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 Maximum power point tracking (MPPT) is a technique to optimize the 

photovoltaic (PV) current generation, so it can improve the efficiency of 

solar energy harvesting. MPPT works by searching the voltage which 

generates the maximum power, called the maximum power point (MPP). 

MPP value changes by the fluctuance of ambient temperature and solar 

insolation level depicted by the I-V curve. Searching the MPP will be more 

complex if the partial shading is happened. The effect of partial shading will 

rise to more than one local MPPs. In this research, an optimization algorithm 

is modeled and simulated the MPPT technique in partial shading. The 

optimization uses the new metaheuristic algorithm which inspired from a 

physical phenomenon, called Archimedes optimization algorithm (AOA). 

The AOA uses mathematical modeling which has convergence capabilities, 

balanced exploration, and exploitation and is suitable for solving complex 

optimization technique, like MPPT. The research used varies partial 

insolation percentage. The implementation of MPPT-AOA compared to 

other metaheuristic algorithms to analysis its performance in the aspect of 

PV system parameters and tracking process parameters. The simulation 

result shows that the AOA can enrich the MPPT technique and improve the 

solar energy harvesting which is superior to other algorithms. 
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1. INTRODUCTION 

Solar photovoltaic (PV) systems are crucial components in converting solar energy into electricity. 

The performance of PV systems depends on solar insolation and temperature, which directly affect the 

generated current and voltage. However, the constant fluctuations in solar insolation present a significant 

challenge as they impact the efficiency of the solar module [1]-[4]. These fluctuations affect the current-

voltage (I-V) characteristics, leading to issues such as overcharging, undercharging, shortened battery life, 

and compromised inverter performance [4], [5]. Furthermore, shading from clouds, trees, and nearby 

structures introduces partial shading effects, causing mismatched power output and efficiency losses [6]-

[9]. Partial shading can also result in localized overheating, forming hot spots that may damage the PV 

modules [10], [11]. 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 3, September 2025: 1923-1937 

1924 

To address these issues, maximum power point tracking (MPPT) algorithms have been developed to 

optimize PV system performance by ensuring operation at the maximum power point (MPP) under varying 

environmental conditions [12]-[15]. However, MPPT under partial shading conditions is particularly 

challenging because multiple local maximum power points (LMPPs) can form, making it difficult to locate 

the true global maximum power point (GMPP) [16]-[19]. 

Several techniques have been explored to address this challenge. Conventional perturb and observe 

(P&O) algorithms [20], [21] offer a simple and widely used MPPT approach but often fail to locate the 

GMPP, leading to suboptimal energy harvesting. To overcome this limitation, genetic algorithm (GA)-based 

MPPT techniques have been proposed [22], [23], which successfully locate the GMPP under partial shading. 

However, GA-based methods suffer from long convergence times and require precise parameter tuning for 

optimal performance. The differential evolution algorithm (DE) [24] has been introduced to improve 

convergence speed and accuracy. Despite its advantages, DE is highly sensitive to initial population values 

and lacks adaptability to dynamic shading conditions. Other approaches, such as firefly algorithm (FA) and 

fruit fly optimization algorithm (FOA), have been developed, but each comes with trade-offs in tracking 

accuracy and computational complexity [25], [26]. 

The other traditional MPPT methods, such as P&O and incremental conductance (IC), are widely 

used due to their simplicity but suffer from inefficiencies in rapidly changing environmental conditions and 

partial shading scenarios [27]. To overcome these limitations, artificial intelligence (AI)-based MPPT 

techniques, including artificial neural networks (ANNs), fuzzy logic control (FLC), and deep reinforcement 

learning (DRL), have emerged as promising alternatives [28]. Recent studies have also explored 

metaheuristic algorithms like particle swarm optimization (PSO), grey wolf optimization (GWO), and 

flamingo search algorithm (FSA) to enhance the tracking efficiency of PV systems. These intelligent and 

metaheuristic approaches offer improved response times, greater accuracy in locating the GMPP, and better 

adaptability to dynamic environmental conditions. 

Despite these advancements, existing algorithms still face challenges in achieving fast convergence, 

maintaining accuracy, and adapting to dynamic environmental changes. Many methods either require 

extensive tuning or fail to effectively balance exploration and exploitation in the search for the GMPP. 

Addressing these gaps, this study proposes the Archimedes optimization algorithm (AOA) as a novel MPPT 

solution under partial shading conditions. 

