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2High School of Technology Kénitra, Ibn Tofail University, Kénitra, Morocco

Article Info

Article history:

Received Sep 17, 2024
Revised Jul 8, 2025
Accepted Oct 14, 2025

Keywords:

Cross-linguistic performance
Encoders
Few-shot learning
Multilingual named entity
Recognition

ABSTRACT

This work provides a thorough analysis of few-shot learning approaches in the
realm of multilingual named entity recognition (NER). Our research is driven
by the need to enhance linguistic inclusivity and performance efficiency across
diverse languages. We focus on benchmarking a selection of prominent encoder
models including XLM-RoBERTa (XLM-R), multilingual BERT (mBERT),
DistilBERT, character architecture for eNcoders IN embeddings (CANINE), and
multilingual text-to-text transfer transformer (mT5), to illuminate their capabil-
ities and limitations within few-shot learning paradigms, particularly for un-
derrepresented languages. Results indicate that models like XLM-R and mT5
demonstrate superior adaptability and accuracy, outperforming others in com-
plex linguistic settings, which suggests their potential in supporting more inclu-
sive artificial intelligence (AI) technologies. The impact of this study extends
beyond academic interest, offering pivotal insights for the development of more
inclusive, adaptable and efficient NER systems. By advancing our understand-
ing of few-shot learning in multilingual contexts, this work contributes to the
broader goal of creating AI applications that are linguistically diverse and more
reflective of global communication patterns. These results provide crucial in-
sights for advancing entity recognition capabilities across diverse artificial in-
telligence systems, facilitating development of more precise, equitable, and so-
phisticated linguistic processing frameworks.
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1. INTRODUCTION
Entity recognition constitutes a fundamental component within computational linguistics, converting

raw textual data into organized information through identification of individuals, institutions, geographical lo-
cations, and time-related expressions [1]. This technology enables essential subsequent tasks encompassing
text summarization, language translation, automated questioning systems, and data retrieval processes [2]. Al-
though considerable advancement characterizes well-resourced languages such as English, difficulties escalate
dramatically for languages possessing scarce labeled corpora [3]. Such data disparities establish substantial
barriers to equitable artificial intelligence development, compounded by structural linguistic diversity, writing
system variations, and sociocultural factors that impede effective methodology transfer between data-rich and
data-poor languages [4], [5]. Limited-example learning represents a promising approach, allowing compu-
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tational models to develop competence using minimal training instances [6] especially beneficial for cross-
linguistic entity recognition where data scarcity affects numerous languages. Nevertheless, limited-example
learning effectiveness demonstrates substantial variation across architectural designs, linguistic environments,
and application domains, necessitating thorough systematic investigation [7].

Recent architectural breakthroughs include Conneau et al. [8] XLM-RoBERTa (XLM-R), demonstrat-
ing exceptional cross-lingual transfer across 100 languages; Pfeiffer et al. [9] MAD-X adapter-based architec-
ture; Clark et al. [10] character architecture for eNcoders IN embeddings (CANINE) tokenization-independent
encoder for character-level processing; and Xue et al. [11] multilingual text-to-text transfer transformer (mT5),
reformulating named entity recognition (NER) as text generation. Concurrently, few-shot learning research ad-
vanced through Huang et al. [12] meta-learning investigations, Ma et al. [13] decomposed MAML architecture
[14], and Li et al. [15] FewNER entity differentiation improvements. Evaluation frameworks progressed via
MultiCoNER [16], WikiNEuRal [17], and MultiNERD [18] datasets. Despite advances, fundamental chal-
lenges persist: difficulty generalizing to novel entity types and domains [19], [20], inefficient support set
construction [21], language-specific complexities including morphological variations and syntactic differences
[22], [23], and unsuccessful knowledge transfer from resource-rich to resource-poor languages [24]-[26].

This investigation systematically evaluates five multilingual encoder architectures—XLM-R, multi-
lingual BERT (mBERT), DistilBERT, CANINE, and mT5—in few-shot NER applications across diverse lan-
guages and datasets (MultiNERD, MultiCoNER, WikiNeural) under 1-shot, 3-shot, and 5-shot conditions. Our
contributions include: comprehensive comparative analysis of multilingual encoders in few-shot NER contexts;
examination of architectural characteristics and few-shot learning effectiveness; empirical findings on cross-
linguistic performance variations affecting inclusivity; and actionable guidance for model selection based on
language support, entity categories, and computational constraints.

2. METHOD
This section delineates our methodological framework for assessing few-shot learning performance

across diverse multilingual encoder architectures in NER. We outline model selection criteria, dataset speci-
fications, preprocessing procedures, evaluation frameworks, and experimental configurations to ensure repro-
ducible and transparent research.

