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Voltage source inverters (VSIs) play a critical role in modern industrial systems,
particularly in controlling the operation of equipment such as induction motors.

Ensuring their reliable performance is crucial, as faults like short circuits can
severely disrupt industrial processes. This paper introduces a new diagnostic ap-
proach for detecting and localizing short circuit faults in VSIs. The method uses
Lissajous curves derived from the Clark transformation of the VSI’s 3-phase
Keywords: voltage components (Va, V). These curves serve as input data for a convolu-
tional neural networks (CNNs) model, enabling the accurate classification of sin-
gle and double short circuit faults. Simulation results using MATLAB/Simulink
demonstrate that the proposed method achieves 100% classification accuracy
within 100 ms, highlighting its suitability for real-time applications. The ap-
proach offers significant advantages in speed and accuracy over traditional tech-
niques, with potential implications for enhancing the reliability and safety of
inverter-driven systems in industrial environments.
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1. INTRODUCTION

Voltage source inverters (VSIs) are vital components in power electronic systems, converting DC
power to AC for applications ranging from industrial motor drives to renewable energy systems and electric
vehicles. The widespread deployment of two-level VSIs stems from their simplicity and cost-efficiency. How-
ever, their power-switching semiconductors, particularly IGBTs, are susceptible to short-circuit faults, which
can cause equipment failure, system shutdown, or severe damage if left undetected.

Over the past two decades, diverse fault detection methods have been proposed. These methods can be
classified into: i) traditional signal-based approaches, ii) transform-based analysis methods, iii) Al-based detec-
tion methods, iv) hybrid combinations, and v) hardware-accelerated approaches, each with unique advantages
and limitations.

Traditional methods, such as voltage-space vector analysis [1]], voltage comparison [2]], and gate volt-
age pattern recognition [3]], offer low-latency fault identification (within one pulse-width modulation (PWM)
cycle) and simple implementation. Yet, they often suffer from noise sensitivity and limited adaptability under
fluctuating loads or non-ideal conditions [4]]. Current-based methods such as current magnitude thresholds [3]]
can characterize fault dynamics effectively, but tend to lag in response time, up to 1.5 seconds and provide
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limited localization accuracy. While traditional techniques provide low-complexity and real-time detection ca-
pabilities, they are often vulnerable in transient or noisy conditions. To improve robustness under such scenar-
ios, researchers have explored transform-based methods. These include discrete wavelet transform (DWT) [6],
short-time fourier transform (STFT) [7], [8]]. These tools extract time-frequency characteristics of faults, im-
proving detection in noisy or transient environments. Still, real-time deployment remains challenging due to
computational overhead unless supported by DSPs or FPGAs.

Despite improvements from signal transforms, many of these methods still rely on manual feature
extraction and domain expertise. With the rise of data-driven techniques, artificial intelligence (AI), have
shown great potential in automating the detection process. An artificial neural network (ANN) approach was
proposed in [9]] for identifying fault signatures in inverter systems. A structured neural network system capable
of detecting faults within 20 milliseconds was developed in [[10]. Detection times of less than 0.1 seconds were
achieved using neural networks trained on inverter switching statistics, as shown in [[L1].

In an effort to balance detection accuracy with practical deployment constraints, hybrid approaches
combine signal processing with Al-based classification. Notable contributions include CNNs on raw currents
with 99% detection in 0.64 ms and 100% localization in 1.28 ms [[12]], CNNs combined with STFT and fast
dynamic time Warping achieving 99.4% accuracy [13]], and CNNs using continuous wavelet transform (CWT)
for multiclass classification achieving an accuracy of 98% in binary and 97% in multi-class classification.
DWT with principal component analysis (PCA) and cuckoo search optimization (CSO)-relevance vector ma-
chine (RVM) achieved 95.67% accuracy in a relatively low response time 2.06s [14], while ANN with fast
fourier transform (FFT) and DWT improved resilience to noise [[15]]. Comparative classifier benchmarking has
shown wide variability in performance, where decision trees reached 99% accuracy but ANN models lagged
behind at 37.5% [16]. Other enhancements such as multiscale CNNs incorporating temperature, voltage, and
current [17], or FFT-CNN hybrids [18]], have further pushed performance. These models offer flexibility but
also introduce architectural complexity, requiring careful synchronization between modules and typically re-
quire large labeled datasets and significant computational resources, which may hinder deployment in real-time
embedded systems.