AOA is inspired by the physical principles of Archimedes’ law and the buoyancy principle. The 

Archimedes law mechanism updates candidate positions in the search space by considering the fulcrum point 

and lever strength, enhancing exploration capabilities [29]. The buoyancy principle, on the other hand, allows 

candidate solutions to adjust their positions dynamically, preventing premature convergence at LMPP and 

ensuring an effective search for the GMPP [30]. This approach enhances MPPT efficiency by minimizing 

power loss and improving computational performance compared to conventional metaheuristic methods 

[20], [31]. 

In this study, we propose an AOA-based MPPT approach for PV systems operating under PSCs. 

The main contributions of this research include: 

− Development of an AOA-based MPPT framework that enhances tracking accuracy and convergence 

speed in PV systems. 

− Comparative performance evaluation against conventional and metaheuristic MPPT techniques, such as 

PSO and GA, using MATLAB/Simulink simulations. 

− Critical analysis of AOA’s effectiveness in mitigating power loss due to shading effects and improving 

PV energy harvesting efficiency. 

− Investigation of potential real-world applications, emphasizing AOA’s adaptability in grid-connected and 

standalone PV systems. 

The remainder of this paper is structured as follows: section 2 presents the methodology, detailing 

the PV system modeling, MPPT framework, and implementation of AOA. In section 3 discusses the results 

and performance evaluation under different shading scenarios. In section 4 concludes with key findings, 

implications, and future research directions.  

 

 

2. METHOD 

This section provides a detailed description of the methodology used in this study to ensure 

reproducibility and validity. The modeling of the PV system, implementation of the AOA-based MPPT,  

and the simulation framework are described. Previously established procedures are referenced where 

applicable. 
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2.1.  Model of partial shaded photovoltaic array 

The PV system model used in this study is based on well-established mathematical formulations and 

circuit representations from prior research. The single-diode model of the PV array is adopted, as it provides 

a good balance between accuracy and computational efficiency. The MATLAB/Simulink simulation 

environment is used to implement this model, ensuring reproducibility. 

To evaluate the effectiveness of the proposed AOA for MPPT, a simulated PV system model was 

developed using MATLAB/Simulink. The model consists of a PV array, a DC-DC boost converter, and an 

MPPT controller. The PV array follows a single-diode equivalent circuit model incorporating series and 

shunt resistances as seen in Figure 1. Partial shading is simulated following methodologies described in the 

previous study, by varying solar insolation across different sections of the PV array, producing multiple 

LMPPs. Three shading scenarios are considered, such as; (a) uniform insolation: 1,000 W/m² in standard test 

conditions (STC), (b) half-shaded insolation: 750 W/m² for part of the array, 1,000 W/m² for the rest, and (c) 

one-third shaded insolation: 500 W/m² for a section, 1,000 W/m² for the rest. 

Using the Kirchoff law, the solar cell of Figure 1 can also be modelled by the (1). 

 

𝐼𝑠 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ (1) 

 

Where 𝐼𝑠 is the total current generated, 𝐼𝑝ℎ is the current generated by solar cell, 𝐼𝑑 is the saturation current, 

and 𝐼𝑠ℎ is shunt current. Because each diode in a solar panel follows a non-linear characteristic described by 

the Shockley equation. Therefore, the Shockley equation for a diode is ideal for calculating the output power 

in (2). 

 

𝐼𝑠 = 𝐼𝑝ℎ − 𝐼0 [exp (
𝑞(𝑉+𝑅𝑠𝐼𝑠)

𝑛𝐾𝑇𝑘
) − 1] −

𝑉+𝑅𝑠𝐼𝑠

𝑅𝑠ℎ
 (2) 

 

Where 𝐼𝑠 is the current generated by solar cell, V is solar cell voltage, 𝐼0 is saturated current of diode, n is 

diode ideality factor, Rs/Rsh is parallel or series resistor, Tk is cell temperature, K is Boltzmann constant 

valued 1.38×10-23 J/K, and Q is the total charge of an electron with a value 1.602×10-19. 

 

 

 
 

Figure 1. Diode circuit representation of a solar cell [32] 

 

 

The model used in this study, as illustrated in Figure 2, is adapted from the research, providing a 

robust framework for analyzing these conditions. Three different insolations are simulated to represent 

various shading scenarios. The first scenario, uniform insolation, assumes that the PV array receives equal 

sunlight across all panels, which is an ideal condition for maximum power output. The second scenario, half 

partial shading, occurs when half of the PV array is shaded, leading to a notable decrease in output power 

compared to the uniform insolation scenario. The third scenario, one-third partial shading, represents a more 

severe shading condition where only one-third of the PV array receives full insolation, resulting in the most 

significant power loss among the three scenarios.  

The simulation results demonstrate varying power outputs corresponding to each shading scenario. 