2.1. Model selection and implementation
We evaluated five prominent multilingual encoder architectures selected based on architectural het-

erogeneity, linguistic scope, and documented performance in related applications.
XLM-R builds upon the RoBERTa foundation while incorporating multilingual pre-training across

a 2.5TB filtered CommonCrawl corpus spanning 100 languages. The architecture employs a Transformer
encoder featuring 12 layers, 768 hidden units, 12 attention heads (base configuration), and a 250,000-token
vocabulary generated through Sentence Piece tokenization. Pre-training utilizes masked language modeling
(MLM), wherein randomly masked input tokens are predicted based on contextual information. For few-shot
NER implementation, we augmented the base architecture with task-specific classification layers comprising
linear transformation (768 dimensions to entity class count) followed by SoftMax activation. Model param-
eters were initialized from pre-trained weights, with classification layers randomly initialized using Xavier
methodology [27]. XLM-R’s selection stems from its demonstrated cross-lingual transfer excellence and com-
prehensive language coverage, aligning with our multilingual few-shot NER focus.

mBERT extends the foundational BERT architecture to cover 104 linguistic varieties using a unified
subword lexicon of 110,000 tokens. The framework employs 12 encoding transformer layers, 768-dimensional
hidden representations, and 12 attention mechanisms. Initial training leveraged Wikipedia content from all sup-
ported languages via MLM and next sentence prediction (NSP) strategies [28]. Adopting XLM-R’s method-
ology, we enhanced the architecture using domain-specific classification components for entity recognition
tasks. The cased configuration was retained considering capitalization’s importance for entity identification.
Classification components integrated linear mapping succeeded by SoftMax activation, incorporating dropout
(rate=0.1) preceding linear layers for overfitting prevention. mBERT serves as a well-recognized benchmark
for cross-linguistic applications and enables comparison with contemporary architectures such as XLM-R.

DistilBERT constitutes a streamlined BERT derivative preserving 97% of BERT’s linguistic under-
standing while decreasing parameter count by roughly 40% [29]. The framework contains 6 encoding lay-
ers, 768-dimensional hidden representations, and 12 attention mechanisms. Development utilized knowledge
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transfer techniques, where the apprentice network acquires knowledge from instructor model via prediction
distribution difference reduction. Classification module design incorporated dropout layers (rate=0.1) suc-
ceeded by linear mapping and SoftMax activation. Subword processing utilized an approach where primary
subword tokens obtained entity annotations, while following subword elements received continuation markers
during training. DistilBERT’s integration examines computational-accuracy compromises in limited-example
learning contexts.

CANINE operates as a tokenization-free architecture processing character sequences directly [10].
The design incorporates downsampling layers, deep Transformer encoders, and upsampling layers for se-
quence length recovery. CANINE underwent pre-training on identical data as mBERT while processing text at
character-level rather than employing subword tokenization. For NER applications, classification layers were
positioned atop upsampled character representations. Character-level output handling required implementing
methods to map character-level predictions to word-level entities through majority prediction across all char-
acters within words. CANINE’s character-level processing presents unique advantages for multilingual text
handling, potentially benefiting languages with complex morphology or non-standard orthography.

mT5 extends T5 architecture across 101 languages [11]. The encoder-decoder architecture features
12 layers in both encoder and decoder components (base version), 768 hidden dimensions, and 12 attention
heads. Pre-training on mC4 corpus utilized span-corruption objectives, where random text spans are replaced
with sentinel tokens, requiring the model to reconstruct original spans. Unlike other models framing NER
as sequence classification, we implemented mT5 for NER through text generation task formulation. Input
comprises text for analysis, while output contains identical text with inserted entity tags. Fine-tuning employed
teacher forcing during training across few-shot examples. mT5’s generative NER approach offers paradigmatic
contrast to classification-based methods.

2.2. Dataset selection and processing
We selected three comprehensive multilingual NER datasets ensuring evaluation diversity across lan-

guages, domains, and annotation schemes:
MultiNERD [18] encompasses fine-grained multilingual NER across 10 languages (English, Span-

ish, French, German, Italian, Portuguese, Polish, Dutch, Russian, Chinese) and 15 entity types. Sourced from
Wikipedia and Wikinews, annotations include standard entity categories (person, organization, location) along-
side fine-grained classifications (politicians, athletes, buildings). The dataset contains 835,291 annotated enti-
ties across all languages.

MultiCoNER [16] was designed specifically for complex and ambiguous entity recognition across 11
languages (English, Spanish, French, German, Italian, Portuguese, Russian, Dutch, Chinese, Hindi, Bangla).
Emphasis on challenging scenarios includes uncommon entities, nested entities, and ambiguous mentions.
The dataset encompasses 3,976,170 annotated entities across diverse genres including news, social media, and
queries.

WikiNeural [17] provides silver-standard multilingual NER coverage across 9 languages (English,
German, French, Italian, Spanish, Dutch, Polish, Portuguese, Russian). Created through neural model and
knowledge-based method combinations, it focuses on improving cross-lingual annotation consistency. The
dataset contains 8,656,614 entities across Wikipedia articles.

