marginally from 

82.669% to 83.87%, reflecting the overall enhancement in correctly classified samples. Table 2 and Figure 9 
show the sugarcane dataset comparison. 

 

 

Table 2. Sugarcane dataset 
Dataset Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Sugarcane leaf disease [ES] [24] 83.127 82.669 82.61 82.669 

Sugarcane leaf disease [PS] 84.76 84.54 84.65 83.87 

 

 

 
 

Figure 9. Metric comparison on sugarcane dataset 
 
 

The comparison of metrics for corn or maize leaf dataset across two scenarios reveals a clear 

improvement in the second case (PS). Precision increased from 89.204% to 91.87%, indicating better 

identification of true positives among predicted positives. Similarly, recall rose from 89.354% to 90.57%, 

showcasing the model's enhanced ability to detect actual positive cases. The F1-Score, which balances 

precision and recall, improved significantly from 89.262% to 91.65%, reflecting a more robust performance 

in handling both false positives and false negatives. Furthermore, accuracy climbed from 89.354% to 

91.86%, signifying an overall increase in correct predictions. Table 3 and Figure 10 shows the corn or maize 

leaf dataset comparison. 

 

 

Table 3. Corn or maize leaf dataset comparison 
Dataset Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Corn or maize leaf disease [ES] [25] 89.204 89.354 89.262 89.354 

Corn or maize leaf disease [PS] 91.87 90.57 91.65 91.86 

 

 

The analysis of potato leaf disease performance metrics between the two scenarios shows significant 

improvements in the PS. Precision increased from 94.68% to 95.31%, reflecting a higher accuracy in 
predicting true positives among the predicted cases. Recall showed a more substantial rise from 94.567% to 

96.12%, demonstrating an enhanced ability to identify all true positive instances. This improvement in both 

precision and recall is further validated by the increase in the F1-Score from 94.584% to 95.54%, indicating a 

better balance between precision and recall in the second scenario. Additionally, the accuracy improved from 

94.567% to 95.86%, highlighting the model's overall enhanced ability to make correct predictions. Table 4 

and Figure 11 shows the potato leaf comparison. 
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Figure 10. Metric comparison on corn or maize dataset 

 

 

Table 4. Potato leaf disease comparison 
Dataset Precision (%) Recall (%) F1-Score (%) Accuracy (%) 

Potato leaf disease [ES] [26] 94.68 94.567 94.584 94.567 

Potato leaf disease [PS] 95.31 96.12 95.54 95.86 

 

 

 
 

Figure 11. Metrics comparison on potato leaf disease 

 

 

5. CONCLUSION 

This study addresses the critical challenges in plant disease detection by proposing a novel DL 

framework, the AMS-ConvNet. By incorporating advanced modules such as the MDAF and ASFM, the 

proposed framework demonstrates enhanced capability in extracting disease-specific features, even in 

complex real-world conditions. The integration of PTKA further improves the model's generalization, 

enabling effective utilization of limited dataset sizes and adapting to diverse crop diseases. Comprehensive 
evaluations across multiple datasets validate the framework's superiority, achieving state-of-the-art metrics in 

precision, recall, F1-score, and accuracy. These results underscore the model’s potential to bridge the gap 

between laboratory-grade performance and real-field applicability. This study not only contributes to 

precision agriculture by offering a robust and scalable solution but also highlights the role of advanced AI 

techniques in ensuring food security and sustainable farming practices. Future work will focus on further 

optimizing the framework to handle a broader range of crops and environmental conditions, fostering greater 

adoption of automated plant disease detection systems in diverse agricultural settings. 
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