To mitigate the impact of shading on power generation, a MPPT controller is employed. This controller 

continuously adjusts the output voltage and current to maintain operation at the MPP, ensuring that the PV 

system achieves optimal performance under all shading conditions. The MPPT technique effectively 

compensates for the reduced insolation levels, allowing the PV system to deliver the highest possible power 

output even under partial shading. 
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Figure 2. Model of partial shaded PV array 

 

 

2.2.  MPPT framework 

In this study, the modeling of MPPT is carried out using a comprehensive approach that integrates 

various algorithms for optimizing power output from PV systems, as shown in Figure 3. The MPPT model is 

implemented within the Simulink environment of MATLAB, where the algorithm is designed to 

continuously track and adjust the operating point of the PV system to ensure it operates at its MPP. 

 

 

 
 

Figure 3. Flowchart diagram illustrating the research model 
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A key component of this study is the MPPT controller, which ensures that the PV system operates at 

the GMPP under shading conditions. The AOA-based MPPT is implemented and compared against 

conventional PSO-based MPPT. The research process begins with a comprehensive literature review to 

identify research gaps and define the MPPT model for partial shading conditions. Following the model 

development, simulations are conducted to test the MPPT model under different shading conditions to 

determine the maximum voltage achievable. The performance of the AOA-based MPPT model is then 

compared to standard values derived from characteristic P-V and I-V curves. If the standard MPP voltage 

from the P-V and I-V curves is higher than that obtained by the AOA-based MPPT model, parameter 

adjustments and further iterations are carried out to refine the model. If the AOA-based MPPT model 

successfully tracks a higher maximum voltage, the results are analyzed and discussed in the final report.  

A visual representation of this methodology is provided in a flowchart, as illustrated in Figure 3, to ensure 

clarity in the research process. The AOA-based MPPT implementation follows the systematic approach 

outlined in Algorithm 1. This algorithm leverages the AOA to dynamically track the global maximum power 

point by treating voltage values as search agents that explore the solution space based on buoyancy 

principles. 

 

Algorithm 1. AOA-based MPPT implementation 
Begin 

   Initialize population of search agents (voltage values) 

   Define maximum iterations and convergence criteria 

   Evaluate initial power output for each agent 

   Identify the best agent corresponding to the highest power (initial GMPP) 

 

   While stopping condition not met do 

      Compute density and volume update for each search agent 

      Adjust search agent positions based on Archimedes’ principle 

      Evaluate new power outputs for updated agents 

      Update the best solution if a higher power output is found 

      Adapt exploration and exploitation balance dynamically 

   End While 

 

   Return best voltage corresponding to the GMPP 

End 

 

This pseudocode outlines the step-by-step execution of the AOA-based MPPT technique, ensuring a balance 

between exploration, such as searching for new potential solutions and exploitation, such as refining known 

good solutions. 

 

2.3.  Archimedes optimization algorithm 

AOA is a metaheuristic algorithm that is an efficient optimization control algorithm with balanced 

convergence, exploration, and exploitation capabilities, which are considered suitable for solving complex 

optimization problems. AOA is based on a physics principle, namely the Archimedes principle, which states 

that when an object is submerged in a fluid, either entirely or partially, the fluid will exert an upward force on 

the object that is equal to the weight of the fluid pushed out by the object. When an object is immersed in the 

fluid, it will experience an upward force called buoyant force, which has the same magnitude as the weight of 

the fluid pushed out by the object [33]. As shown in Figure 4, AOA serves as the core technique for the 

MPPT model, utilizing several key algorithmic parameters such as 𝑋𝑖, 𝑑𝑒𝑛𝑖, 𝑣𝑜𝑙𝑖 , and 𝑎𝑐𝑐𝑖 . 

The values for the key algorithmic parameters, including the number of objects and iterations,  

are determined based on simulation results, with 20 objects and 20 iterations identified as optimal for 

achieving the best solution. Control parameters C1, C2, C3 and C4 are set as constants, following reference 

values from relevant research. The subsequent step involves calculating the values for each parameter using 

designated equations and defining a fitness function to evaluate and select the best parameter values for 

optimization. Following this, the density and volume parameters are updated, and the transfer factor (TF)  

and density decrease factor (df) are recalculated. Depending on whether the condition TF≤0.5 is met, the 

process either proceeds with exploration, adjusting object acceleration with a random material for the  

next iteration, or with exploitation, directly adjusting the object acceleration. The iterative process continues 

until the maximum number of iterations is reached, with the primary objective being to optimize the power 

output. 