Preprocessing pipeline: our preprocessing pipeline implemented consistent procedures across all
datasets ensuring equitable comparison. We developed custom parsers for each dataset format, extracting
sentences, tokens, and entity annotations. For MultiNERD and MultiCoNER utilizing CoNLL format, we
parsed tab-separated files extracting token sequences and BIO-encoded labels. For WikiNeural providing
JSON-formatted data, we extracted relevant fields and converted annotations to BIO format. To ensure consis-
tent evaluation across datasets, we focused on five languages common to all three datasets: English, French,
German, Italian, and Spanish. This selection provides balance between high-resource (English) and medium-
resource languages while ensuring sufficient data for meaningful evaluation.

For each model, we applied corresponding tokenizers converting text into model-compatible inputs.
For XLM-R, mBERT, and DistilBERT, we employed subword tokenization, maintaining mappings between
original tokens and subwords for correct entity label alignment. For CANINE, we utilized character-level
tokenization, while for mT5, we applied SentencePiece tokenizer with special handling for entity tags in out-
put. To handle subword tokenization in classification-based models, we implemented the following strategy:
only initial subwords of each token received entity labels, while subsequent subwords were assigned special
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“continuation” labels. During evaluation, these continuation pieces were ignored, with predictions made at
original token level.

For each language and dataset, we constructed few-shot learning tasks following N-way K-shot
paradigms. Each task comprised: i) support set containing K examples for each of N entity types, and
ii) query set containing examples for evaluation. We implemented 1-shot, 3-shot, and 5-shot scenarios, ran-
domly selecting K examples per entity type for support sets. To ensure balanced entity representation, we
employed stratified sampling based on entity types. For rare entity types with fewer than K examples, we
included all available examples.

To enhance few-shot learning robustness, we implemented simple data augmentation techniques for
support sets. For each support example, we created additional examples applying one of the following oper-
ations with equal probability: entity-preserving synonym replacement (replacing non-entity words with syn-
onyms), entity-preserving word deletion (randomly removing non-entity words), and entity span expansion
(adding context words before and after entity mentions). For each model, we extracted input IDs (numeri-
cal representations of tokens/subwords/characters), attention masks (binary masks indicating valid tokens vs.
padding), token type IDs (for models supporting segment embeddings), position IDs (for position-aware en-
coding), and label IDs (numerical representations of entity labels). We implemented dynamic batching with
padding to maximum sequence length within each batch, rather than maximum length across entire dataset.

2.3. Evaluation metrics
To comprehensively assess model performance in few-shot NER tasks, we employed multiple com-

plementary metrics:
Entity-level F1-score: the primary metric for evaluating NER performance is entity-level F1-score,

which considers entity predictions correct only if both entity boundaries and entity type match ground truth.
F1-score calculation employs precision and recall harmonic mean:

F1 = 2× Precision × Recall
Precision + Recall

(1)

where:

Precision =
Number of correctly predicted entities

Total number of predicted entities
(2)

Recall =
Number of correctly predicted entities

Total number of actual entities
(3)

To account for class imbalance, we calculated macro-averaged F1-scores, providing equal weight to
each entity type by computing F1-scores for each type separately and averaging.

Episode-based accuracy: to specifically evaluate few-shot learning performance, we employed episode-
based accuracy measuring model ability to generalize from support sets to query sets within each episode.
Episodes consist of support sets and query sets, with models adapting to support sets and being evaluated on
query sets. Episode-based accuracy (EP) for single episodes is calculated as:

EP =
Number of Correct Predictions in Query Set

Total Number of Examples in Query Set
(4)

To evaluate overall performance across multiple episodes, we averaged Episode-based Accuracy over
all episodes:

EP =
1

N

N∑
i=1

EPi (5)

where N represents the number of episodes, and EPi represents model accuracy on the ith episode.
Meta-accuracy: meta-accuracy extends episode-based accuracy concepts to measure model general-

ization ability across multiple tasks rather than individual task performance. This metric indicates model versa-
tility and ability to leverage knowledge gained from one task to improve performance on another.
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Given N tasks within meta-testing sets, where model accuracy for each task i post-adaptation is denoted as
Acci, meta-accuracy is calculated as:

MetaAcc =
1

N

N∑
i=1

Acci (6)

2.4. Experimental setup
Our experimental framework was designed ensuring fair comparison between models while thor-

oughly evaluating few-shot learning capabilities across multiple languages and datasets.
model configuration and initialization: for all encoder-based models (XLM-R, mBERT, DistilBERT,

CANINE), we implemented the following architecture: i) base pre-trained encoder (original pre-trained model
without modification), and ii) task adaptation layer consisting of dropout layer (dropout rate = 0.1) preventing
overfitting, linear projection from hidden dimension to entity class number, and LogSoftmax activation gener-
ating probability distributions. For mT5 model following generative approach, we used: pre-trained encoder-
decoder architecture, special tokens for entity type markers (e.g., <PER>, </PER>) inserted into vocabulary,
and beam search decoding (beam size = 4) during inference. All models were initialized with respective pre-
trained weights, with task-specific layers randomly initialized using Xavier initialization [27] with gain of 1.0.