For mission-critical applications requiring ultra-fast fault isolation, hardware-accelerated methods are
a compelling alternative. Techniques such as the quasi-flying gate concept [19] and extended stray voltage
capture (ESVC) [20] have achieved sub-microsecond detection speeds (< 300 ns and < 330 ns, respectively).
FPGA-based monitoring solutions also demonstrate latencies under 10 us [21]]. Nonetheless, these systems
tend to be rigid, expensive, and not easily scalable to new fault modes or inverter architectures.

Despite rich innovation, there is still much to be desired in order to achieves the ideal combination
of speed, accuracy, robustness, scalability, and real-time deployability. Traditional methods lack adaptability,
Al methods struggle with real-time constraints, and hardware approaches are rigid. This study addresses this
gap by introducing a detection method that integrates: Lissajous curve-based feature extraction from output
voltages; convolutional neural networks (CNNs) for classifying 18 distinct single and double switch short-
circuit fault scenarios. This compact, noise-resilient, and scalable approach supports real-time deployment and
enhances fault classification accuracy using geometric features of waveform behavior.

The remainder of this paper is organized as follows: section 2 describes the system modeling and fault
scenario descriptions. In section 3 details the proposed fault detection and classification method. In section 4
presents and discusses the simulation results. Finally, section 5 concludes the paper and outlines future work.

2. SYSTEM MODELING
2.1. System overview

The system analyzed in this work is a conventional two-level, three-phase VSI, depicted in Figure
The inverter converts a constant DC input voltage V. into three-phase AC output voltages across a balanced
load. It consists of six insulated gate bipolar transistors (IGBTs), labeled S; to Sg, organized into three legs,
each corresponding to one output phase (A, B, and C).

Each leg contains two switches operating in a complementary manner to prevent short-circuiting the
DC bus. The upper and lower switches of each leg alternate according to the PWM strategy. The VSI was mod-
eled and simulated in MATLAB/Simulink (R2023a) using the Simscape electrical toolbox. The key parameters
used in the simulation are summarized in Table
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Figure 1. Three-phase two-level VSI topology under healthy conditions

Table 1. Simulation parameters

Parameter Value

DC-link voltage V4. 800 V

Switching frequency 10 kHz

PWM technique SPWM

Load type Balanced star-connected RL load
Load parameters R=109Q,L =5mH
Sampling rate 20 kHz

Simulation duration 300 ms per fault case

Fault injection time 100 ms into simulation

2.2. Switching control: SPWM

PWM is employed to control the timing of the IGBT switches in the VSI. In this study, sinusoidal
PWM (SPWM) is chosen over other PWM techniques due to its intuitive implementation and lower computa-
tional complexity, making it well-suited for simulation environments [22]. The method operates by comparing
three sinusoidal reference signals, each corresponding to one inverter phase, with a high-frequency triangular
carrier wave to generate switching pulses. This results in a set of modulated gate signals that control the inverter
switches and produce the desired AC output voltages.

2.3. Normal operating conditions and switching states

Under normal operation, the VSI can generate eight distinct switching states based on which of the
six IGBT switches are conducting. These states yield discrete voltage levels for the three-phase outputs (V/,,
Ve, and V). Table[Z] summarizes these states with normalized phase voltages.