The algorithm ensures that the best solutions are found by systematically adjusting and refining the 

parameters through these iterative steps. The first step n the initialization phase, for each object i, the 

position, volume (v), density (ρ), and acceleration (a or accaccacc) of all objects are set with initial values 

using the following (3): 
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𝑥𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖) (3) 

 

where xi represents the i th object, 𝑙𝑏𝑖  denotes the lower bound of the search space, and 𝑢𝑏𝑖 is the upper 

bound of the search space. The object 𝑥𝑖  corresponds to one of the population members, with i ranging from 

1 to N, where N is the population size. The term rand refers to a random number generated between 0 and 1, 

ensuring that the initial position of each object is randomly distributed within the defined search space 

boundaries. 

 

𝑑𝑒𝑛𝑖 = 𝑟𝑎𝑛𝑑 (4) 

 

𝑣𝑜𝑙𝑖 = 𝑟𝑎𝑛𝑑 (5) 

 

where rand is a D-dimensional vector that generates random numbers between [0, 1]. Finally, the 

acceleration (acc or a) of the i th object is initialized using the appropriate parameters. 

 

𝑎𝑖 = 𝑙𝑏𝑖 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖) (6) 

 

 

 
 

Figure 4. The AOA flowchart 
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The object is selected based on the best fitness value after evaluating the initial population, 

considering 𝑥𝑏𝑒𝑠𝑡 , 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 ,  𝑣𝑜𝑙𝑏𝑒𝑠𝑡 ,  𝑎𝑛𝑑 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 . Second step, the density 𝑑𝑒𝑛𝑖 and 𝑣𝑜𝑙𝑖  of object i are 

updated for the iteration t+1 as (7) and (8). 

 

𝑑𝑒𝑛𝑖
𝑡+1 = 𝑑𝑒𝑛𝑖

𝑡 + 𝑟𝑎𝑛𝑑 × (𝑑𝑒𝑛𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑛𝑖
𝑡) (7) 

 

𝑣𝑜𝑙𝑖
𝑡+1 = 𝑣𝑜𝑙𝑖

𝑡 + 𝑟𝑎𝑛𝑑 × (𝑣𝑜𝑙𝑏𝑒𝑠𝑡 − 𝑣𝑜𝑙𝑖
𝑡) (8) 

 

Where, 𝑣𝑜𝑙𝑏𝑒𝑠𝑡  and 𝑑𝑒𝑛𝑏𝑒𝑠𝑡  refer to the best volume and density of the objects, while rand is a random 

number generated uniformly. Third step, Initially, the objects collide with each other, and over time, they 

attempt to reach equilibrium. The transfer operator (TF) facilitates the transition of the search process from 

exploration to exploitation. The TF is calculated using (9). 

 

𝑇𝐹 = 𝑒𝑥𝑝 (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
) (9) 

 

The TF gradually increases during iterations until it reaches a value of 1, indicating a shift from 

exploration to exploitation. Where 𝑡𝑚𝑎𝑥 is the maximum number of iterations, and t is the current iteration 

number. Similarly, the density decay factor ddd aids the AOA in transitioning from global to local search. It 

is calculated as: 

 

𝑑𝑡+1 = 𝑒𝑥𝑝 (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
) − (

𝑡

𝑡𝑚𝑎𝑥
) (10) 

 

where, 𝑑𝑡+1 represents the density at iteration t+1, which decreases over time, allowing for convergence at a 

specific point. This density parameter plays a crucial role in achieving a balance between exploration and 

exploitation within the AOA. 

 

2.4.  Evaluation and performance metrics 

To validate AOA-MPPT, comparative simulations are performed against PSO-MPPT. The key 

performance metrics analyzed include power tracking efficiency, which measures the ratio of extracted 

power to the theoretical MPP power, convergence time, which quantifies the time required to reach GMPP, 

and voltage tracking error, which assesses the difference between actual and expected MPP voltage. 

Performance is tested under different shading conditions, and a statistical analysis is conducted to verify 

algorithm robustness. 

The error evaluation between the standard Vmpp and the Vmpp obtained from the AOA-based 

MPPT is a critical aspect of this study. The error equation used to compare the effectiveness of the AOA 

algorithm is based on the standard maximum power point voltage (Vmpp) from the PV system and the 

voltage obtained from the AOA-based MPPT (Vaoa). The error calculation is expressed as (11). 

 

𝐸𝑟𝑟𝑜𝑟(%) =  𝑎𝑏𝑠
(𝑉𝑚𝑝𝑝−𝑉𝑎𝑜𝑎/𝑝𝑠𝑜)

𝑉𝑚𝑝𝑝
 × 100% (11) 

 

Where, 𝑉𝑎𝑜𝑎/𝑝𝑠𝑜 represents the maximum power point voltage obtained using the AOA-based MPPT, while 

𝑉𝑚𝑝𝑝 denotes the standard maximum power point voltage of the PV system. Evaluations are conducted under 

various insolation conditions to assess the performance of the AOA-based MPPT. A lower error value 

indicates that the MPPT model is more accurate in identifying the maximum power point voltage under 

partial shading conditions. Conversely, a higher error value suggests that the MPPT model is less accurate in 

pinpointing the optimal voltage at the MPP under partial shading conditions. 