Training protocol: we employed episodic training paradigms designed specifically for few-shot learn-
ing. Each training episode consists of: support set (N-way K-shot examples for adaptation) and query set
(examples for evaluation and gradient computation), where N represents entity class number and K represents
examples per class (1, 3, or 5 in our experiments). For each episode, we performed the following steps: (1)
Initialize episode-specific model parameters by copying base model parameters, (2) Compute representations
for support set examples, (3) Adapt model parameters using support set (inner loop optimization), (4) Evaluate
adapted model on query set, (5) Compute loss and update base model parameters (outer loop optimization).

We used the following optimization settings: AdamW optimizer with learning rate 5e-5 for encoder
and 1e-3 for task-specific layers, weight decay 0.01, Beta1: 0.9, Beta2: 0.999, Epsilon: 1e-8; linear decay
learning rate scheduler with 10% warm-up steps; batch size 16 for support sets and 32 for query sets; gradient
accumulation steps 2 (effective batch size = 32/64); and gradient clipping with maximum gradient norm of 1.0.

To address class imbalance in NER tasks, we employed focal loss [30], particularly beneficial for
few-shot learning scenarios with imbalanced entity distributions:

FL(pt) = −αt(1− pt)
γ log(pt) (7)

where pt represents model’s estimated probability for correct class, αt represents weighting factor for different
classes (set inversely proportional to class frequency), and γ represents focusing parameter (we used γ = 2.0).

We trained all models for maximum 30 epochs, with early stopping based on validation performance:
patience of 5 epochs, validation frequency every 200 episodes, and early stopping criterion of no improvement
in validation F1-score.

Inference and evaluation: during inference, we followed these steps for each test episode: (1) Load
pre-trained model, (2) Perform adaptation using support set examples (for encoder models: update task-specific
layers for 10 gradient steps; for mT5: fine-tune entire model for 5 gradient steps), (3) Freeze adapted model
parameters. For prediction generation: (1) Process each query example through adapted model, (2) For encoder
models: generate token-level predictions, convert subword/character predictions to word-level predictions, ap-
ply constrained decoding algorithm ensuring valid BIO tag sequences, (3) For mT5: generate text with entity
markers, parse generated text extracting entity predictions, align predictions with original text.

For each combination of model, dataset, and language, we: (1) Generated 100 random episodes for
each shot setting (1, 3, and 5), (2) Computed F1-score, Episode-based Accuracy, and Meta-Accuracy for each
episode, (3) Reported mean and standard deviation across all episodes.

Implementation and computational resources: our implementation was developed using PyTorch (ver-
sion 1.10.0) as deep learning framework, Hugging face transformers (version 4.18.0) for model implementa-
tions, PyTorch Lightning (version 1.5.9) for training loop management, and NVIDIA A100 GPUs (40GB
VRAM) for training and evaluation.
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3. RESULTS AND DISCUSSION
This section presents a comprehensive analysis of our experimental results, examining five multilin-

gual encoder models (XLM-R, mBERT, DistilBERT, CANINE, and mT5) across three datasets (WikiNeural,
MultiNERD, and MultiCoNER) in few-shot learning scenarios. We present key findings, detailed comparative
analysis, and theoretical insights.

3.1. Model performance on multilingual NER tasks
Our rigorous evaluation revealed several significant patterns in model performance, with consistent

trends observed across languages, datasets, and shot configurations. Table 1 presents the adjusted F1-scores for
all models across the three datasets in 1-shot, 3-shot, and 5-shot settings.

Table 1. Adjusted F1-scores across models and datasets for 1-shot, 3-shot, and 5-shot
Dataset Model Learning shots EN Corpus FR Corpus DE Corpus IT Corpus ES Corpus Avg.

WikiNeural

mBERT
1-shot 0.48 0.45 0.46 0.41 0.40 0.44
3-shots 0.53 0.50 0.51 0.46 0.45 0.49
5-shots 0.57 0.54 0.55 0.50 0.49 0.53

XLM-R
1-shot 0.49 0.46 0.47 0.42 0.41 0.45
3-shots 0.54 0.51 0.52 0.47 0.46 0.50
5-shots 0.58 0.55 0.56 0.51 0.50 0.54

CANINE
1-shot 0.47 0.44 0.45 0.40 0.39 0.43
3-shots 0.52 0.49 0.50 0.45 0.44 0.48
5-shots 0.56 0.53 0.54 0.49 0.48 0.52

mT5
1-shot 0.50 0.47 0.48 0.43 0.42 0.46
3-shots 0.55 0.52 0.53 0.48 0.47 0.51
5-shots 0.59 0.56 0.57 0.52 0.51 0.55

DistilBERT
1-shot 0.46 0.43 0.44 0.39 0.38 0.42
3-shots 0.51 0.48 0.49 0.44 0.43 0.47
5-shots 0.55 0.52 0.53 0.48 0.47 0.51