Table 2. Normalized phase voltage values (V,, Vj, V.) for different switching states under healthy conditions

State  Switches On Va 13 Ve
1 S1, Sg, S2 % 7?1 %1
2 S1, S3, 52 3 g _72
3 S4, S3, 52 _Tl % _?1
4 S4, S3, S5 _72 3 g
5 S4, Se, S5 _?1 _71 ?
6 S1, S6, S5 3 %2 3
7 S1, 83, S5 0 0 0
8 S4, Sg, S2 0 0 0

2.4. Fault scenarios and simulation injection approach

The inverter system is evaluated against two categories of faults: i) single-switch short-circuit faults,
where one IGBT remains permanently ON, and ii) double-switch short-circuit faults, where two IGBTs are
simultaneously stuck in the ON state. In total, 18 fault scenarios are simulated, comprising 6 single-switch
faults and 12 double-switch faults.
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Faults are introduced in the Simulink environment by overriding the PWM gate signals at a predefined
instant (t = 0.1 s). The gate control signal of the affected IGBT(s) is forced to a constant high logic level (‘1”)
for the remainder of the simulation, thereby replicating a short-circuit condition.

This modeling approach reflects industrial reality, with the two-level VSI and SPWM control rep-
resenting common inverter configurations. The focus on short-circuit faults, among the most hazardous and
challenging to detect, supports practical relevance. Moreover, structured fault injection combined with high-
resolution sampling ensures reproducible datasets suitable for Al-based diagnostic methods, as elaborated in
section 3.

3. METHOD
3.1. Simulation procedure and signal acquisition

The simulation was conducted in MATLAB/Simulink (R2023a) using the Simscape electrical envi-
ronment. The modeled system is a two-level, three-phase VSI operating under SPWM at 10 kHz, with a 800 V
DC-link [, [21].

Short-circuit faults were simulated by forcing selected IGBT gate signals to a constant high logic level
(‘1) via conditional logic blocks, emulating desaturation faults [23]. Each fault was introduced at ¢ = 0.1s
and persisted for the remainder of the 300 ms run.

Phase voltages (V,, V}, V) were recorded at a sampling rate of 20kHz. The final 100 ms of each
simulation (2,000 samples) was extracted for use in the feature extraction process detailed in subsection[3.3]

To enhance generalization and simulate realistic operating conditions, two perturbations were ap-
plied: i) random variations in RL load values and ii) superimposed white gaussian noise on the DC-link
(SNR > 40dB). The resulting dataset comprises 18 fault classes (6 single-switch and 12 double-switch), with
100 simulations per class, yielding 1,800 labeled instances.

3.2. Fault behavior analysis and motivation for feature extraction

To understand how inverter faults affect voltage generation, we analyze two representative fault sce-
narios: a single-switch short-circuit fault in .S; (upper IGBT of phase A) and a double-switch fault involving
Sy and Sg (upper phase A and lower phase B) as illustrated in Figure [2} These were chosen for their high
structural impact and their representativeness of other fault cases due to the inverter’s symmetry.

s1, }: s34§§ ss{? s1, }: 53@ 55{?
Va ] Va
Vde= Vb Vde== Vb
4 e \c +——* Vc
s4—§ seﬁ szﬁ 54“(3 s6, }: 52~K&
(a) (b)

Figure 2. Inverter schematics under short-circuit conditions: (a) single-switch fault in S; and
(b) double-switch fault in S and Sg

Single-switch fault: Figure J[(a) illustrates the inverter configuration when the upper IGBT S is per-
manently turned ON due to a short-circuit fault. Table [3| presents the corresponding output phase voltages for
selected switching states. State 3, which would normally produce a distinct output, replicates the output of
State 2 due to the permanent conduction of S;. Additionally, State 4 collapses into a zero-output condition
across all phases, caused by contradictory current paths. These effects result in a loss of unique voltage states,
leading to state redundancy and diminished fault distinguishability in the time-domain signals.
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Double-switch fault: in the second scenario, both S; and Sg remain stuck ON, as illustrated in
Figure 2[b). Table [3] shows the resultant output voltages for different switching commands. States 1
through 3, which typically generate different voltage patterns, now produce identical outputs due to the fault-
induced override. Similarly, States 4 and 5 also become indistinguishable, further shrinking the inverter’s effec-
tive voltage-state space. This significant collapse in state resolution illustrates the limitations of conventional
threshold-based or rule-based diagnostic approaches.