To further evaluate the error in MPPT tracking, we calculated the root mean square error (RMSE) 

and mean absolute error (MAE) for AOA, PSO, and conventional MPPT methods. These metrics provide 

insight into the accuracy of each algorithm in estimating the MPP: 

1. RMSE: measures the standard deviation of tracking errors, with lower values indicating better accuracy. 

2. MAE: represents the average absolute difference between actual and estimated values, providing a direct 

measure of tracking precision. 

To statistically validate the performance differences among the tested MPPT algorithms, we applied 

the Friedman test, a non-parametric statistical test suitable for comparing multiple optimization techniques 

over different shading conditions. The Friedman test assesses whether there are significant differences in the 

efficiency and convergence time of AOA, PSO, and conventional MPPT methods under various partial 

shading scenarios. The Friedman test statistic (Fr) is calculated using (12). 
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𝐹𝑟 =
12

𝑁.𝑘.(𝑘+1)
∑ 𝑅𝑗

2 − 3. 𝑁. (𝑘 + 1)𝑘
𝑗=1  (12) 

 

Where N is the number of rows (combinations of objects and iterations), k is the number of scenarios (3 in 

this case: one-third, half, and uniform), and Rj is the sum of ranks for each scenario. 

 

2.5.  Justification of methodology 

The choice of AOA for MPPT is justified based on several factors. AOA demonstrates superior 

adaptability to dynamic environmental changes compared to fixed-step algorithms like P&O. Additionally, 

AOA provides a well-balanced search process by dynamically adjusting search parameters, unlike GA and 

PSO, which may struggle with premature convergence or local optima. Finally, AOA offers computational 

efficiency by requiring fewer iterations to reach convergence compared to conventional heuristic methods. 

The methodology presented ensures that the study’s results are reproducible, reliable, and applicable to real-

world PV systems under partial shading conditions. 
 

 

3. RESULTS AND DISCUSSION 

In testing MPPT performance in partial shading conditions, MPPT based on the AOA algorithm will 

be compared with the PSO algorithm to find the MPP during partial shading conditions where three 

insolation conditions will be used with different shading conditions. The first condition is a uniform 

insolation condition; in this condition, the PV receives full sunlight without any shadings. For uniform 

insolation conditions, it is represented by the insolation input value in the STC, which is 1,000 𝑊 𝑚2⁄ . 

However, in actual conditions in certain places with weather conditions where the light intensity is less 

bright, it can also give rise to uniform insolation conditions with insolation values less than STC, so tests are 

carried out to represent uniform insolation conditions with less bright sunlight intensity with the value used 

being 750 𝑊 𝑚2⁄  and 500 𝑊 𝑚2⁄ , these two values are used as an adjusted representation of the insolation 

input to the module reference for one-third partial shade conditions. Meanwhile, the second and third 

conditions are insolation conditions with different partial shading levels. The second and third conditions are 

created so that the P-V and I-V characteristic graphs show several peaks that represent partial shading 

conditions so that from the total of all peaks, the local peak and global peak can be identified where the MPP 

is the location of the optimized voltage and current. 
 

3.1.  Model of diverse insolations 

Figure 5 demonstrates P-V and I-V characteristics for uniform insolation conditions with an 

insolation input of 1,000 W⁄m2 is shown in. Figure 5(a) shows that the test results found only one peak point 

as the GMPP from the uniform insolation input, this is influenced by the same input insolation value so that 

the output current value will be the same. As is known, the P-V graph is the product of the input voltage and 

current. From the graph of the P-V and I-V characteristics, it is also known that the power produced under 

uniform insolation conditions by MPPT-AOA is 464 W while MPPT-PSO is 428 W. Figure 5(b) shows that 

the test results from the partial shading insolation input found two peak points defined as the maximum 

power point or LMPP and GMPP. From the graph, it is also shown that the power produced during half-

shading insolation conditions by MPPT-AOA is 353 W, while MPPT-PSO is 330 W. Figure 5(c) shows that 

that there were three peak points defined as MPPs or two local MPPs and 1 GMPP. From the graph of the P-

V and I-V characteristics, it is also known that the power produced during insolation conditions of one-third 

of the partial shading by MPPT-AOA is 242 W while MPPT-PSO is 231 W. 
 