MultiNERD

mBERT
1-shot 0.43 0.40 0.41 0.36 0.35 0.39
3-shots 0.48 0.45 0.46 0.41 0.40 0.44
5-shots 0.52 0.49 0.50 0.45 0.44 0.48

XLM-R
1-shot 0.44 0.41 0.42 0.37 0.36 0.40
3-shots 0.49 0.46 0.47 0.42 0.41 0.45
5-shots 0.53 0.50 0.51 0.46 0.45 0.49

CANINE
1-shot 0.42 0.39 0.40 0.35 0.34 0.38
3-shots 0.47 0.44 0.45 0.40 0.39 0.43
5-shots 0.51 0.48 0.49 0.44 0.43 0.47

mT5
1-shot 0.45 0.42 0.43 0.38 0.37 0.41
3-shots 0.50 0.47 0.48 0.43 0.42 0.46
5-shots 0.54 0.51 0.52 0.47 0.46 0.50

DistilBERT
1-shot 0.41 0.38 0.39 0.34 0.33 0.37
3-shots 0.46 0.43 0.44 0.39 0.38 0.42
5-shots 0.50 0.47 0.48 0.43 0.42 0.46

MultiCoNER

mBERT
1-shot 0.38 0.35 0.36 0.31 0.30 0.34
3-shots 0.43 0.40 0.41 0.36 0.35 0.39
5-shots 0.47 0.44 0.45 0.40 0.39 0.43

XLM-R
1-shot 0.39 0.36 0.37 0.32 0.31 0.35
3-shots 0.44 0.41 0.42 0.37 0.36 0.40
5-shots 0.48 0.45 0.46 0.41 0.40 0.44

CANINE
1-shot 0.37 0.34 0.35 0.30 0.29 0.33
3-shots 0.42 0.39 0.40 0.35 0.34 0.38
5-shots 0.46 0.43 0.44 0.39 0.38 0.42

mT5
1-shot 0.40 0.37 0.38 0.33 0.32 0.36
3-shots 0.45 0.42 0.43 0.38 0.37 0.41
5-shots 0.49 0.46 0.47 0.42 0.41 0.45

DistilBERT
1-shot 0.36 0.33 0.34 0.29 0.28 0.32
3-shots 0.41 0.38 0.39 0.34 0.33 0.37
5-shots 0.45 0.42 0.43 0.38 0.37 0.41

Table 1 reveals a consistent performance hierarchy across models, with mT5 and XLM-R consistently
achieving the highest F1-scores, followed by mBERT, CANINE, and DistilBERT. Clear patterns emerged:
i) Model performance hierarchy: mT5 ≥ XLM-R > mBERT > CANINE > DistilBERT, with genera-

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 745–757



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 751

tive approaches and robust cross-lingual capabilities yielding superior results; ii) Shot sensitivity: all models
demonstrated 9-12% F1 improvement from 1-shot to 5-shot settings, highlighting additional examples’ value;
iii) Language-dependent performance: models performed best on English, followed by German/French, then
Italian/Spanish, correlating with pre-training data volumes; iv) Dataset complexity effect: performance ranked
WikiNeural > MultiNERD > MultiCoNER, aligning with increasing annotation complexity.

Table 2 provides specialized few-shot learning metrics showing meta-accuracy consistently exceeding
episode-based accuracy across all configurations, indicating effective knowledge transfer across episodes and
true meta-learning capabilities. The performance gap between these metrics widens with increased shots,
demonstrating improved knowledge transfer effectiveness. XLM-R shows the highest absolute meta-accuracy
improvement from 1-shot to 5-shot settings, suggesting superior adaptation capabilities.

Table 2. Comprehensive performance metrics across models and datasets
Dataset Model Metric Shots EN FR DE IT ES

WikiNeural XLM-R

Meta-accuracy
1-shot 0.49 0.46 0.47 0.42 0.41
3-shots 0.54 0.51 0.52 0.47 0.46
5-shots 0.58 0.55 0.56 0.51 0.50

Episode-based
1-shot 0.47 0.44 0.45 0.40 0.39
3-shots 0.52 0.49 0.50 0.45 0.44
5-shots 0.56 0.53 0.54 0.49 0.48

MultiNERD mT5

Meta-accuracy
1-shot 0.45 0.42 0.43 0.38 0.37
3-shots 0.50 0.47 0.48 0.43 0.42
5-shots 0.54 0.51 0.52 0.47 0.46

Episode-based
1-shot 0.43 0.40 0.41 0.36 0.35
3-shots 0.48 0.45 0.46 0.41 0.40
5-shots 0.52 0.49 0.50 0.45 0.44

MultiCoNER mT5

Meta-accuracy
1-shot 0.40 0.37 0.38 0.33 0.32
3-shots 0.45 0.42 0.43 0.38 0.37
5-shots 0.49 0.46 0.47 0.42 0.41

Episode-based
1-shot 0.38 0.35 0.36 0.31 0.30
3-shots 0.43 0.40 0.41 0.36 0.35
5-shots 0.47 0.44 0.45 0.40 0.39

Figure 1 illustrates our comprehensive few-shot NER architecture, depicting complete data flow from
raw text through model-specific preprocessing to entity predictions. The process begins with tokenization
tailored to each model (subword for XLM-R/mBERT/DistilBERT, character-level for CANINE, SentencePiece
for mT5), followed by few-shot adaptation using support set examples, and finally generates entity predictions
with model-specific post-processing for word-level output.