Conclusion: both single and double-switch short-circuit faults introduce ambiguity by forcing multi-
ple switching states to produce the same output. This loss of resolution in the time-domain waveform space
motivates the use of trajectory-based representations [24]]. In this work, we exploit the interdependence of
phase voltages Clarke transformation into 2D Lissajous curves, which visually reflect fault-induced distortions
and are suitable for classification using CNNs.

Table 3. Phase voltage values under selected switching states for single-switch (.57) and double-switch
(S1, Sg) faults
Single fault (S7) Double fault (S1, Sg)

State  Switches On

Vo WV V. Vi oV, V.
2 —T1 —T1 2 —T1 —T1
R S S
2 51,53, S2 3 3 303 3 5
3 S47537S2 3 3 3 ? 3 ?
4 S4,S3, 55 0 0 0 i =2 g
1 —2 1 —2
SRS CHNE S N S SR S
6 51,568 3 ZF 3 53 = 3

3.3. Lissajous curve-based feature extraction

Lissajous curves offer a compact geometric representation of signal interactions and are effective for
identifying inverter faults due to their sensitivity to amplitude, phase, and frequency variations [24]], [25]. The
three-phase voltages (V,, V4, V.) are transformed into two-dimensional space-vector signals (V,, V) using
Clarke’s transformation [26]].

_2 Vi Ve _ Ly
Va - g (Va ? 2) ) Vﬁ - \/g(% ch) (l)

Under ideal conditions, the resulting Lissajous trajectory forms a regular hexagon, with each vertex
corresponding to one of the inverter’s discrete switching states. When faults occur, these topological patterns
become distorted, an effect that can be leveraged for classification.

Figure [3| presents representative Lissajous curves generated from the (V,Vp) voltage signals. In
Figure [3[a), the system operates under healthy conditions, producing a well-structured, symmetric pattern.
Figure [3[b) shows a single-switch fault scenario (S), where distortions emerge as asymmetries. Figure [3c)
illustrates a double-switch fault (51&Sg), where the pattern collapses significantly, reflecting the degraded
switching behavior.
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Figure 3. Lissajous curves generated from (1, V}) voltage signals under different conditions; (a) healthy
operation: symmetric structure, (b) single-switch fault: localized distortion, and (c) double-switch fault:
severe trajectory collapse
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The voltage signals are normalized to [—1, 1], and a 100 ms segment is extracted to generate grayscale
Lissajous images. Each image is resized to 224 x 224 pixels to match the CNN input format, as detailed in
subsection 3.4]

3.4. CNN architecture for fault classification

To classify Lissajous curve images into their corresponding inverter fault types, a CNN is employed.
CNNs are powerful tools for image-based classification tasks due to their ability to learn spatial patterns hier-
archically and automatically [[13], [[L7].

Input: each Lissajous curve is represented as a grayscale image of size 224 x 224, normalized to the
range [0, 1]. This image is passed as a 224 x 224 x 1 tensor into the network.

Architecture: the CNN was implemented in TensorFlow 2.11 using the Keras API. The model consists
of three convolutional blocks followed by dense layers, as summarized in Table [}

Table 4. CNN architecture for classifying Lissajous curve images

Layer Output shape Activation Details

Input layer 224 x 224 x 1 - Grayscale image input
Conv2D + MaxPool 112 x 112 x 32 ReLU 3 x 3 kernel, 2 x 2 pool
Conv2D + MaxPool 56 X 56 x 64 ReLU 3 x 3 kernel, 2 X 2 pool
Conv2D + MaxPool 28 x 28 x 128 RelLU 3 x 3 kernel, 2 x 2 pool
Flatten 100352 - Converts feature map to vector
Dense + Dropout 256 ReLU Dropout rate = 0.5
Output layer 18 SoftMax 18-class classification

The schematic architecture of the classification flow is shown in Figure ] Each convolutional layer
extracts progressively complex features from the input image, while the fully connected layers learn to map
these features to the final fault class.