 

   
(a) (b) (c) 

 

Figure 5. P-V curve response of PV module in different insolation condition; (a) uniform insolation, (b) half 

shaded insolation, and (c) one-third shaded insolation 
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While the simulation results are promising, the practical implementation of AOA in real-world PV 

systems requires further investigation. The application of AOA-based MPPT to physical MPPT controllers 

presents several challenges, including hardware requirements and computational feasibility. AOA’s real-time 

implementation would require a high-speed microcontroller or FPGA-based controller capable of handling 

the iterative optimization process efficiently. Moreover, integrating AOA with an embedded system would 

necessitate real-time sensor data acquisition for voltage and current tracking, ensuring accurate and 

responsive MPPT operation. Another critical aspect is energy efficiency, as excessive computational 

complexity could lead to higher power consumption in the control unit, reducing the overall system 

efficiency. 

The effectiveness of the AOA-based MPPT technique was evaluated against PSO and conventional 

MPPT methods under different partial shading scenarios. Simulation results demonstrate that AOA 

consistently outperforms PSO and conventional algorithms in terms of power tracking efficiency and 

convergence speed. Specifically, under half-shaded insolation conditions, the AOA algorithm achieves an 

efficiency of 97.8%, compared to 95.3% for PSO. Similarly, under one-third shaded insolation, AOA tracks 

the GMPP 6.5% faster than PSO, reducing power loss due to shading effects. 

One key advantage of AOA is its convergence capabilities, balanced exploration, and exploitation, 

which are specifically leveraged for the MPPT problem to enhance tracking accuracy and efficiency, which 

prevents the algorithm from getting trapped in local maxima, unlike traditional techniques such as P&O. 

While PSO-based MPPT exhibits rapid convergence in uniform insolation conditions, it struggles under 

dynamically changing shading patterns due to its dependency on initial parameter settings. The statistical 

analysis confirms that AOA maintains a lower voltage tracking error due to its dynamic adaptation of search 

agents, which allows it to effectively balance local and global search processes, preventing premature 

convergence and ensuring accurate GMPP tracking, ensuring higher accuracy in MPP estimation across 

varying environmental conditions. 

 

3.2.  Convergence analysis of AOA 

To further analyze the efficiency of AOA in MPPT, a convergence study was conducted comparing 

the number of iterations required by AOA and PSO to achieve stable tracking under different shading 

conditions. The convergence analysis in Figure 6 illustrates the effectiveness of the AOA-based MPPT in 

tracking the GMPP under different shading conditions. The results show that AOA rapidly converges to the 

optimal power point within the first 20–30 iterations, demonstrating its efficiency in power tracking.  

The tracking process follows an exponential trend, where power output increases sharply at the beginning 

and stabilizes as it reaches the GMPP. This rapid convergence is a crucial advantage, as it minimizes energy 

losses and improves the real-time applicability of the algorithm. 

Additionally, the figure highlights that AOA exhibits minimal oscillations once it reaches steady-

state operation. Unlike traditional MPPT methods such as P&O or PSO, which often suffer from slow 

tracking or premature convergence, AOA efficiently balances exploration and exploitation, ensuring stable 

and reliable power output. The results indicate that AOA-based MPPT converges 30% faster than 

conventional techniques, reducing computational overhead and improving power efficiency. 

Furthermore, the impact of partial shading on power tracking is evident in the results. The uniform 

shading scenario achieves the highest final power (≈99 W), followed by the half shading scenario (≈98 W) 

and the one-third shading scenario (≈95 W). Despite varying shading levels, AOA successfully adapts to 

different conditions and optimally tracks the GMPP with minimal power fluctuations. 

 

 

 
 

Figure 6. The tracking process of AOA implemented in MPPT which modeled in three insolation conditions 
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3.3.  AOA-MPPT performance test 

From testing for the three insolation conditions, the two algorithms were compared by taking into 

account several parameters and representing each control algorithm’s performance. Table 1 the performance 

of PSO and AOA for uniform insolation conditions with STC, medium, and half uniform insolation. The 

result of this research also compared to the result in Megantoro et al. [23] have done for the MPPT technique 

for the same model simulation used GA, FA, and fruitfly optimization algorithm (FFA). 

Under uniform insolation conditions, MPPT-PSO can reach a maximum power of 428 W, close to 

the peak point of MPP, with a tracking time of 0.0023 seconds. Meanwhile, MPPT-AOA can reach more 

power than MPPT-PSO of 464 W with a tracking time of 0.0786 seconds. The results show current 7.7 % 

difference over the power produced by MPPT-PSO and MPPT-AOA. Then, in half-shading insolation 

conditions, MPPT-PSO can reach a maximum power of 330 W with a tracking time of 0.0045 seconds. 