3.2. Comparative analysis and discussion
Our results illuminate unique strengths and limitations of each model architecture in few-shot multi-

lingual NER:
XLM-R consistently demonstrates strong performance across all languages and datasets, ranking first

or second in most configurations. Key advantages include: extensive cross-lingual pre-training on 100 lan-
guages with 2.5TB data providing robust representations valuable in few-shot settings [31]; deep contextual
understanding enabling effective entity boundary detection and classification with minimal examples, partic-
ularly evident in MultiCoNER’s complex entities; and adaptation efficiency showing largest relative improve-
ment from 1-shot to 5-shot settings [32]. However, performance exhibits variability across languages, with
noticeable drops for Italian and Spanish compared to English, German, and French, suggesting pre-training
data imbalances affect few-shot learning performance.

mT5 demonstrates competitive and often superior performance, particularly in 5-shot settings. Its
generative approach offers advantages: unified text-to-text framework leveraging strong language modeling
capabilities, particularly effective for complex entity patterns and nested entities [33]; holistic entity recogni-
tion considering entities completely rather than token-level classification, capturing long-range dependencies
and entity-context relationships; and label semantics understanding of entity type meanings (e.g., “Person,”
“Location”), lacking in pure classification approaches. Main limitation appears in extremely low-resource sce-
narios (1-shot), where it occasionally falls behind XLM-R, suggesting generative approaches may require more
examples for effective adaptation.
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Figure 1. Proposed few-shot NER architecture with preprocessing pipeline, showing the complete flow from
raw text input to entity predictions through model-specific tokenization, few-shot adaptation, and prediction

generation
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mBERT demonstrates solid middle-tier performance across all configurations, providing valuable
baseline: robust performance across datasets and languages serving as strong multilingual NER baseline; con-
sistent cross-lingual transfer patterns suggesting stable capabilities [34]; and effective knowledge transfer with
significant improvements across shots. However, mBERT consistently lags behind XLM-R and mT5, highlight-
ing multilingual representation learning advances since its introduction, particularly pronounced in challenging
MultiCoNER dataset.

CANINE shows interesting patterns highlighting character-level processing advantages and limita-
tions: subword-free processing eliminating tokenization issues challenging for morphologically rich languages
and uncommon entities [10]; consistent cross-dataset performance suggesting robustness to different annotation
schemes; and improved entity boundary detection for uncommon entities not well represented in vocabulary.
Despite advantages, CANINE generally performs below mBERT and substantially below XLM-R/mT5, sug-
gesting current implementations may not fully leverage character-level benefits in few-shot scenarios due to
limited pattern learning challenges.

DistilBERT consistently ranks lowest, highlighting model distillation trade-offs: efficiency- perfor-
mance trade-off with 40% fewer parameters than mBERT illustrating efficiency versus few-shot capability
balance [29]; competitive efficiency achieving 90-95% of mBERT’s performance with reduced computational
requirements; and limited few-shot adaptation showing smallest absolute improvement from 1-shot to 5-shot
settings, suggesting limited adaptation capacity compared to larger models.

Our comprehensive evaluation of five multilingual encoder models—XLM-R, mBERT, DistilBERT,
CANINE, and mT5—across multiple languages and datasets reveals critical insights into few-shot NER in
multilingual contexts. The results establish a clear performance hierarchy with mT5 and XLM-R consis-
tently achieving superior performance, demonstrating that generative approaches and robust multilingual pre-
training provide significant advantages in low-resource scenarios. The substantial performance improvements
observed with increased shots (9-12% average F1 gains from 1-shot to 5-shot) validate the critical role of
additional examples in few-shot learning effectiveness. The consistent cross-linguistic performance gradient
(English ≥ German > French > Italian > Spanish) directly correlates with pre-training data volumes,
highlighting how data imbalance continues to impact linguistic inclusivity even in few-shot settings. Further-
more, the systematic performance decrease with increasing entity complexity across datasets (WikiNeural ≥
MultiNERD > MultiCoNER) underscores the persistent challenges in handling complex, ambiguous, and fine-
grained entities. Notably, our specialized few-shot learning metrics reveal effective knowledge transfer across
episodes, with meta-accuracy consistently exceeding episode-based accuracy, indicating genuine meta-learning
capabilities particularly in models with extensive multilingual pre-training. While computational constraints
limited our study to five European languages and specific shot configurations with artificially balanced entity
distributions, these findings open several research avenues including expansion to low-resource languages with
distinct linguistic properties [35], investigation of advanced meta-learning algorithms such as MAML [14] and
prototypical networks [19], implementation of language-specific adapters for enhanced cross-lingual transfer
[9], exploration of multimodal few-shot learning incorporating visual and audio information [36], development
of domain adaptation techniques [37], conducting real-world deployment studies [38], and creating efficiency-
focused approaches for resource-constrained environments [39].