> O O e O
Var V_beta—p-|
@ Voltage Source Inverter Vb—> Clark Transformation Lissajous Curve Image_y.| \ CNN

Ve—> V_alpha—s- @ e @

Figure 4. System architecture used for Lissajous-based fault classification

—| Fault Classification

Training setup: the dataset (1,800 images across 18 classes) was divided into 80% training and 20%
testing sets. Training was conducted for 50 epochs with a batch size of 32, using the Adam optimizer and
categorical cross-entropy loss. No data augmentation was applied to preserve the geometric integrity of the
Lissajous shapes.

Justification for CNN: CNNs are chosen over traditional machine learning methods such as support
vector machines (SVM) or decision trees due to their ability to automatically extract hierarchical spatial fea-
tures from image-based representations [16], [27]. This is particularly beneficial when working with Lissajous
curves, as the underlying geometric distortions caused by various fault conditions are often subtle and diffi-
cult to parameterize. Furthermore, CNNs exhibit strong generalization capabilities in the presence of noise
and variability in the input signals, making them well-suited for real-world inverter environments where exact
waveform reproduction is not guaranteed.

Evaluation metrics: model performance was primarily assessed using overall accuracy. To evaluate
class-wise effectiveness and detect potential misclassifications, precision, recall, Fl-score, and a confusion
matrix were computed for all fault classes.

Detection of short circuit faults in two-level voltage source inverter using convolution ... (Sai Aioub)
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4. RESULTS AND DISCUSSION
4.1. Visual fault signatures

Figure |5| presents representative Lissajous curves generated from (V,,, V;3) over the final 100 ms of
simulation for all 18 fault types. The first row (a) displays single-switch faults, typically producing asymmetric
or phase-skewed patterns. The remaining rows (b and c) correspond to double-switch faults, which lead to
more severe distortions or collapsed trajectories. These fault-specific topologies are easily distinguishable
and provide intuitive visual cues for classification. These spatial patterns form the core features used by the
CNN, reflecting dynamic phase interactions beyond what time-domain or frequency-based methods can capture
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Figure 5. Lissajous curves for all fault conditions. Top row: single-switch faults (51—S).
Bottom: double-switch faults (e.g., S1&52, S3&56)

4.2. Classification performance

The CNN model was evaluated on a 20% test set (360 instances). It achieved 100% classification ac-
curacy across all 18 fault classes, outperforming traditional and recent approaches including ANN (99%),
DWT + PCA + CSO-RVM [[14] (95.67%), and the multiscale Kernel CNN (98.3%).

Figure [6] shows the confusion matrix, with perfect diagonal alignment indicating zero misclassifica-
tions. Precision, recall, and F1-score were all equal to 1.0, confirming the model’s ability to robustly learn
spatial distinctions between fault-induced Lissajous signatures.

Confusion Matrix

o 0o o 0

0
o
o
o
0
0
]
0
0
0
o
0
0

Predicted Label
8
4

S556 -
Healthy -

o
o
o
]
]
o
o
o
o
0

20
o
0
o
]
0
o
o
o
0
0

o
]
o
0
o
0
o
0
0

o
o
o
o
o
)
o
o
o
o
o
o
o o o o

>

3
o
o
o
o
o
0
o
o
o
o
o
o
o
0
o
o
o
o
o
o
0
o &

, .
; .
. .
. .
. .
: 3
; .
; .
= .
: .
. .
. .
; =
; 3
: 3
; .
. .
. .
; .
. .
; 5

& &

©
4
$-ccoccocococccocoocooccooc ool

$-coococooococo0o0o0o0o0o00o o0
Y-coocooooooooo0oo0o0o0

M- 0 0000000000000000

o D
S

True Label

CEPC L C NG Pt
FFE T F

Figure 6. Confusion matrix for the 18-class CNN-based fault classifier
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4.3. Class-wise interpretability

While achieving perfect accuracy, it’s informative to examine feature separability. Single-switch faults
(e.g., S1, S3) typically yield skewed Lissajous patterns reflecting imbalance in one phase. Double-switch faults
(e.g., S1&Sp) result in collapsed or highly distorted curves due to redundant switching paths. These spatial
deformations are visually distinct and stable across simulation runs.