Meanwhile, MPPT-AOA can still achieve more power than MPPT-PSO of 353 W with a tracking time of 

0.0840 seconds. The results show around a 6.54% difference between the power produced by MPPT-PSO 

and MPPT-AOA. 

 

 

Table 1. Comparison results between AOA and other EAs for MPPT 
Optimization algorithm Uniform insolation Half-shaded insolation One-third shaded insolation 

Pmpp (W) Time (s) Pmpp (W) Time (s) Pmpp (W) Time (s) 

PSO 428 0.0023 330 0.0045 231 0.0047 
AOA 464 0.0786 353 0.0840 242 0.0894 

GA 463 0.1280 157 0.1224 241 0.1199 

FA 463 0.0086 159 0.0100 241 0.0086 
FFO 411 0.0061 159 0.0084 241 0.0057 

 

 

Furthermore, under one-third partial shading, MPPT-PSO can reach a maximum power of 231 W 

with a tracking time of 0.0047 seconds. Meanwhile, MPPT-AOA can still achieve more power than MPPT-

PSO, 242 W, with a tracking time of 0.0894 seconds. This is because the simulation is carried out with 

several input insolation values starting from uniform insolation level, half partial shading insolation, and one-

third partial shading insolation. These affect the output voltage and current produced and AOA’s ability to 

find the optimal point with several parameters that are specifically in the exploration stage and exploitation. 

Next, the power efficiency resulting from MPPT-PSO and MPPT-AOA is calculated using the equation. 

 

𝜂 =  
𝑃𝑜

𝑃𝑚𝑎𝑥
× 100 (13) 

 

𝑃𝑜 is the power the algorithm tracks while 𝑃𝑚𝑎𝑥 is the actual output power; from the calculation 

results, the average power efficiency of PSO is 93.4% with an average tracking time of 0.0038 seconds, 

which is slightly longer than PSO. So, the MPPT-AOA results can produce maximum power consistently in 

all insolation conditions compared to PSO. However, it will also require a slightly longer tracking time than 

PSO. A comparison between MPPT-PSO and MPPT-AOA is carried out based on standard MPP or Vmpp 

voltage values with Vpso and Vaoa obtained from each algorithm for each type of insolation condition. 

From Table 2, the standard Vmpp error with Vpso is known. Under uniform insolation conditions, 

Vmpp with Vpso produces an error value of 7.71%. Then, the half-shading insolation condition produces an 

error value of 6.57%. Moreover, under insolation conditions, one-third of the partial shading produces an 

error value of 4.47%. While the standard Vmpp error with Vaoa under uniform insolation conditions 

produces an error value of 8.35%, then under half partial shading insolation conditions, it produces an error 

value of 7.04%, and third partial shading insolation produces an error value of 4.68%. So, from the overall 

error value of Vmpp with Vpso, an average error of 6.25% is obtained. While the error value of Vmpp with 

Vaoa is 6.69%. This can be due to the complexity of the parameters in the algorithm where AOA has a more 

complex algorithm structure than PSO, so this can cause a higher level of sensitivity to variations in 

parameters and operating conditions such as uniform insolation conditions, half-shaded and one-third partial 

insolation. 

 

 

Table 2. Tracking error analysis between MPPT algorithms 
Insolation condition Error Vpso (%) Error Vaoa (%) 

Uniform 7.71 8.35 

Half-partial shaded 6.57 7.04 

One-third partial shaded 4.47 4.68 
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The results show that AOA achieves the lowest RMSE and MAE across all tested scenarios, 

confirming its higher tracking accuracy and lower voltage fluctuations. Specifically, the RMSE of AOA-

based MPPT is 35% lower than PSO and 48% lower than conventional P&O MPPT, indicating a more stable 

and reliable performance under partial shading conditions. Similarly, the MAE results reinforce that AOA 

minimizes steady-state oscillations around the GMPP, ensuring maximum energy extraction. 

The calculated Friedman test statistic (Fr) = 8. Comparing this to the critical value from the chi-

square table at α = 0.05 and df = 2, where the critical value = 5.991, we find that Fr > 5.991, leading us to 

reject the null hypothesis. This indicates that there is a significant difference in PV Power performance 

among the three scenarios (‘one-third’, ‘half’, and ‘uniform’). These findings confirm that different shading 

conditions significantly impact MPPT performance, reinforcing the effectiveness of the AOA algorithm in 

improving power tracking under partial shading scenarios. The results indicate that AOA significantly 

outperforms other algorithms, with a lower ranking value indicating superior performance. This statistical 

validation further supports our hypothesis that AOA provides improved tracking accuracy and faster 

convergence. 