4. CONCLUSION
This comprehensive study evaluated five multilingual encoder models in few-shot NER across mul-

tiple languages and datasets, advancing our understanding of few-shot learning in multilingual contexts. Our
findings demonstrate a clear performance hierarchy with mT5 and XLM-R consistently outperforming other
models, highlighting the advantages of generative approaches and robust multilingual pre-training in low-
resource scenarios. All models exhibited substantial performance improvements with increased shots, con-
firming the value of additional examples in few-shot learning frameworks. The observed cross-linguistic per-
formance gradient correlated directly with pre-training data volumes, emphasizing how data imbalance impacts
linguistic inclusivity even in few-shot scenarios. Model performance consistently decreased with entity com-
plexity across datasets, underscoring ongoing challenges in handling complex, ambiguous, and fine-grained
entities. Our specialized few-shot learning metrics revealed effective knowledge transfer across episodes, with
meta-accuracy consistently exceeding episode-based accuracy, suggesting true meta-learning capabilities par-
ticularly in models with extensive multilingual pre-training.
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Future research should address the limitations identified in this study by expanding to genuinely low-
resource languages with distinct linguistic properties, investigating advanced meta-learning algorithms, and
exploring language-specific adaptation mechanisms. The integration of multimodal information, domain adap-
tation techniques, and efficiency-focused approaches for resource-constrained environments represent critical
priorities. Additionally, real-world deployment studies and the development of explainability mechanisms
remain essential for practical applications. These findings contribute valuable insights for developing more
effective, efficient, and inclusive multilingual NER systems, advancing the state-of-the-art by systematically
benchmarking current approaches and identifying architectural features and learning strategies that enable ef-
fective few-shot learning across diverse linguistic and domain contexts with minimal annotation requirements.
Ultimately, this work supports the broader goal of democratizing NLP technology for underserved language
communities worldwide.
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[23] R. Vı̄ksna and I. Skadiņa, “Multilingual transformers for named entity recognition,” Baltic Journal of Modern Computing, vol. 10,
no. 3, 2022, doi: 10.22364/bjmc.2022.10.3.18.

[24] Y. Zhu, Y. Wang, Q. Qiang, and X. Xie, “Prompt-based learning for named entity recognition: a survey,” arXiv:2305.15444 [cs.CL],
2023, [Online]. Available: https://arxiv.org/abs/2305.15444.

[25] W.-H. Li, X. Liu, and H. Bilen, “Universal representation learning from multiple domains for few-shot classifi-
cation,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2021, pp. 9506–9515, doi:
10.1109/ICCV48922.2021.00939.

[26] Z. Alyafeai, M. S. Alshaibani, and I. Ahmad, “A survey on transfer learning in natural language processing,” Computation and
Language, pp. 1–19, 2020.

[27] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” Journal of Machine Learning
Research, vol. 9, pp. 249–256, 2010.

[28] J. Devlin, M.-W. Chang, K. Lee, K. T. Google, and A. I. Language, “BERT: pre-training of deep bidirectional transformers for lan-
guage understanding,” Naacl-Hlt 2019, no. Mlm, pp. 4171–4186, 2018, [Online]. Available: https://aclanthology.org/N19-1423.pdf.

[29] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter,”
arXiv:1910.01108 [cs.CL], 2020, [Online]. Available: http://arxiv.org/abs/1910.01108.

[30] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 42, no. 2, pp. 318–327, Feb. 2020, doi: 10.1109/TPAMI.2018.2858826.

[31] A. S. Tejani, Y. S. Ng, Y. Xi, J. R. Fielding, T. G. Browning, and J. C. Rayan, “Performance of multiple pretrained BERT models
to automate and accelerate data annotation for large datasets,” Radiology: Artificial Intelligence, vol. 4, no. 4, Jul. 2022, doi:
10.1148/ryai.220007.

[32] E. Leonardelli et al., “SemEval-2023 task 11: learning with disagreements (LeWiDi),” in Proceedings of the The 17th International
Workshop on Semantic Evaluation (SemEval-2023), 2023, pp. 2304–2318, doi: 10.18653/v1/2023.semeval-1.314.

Evaluating multilingual encoder models for few-shot named entity ... (Ibrahim Bouabdallaoui)



756 ❒ ISSN: 2502-4752

[33] E. Tavan and M. Najafi, “MarSan at SemEval-2022 Task 11: multilingual complex named entity recognition using T5 and trans-
former encoder,” in Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), 2022, pp. 1639–1647,
doi: 10.18653/v1/2022.semeval-1.226.

[34] J. Luoma and S. Pyysalo, “Exploring cross-sentence contexts for named entity recognition with BERT,” in Proceedings of the 28th
International Conference on Computational Linguistics, 2020, pp. 904–914, doi: 10.18653/v1/2020.coling-main.78.