Conventional techniques often fail in scenarios with state overlap, such as S1&S5 or S4& S5, where
multiple switching commands produce identical outputs. In contrast, the CNN exploits subtle topological shifts
in the Lissajous geometry to separate even these visually similar faults, addressing limitations seen in earlier
works [16], [23].

4.4. Robustness to noise and variability

To test generalization, simulations were repeated under disturbances, small RL variations and white
Gaussian noise (SNR > 40 dB). Despite these, the CNN consistently maintained accurate predictions. This ro-
bustness stems from the geometric invariance of the Lissajous curves, whose structural features remain stable
under minor waveform distortions. Importantly, the model achieves these results without data augmentation or
denoising filters, highlighting the reliability of the visual representation itself. This makes the method promis-
ing for real-world inverter monitoring systems, particularly where noise and load variability are inevitable.

4.5. Summary and comparison

This study validates an end-to-end fault classification pipeline based on Lissajous curves and CNNs.
The method demonstrated perfect accuracy across 18 short-circuit scenarios, requiring no manual signal en-
gineering or hardware instrumentation. It operates solely on voltage waveforms, producing intuitive visual
features that CNNs can effectively learn and generalize from.

These results confirm the initial objective outlined in section 1 developing a compact, noise-resilient,
and real-time-friendly fault detection framework using Lissajous curves and CNNs. The method successfully
achieves high accuracy, robustness to load and noise variation, and complete automation, demonstrating its
potential for scalable deployment in industrial inverter systems.

Table [5] compares our approach with established methods. While hardware-based solutions provide
faster response, they require intrusive components. In contrast, our method is entirely software-driven and
non-invasive, offering high accuracy at acceptable latency.

Despite these strengths, some limitations remain: only short-circuit faults were explored, and vali-
dation was limited to simulations. Real-world deployment may require adjustments for open-switch faults,
hardware noise, or sampling delays. However, the simplicity and consistency of the method suggest strong
potential for integration in real-time systems.

Table 5. Comparison of VSI fault classification methods

Method Detection time ~ Accuracy Limitations
Proposed: Lissajous + CNN 100 ms 100% Needs image generation; moderate inference time
Structured neural network [[10] 20 ms ~97% Rule-based; low adaptability
Multiscale CNN [17] 60 ms 98.3% Complex tuning; sensitive to scale
Interior-angle method [28]] 1 ms 98.5% Timing-sensitive; weak generalization
DTCWT and SVOA-based SVM [27] 50 ms 99.9% Requires feature engineering
Manual Lissajous matching [24] >100 ms N/A Human-dependent; not scalable
DWT + SVM [29] 60 ms ~95% Noise-sensitive handcrafted features
Stray voltage sensor [20] 1pus N/A Hardware required; invasive

5. CONCLUSION

This paper presents a new approach for detecting and classifying short-circuit faults in a two-level
three-phase VSI using Lissajous curve representations and CNNs. By transforming time-domain voltage sig-
nals into spatially structured 2D curves, the proposed method captures fault-induced waveform distortions that
are difficult to distinguish using conventional signal analysis techniques.

The system was tested on 18 fault scenarios, including both single- and double-switch short-circuit
conditions, under varying noise and load perturbations. With an end-to-end image-based classification pipeline
and a lightweight CNN architecture, the proposed framework achieved 100% classification accuracy without
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the need for manual feature extraction or data augmentation. The results demonstrate that Lissajous curves
offer a powerful and compact representation of inverter behavior, enabling robust and scalable fault diagnosis.

Future work will aim to address the issues and limitations presented in the discusion section by vali-
dating the proposed technique on hardware testbeds and exploring the use of Lissajous curves for other power
electronic systems, including multilevel inverters and motor drives. Additionally, further research could inves-
tigate hybrid models that combine time-domain and image-based features for even greater diagnostic reliability.
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