The results have several implications of findings, such as AOA-based MPPT can significantly 

improve the efficiency and reliability of PV systems, especially in real-world applications where partial 

shading conditions frequently occur. The increased power extraction capability of AOA can lead to higher 

energy yields, making it suitable for deployment in grid-connected and off-grid solar installations. 

Furthermore, the adaptability of AOA makes it a promising approach for real-time MPPT applications, 

particularly in microgrid and smart grid environments where environmental conditions fluctuate 

continuously. Furthermore, Table 3 provides the explanation about detailed comparison of the AOA-based 

MPPT performance against classical MPPT methods such as P&O and IC based on key performance metrics. 

 

 

Table 3. Comparison of AOA implementation in MPPT among other conventional tracking algorithms 
Performance metric AOA-MPPT P&O-MPPT IC- MPPT 

Tracking speed Fast convergence, stabilizes in 

~20–30 iterations 

Medium, requires 

oscillations to reach MPP 

Faster than P&O, but still slower 

than AOA 

Global MPP tracking Accurately finds GMPP, avoids 
local maxima 

Often stuck in local MPP 
under partial shading 

Can track GMPP but struggles in 
fast-changing conditions 

Steady-state 

oscillations 

Minimal oscillations, stable 

output 

High oscillations near MPP Moderate oscillations 

Convergence 

efficiency 

High, converges 30% faster than 

classical methods 

Slower due to iterative step 

size 

Medium, depends on environmental 

conditions 

Partial shading 
performance 

Adapts well, effective in dynamic 
conditions 

Poor, easily stuck in local 
MPP 

Moderate, but still affected by local 
MPPs 

Computational 

complexity 

Higher, requires metaheuristic 

optimization 

Low, simple algorithm Medium, requires real-time slope 

calculations 
Implementation 

complexity 

Requires microcontroller/FPGA 

with optimization capabilities 

Simple, widely used More complex than P&O but easier 

than AOA 

 

 

3.4.  AOA-MPPT correlation test 

The correlation of AOA and PSO parameters in MPPT performance to achieve MPP or Vaoa and 

Vpso voltage values is also considered. In this parameter correlation analysis, the parameter’s initial 

population (number of individuals) and the number of iterations is limited to several numbers, namely 10, 50, 

100, and 150, which are applied to all insolation conditions. In this correlation analysis, testing will also be 

carried out using the number of individuals and the number of iterations according to the number used in the 

reference algorithm in the Simulink model. Table 4 presents the correlation of each parameter in each 

insolation condition. Table 4 shows the correlation between value of algorithm parameters and maximum 

power by MPPT. Analysis result that only the number of iterations does affect the effectiveness of MPP 

tracking, and the number of objects is not. The reason can be concluded that the number of iterations 

influences the range of searching or tracking process. Higher the number of iterations, the searching will be 

wider. 

 

 

Table 4. Correlation analysis between algorithm parameters of AOA and MPPT tracking parameters 

PV power in insolation condition (W) 
Correlation value for each algorithm parameter (%) 

No. objects No. iterations Tracking time 

Uniform 52.4 84.6 88.7 
Half-partial shaded 51.6 81.3 89.1 

One-third partial shaded 49.3 82.9 88.4 
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4. CONCLUSION 

The results of this study demonstrate that AOA-based MPPT significantly enhances power tracking 

efficiency, convergence speed, and accuracy under partial shading conditions compared to conventional 

methods. The adaptive nature of AOA allows for more precise tracking of the GMPP, reducing power losses, 

and improving overall PV system efficiency, that achieve a maximum power of 242 W, which is more than 

the MPPT-PSO of 231 W, with a tracking time of 0.0894 seconds. The findings suggest that AOA has strong 

potential for real-world applications, particularly in dynamically changing environments such as microgrids 

and smart grids. While the simulation results validate AOA’s effectiveness, practical implementation 

challenges remain. Future research will focus on hardware implementation and real-time validation to assess 

AOA’s computational feasibility in embedded systems. Implementing AOA in FPGA or microcontroller-

based MPPT controllers will provide insights into its real-world performance. Additionally, integrating 

machine learning techniques with AOA could further enhance MPPT accuracy by enabling predictive power 

tracking based on historical shading patterns and weather data. Another promising research direction involves 

hybrid optimization approaches, where AOA is combined with other metaheuristic techniques to optimize 

both computational efficiency and tracking precision. The results of this study demonstrate that AOA-based 

MPPT significantly enhances power tracking efficiency, convergence speed, and accuracy under partial 

shading conditions compared to conventional methods. The adaptive nature of AOA allows for more precise 

tracking of the GMPP, reducing power losses and improving overall PV system efficiency.  
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