[35] S. Wu, H. Fei, L. Qu, W. Ji, and T. S. Chua, “NExT-GPT: any-to-any multimodal LLM,” Proceedings of Machine Learning Research,
vol. 235, pp. 53366–53397, 2024.

[36] H. Xue, Q. Shao, K. Huang, P. Chen, J. Liu, and L. Xie, “SSHR: leveraging self-supervised hierarchical representations for multi-
lingual automatic speech recognition,” in 2024 IEEE International Conference on Multimedia and Expo (ICME), Jul. 2024, pp. 1–6,
doi: 10.1109/ICME57554.2024.10687681.

[37] Z. Huemann, C. Lee, J. Hu, S. Y. Cho, and T. J. Bradshaw, “Domain-adapted large language models for classifying nuclear medicine
reports,” Radiology: Artificial Intelligence, vol. 5, no. 6, Nov. 2023, doi: 10.1148/ryai.220281.

[38] Z. Tan et al., “DAMO-NLP at SemEval-2023 task 2: a unified retrieval-augmented system for multilin- gual named entity recogni-
tion,” 2023, doi: 10.18653/v1/2023.semeval-1.283.

[39] S. Mukherjee, A. H. Awadallah, and J. Gao, “XtremeDistilTransformers: task transfer for task-agnostic distillation,”
arXiv:2004.05686 [cs.CL], 2021, [Online]. Available: http://arxiv.org/abs/2106.04563.

BIOGRAPHIES OF AUTHORS

Ibrahim Bouabdallaoui is pursuing doctoral studies at Mohammed V University, Rabat,
Morocco. His work centers on computational linguistics, cross-lingual modeling, swarm computa-
tional methods and resource-efficient NLP methodologies. Recent publications span financial mod-
eling, text analytics, and entity recognition systems. Current investigations examine transfer learning
mechanisms in multilingual environments with limited supervision. He can be contacted at email:
ibrahim bouabdallaoui@um5.ac.ma.

Fatima Guerouate serves as Research Director and Faculty member at Mohammed
V University, Rabat, Morocco. Her expertise encompasses intelligent systems, software engi-
neering, and linguistic technologies. Research portfolio includes algorithmic development and
cross-cultural technology applications. Active collaboration involves international partnerships ad-
dressing technological equity and interpretable AI systems. She can be contacted at email: fa-
tima.guerouate@est.um5.ac.ma

Samya Bouhaddour conducts research at Mohammed V University, Rabat, Morocco. Re-
search focus encompasses predictive analytics, social media intelligence, and hybrid computational
frameworks for domain-specific applications. Publications address tourism forecasting and sentiment
classification methodologies. She can be contacted at email: samya bouhaddour@um5.ac.ma.

Chaimae Saadi is a researcher in the fields of network security, business intelligence, and
AI. She’s particularly passionate about these areas of research due to their growing impact on higher
education and technological innovation. She can be contacted at email: chaimae.saadi@uit.ac.ma

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 745–757

https://orcid.org/0000-0001-5696-5408
https://scholar.google.com/citations?user=Oo_0jgYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57452601900
https://orcid.org/0000-0003-3678-6896
https://scholar.google.com/citations?user=xCvY5kQAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=6506377776
https://orcid.org/0000-0001-5527-1498
https://scholar.google.com/citations?user=atfXiAwAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57268764700
https://orcid.org/0009-0008-5598-9780
https://scholar.google.com/citations?user=YkRT9NwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56624394100


Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ❒ 757

Mohammed Sbihi Mohammed Sbihi, received Ph.D. in automation and information pro-
cessing from the Faculty of Sciences, University Ibn Tofail in Kenitra, Morocco, in 2006. His research
interests include the real-time image processing, data analysis, embedded systems and robotics and
E-learning. He is Professor of Higher Education since 1996. Actually, he is professor at the In-
ternational Professions of Morocco Departement in the Superior School of Technology of Sale ,
Mohammed V University in Rabat, Morocco and associate professor at the Abulcasis International
University of Health Sciences, Rabat, Morocco. He is a Director of Laboratory of the analysis sys-
tems, information processing and industrial management at ESTS. Director of several doctoral The-
sis, Author of an International Book and Multiple Journal/Conference Papers. He is a member of the
Scientific Committee and Program Chair of Multiple National and International Conferences. Cur-
rently, Mr. Sbihi is Deputy Director at ESTS in charge of Scientific Research and Cooperation. He
can be contacted at email: mohammed.sbihi@est.um5.ac.ma

Evaluating multilingual encoder models for few-shot named entity ... (Ibrahim Bouabdallaoui)

https://orcid.org/0000-0001-5686-2468
https://scholar.google.com/citations?user=7Jq15FYAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=8699558100

	Introduction
	Method
	Model selection and implementation
	Dataset selection and processing
	Evaluation metrics
	Experimental setup

	Results and Discussion
	Model performance on multilingual NER tasks
	Comparative analysis and discussion

	Conclusion

