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 Edge artificial intelligence (Edge AI) involves the implementation of AI 

algorithms and models directly on local edge devices, such as sensors or 

internet of things (IoT) devices. This allows for immediate processing and 

analysis of data without the need for continuous dependence on cloud 

infrastructure. Concerns about privacy have grown importance in recent 

years for businesses looking to uphold end-user expectations and safeguard 

business models. Federated learning (FL) has emerged as a novel approach 

to enhance privacy. To improve generalization qualities, FL trains local 

models on local data. These models then collaborate to update a global 

model. Each edge device (like smartphones, IoT sensors, or autonomous 

vehicles) trains a local model on its own data. This local training helps in 

capturing data patterns specific to each device or node. Poisoning, 

backdoors, and generative adversarial network (GAN)-based attacks are 

currently the main security risk. Nevertheless, the biggest threat to FL’s 

privacy is from inference-based assaults such as model inversion attacks, 

differential privacy shortcomings and FL utilizes blockchain and 

cryptography technologies to improve privacy on edge devices. This paper 

presents a thorough examination of the current literature on this subject.  

In more detail, we study the background of FL and its different existing 

applications, types, privacy threats and its techniques for privacy 

preservation. 
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1. INTRODUCTION 

The phrase “Edge Artificial Intelligence (Edge AI)” refers to the installation of AI applications on 

hardware found in the real world. Because the AI computation is carried out close to the user at the edge of 

the network, nearer the data’s location, as opposed to centrally at a cloud computing facility or private data 

center, it is known as “Edge AI”. It’s particularly useful in scenarios where real-time processing and 

decision-making are critical, such as autonomous vehicles, healthcare monitoring systems, and industrial 

automation. Federated learning (FL) in edge AI is a paradigm that uses a variety of decentralized edge 

devices to train machine learning (ML) models without transferring raw data. This methodology facilitates 

ongoing education and adjustment to regional circumstances. Each edge device (such as a smartphone or 

internet of things (IoT) device) in this configuration has a local dataset and takes part in the learning process. 

A central server receives the learnings (model parameters) that the learning model has acquired from its 
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training on these local datasets. The server then compiles these modifications to enhance the global model. 

Until the model achieves an accuracy level that is acceptable, this process is repeated multiple times. 

FL is a collaborative process that uses remote data sharing among multiple participants to train a 

single deep learning model and improve iteratively, much like in a team report or presentation. Each 

individual downloads the model, which is often a foundation model that has already been trained, from a 

cloud data center. They train it on their own private data, then summarize and encrypt the model’s new 

configuration. The model updates are sent to the centralized model, which decodes, norms, and combines 

them before sending them back to the cloud. The collaborative training process carries on iteration after 

iteration until the model is completely trained. Distributed ML can be secured using FL as an approach to 

collaborating to execute FL algorithms on multiple devices. The condition is that there are scattered edge 

devices or servers where the private information is not left local. A decentralized ML technique called FL 

uses several devices or servers with local data samples to train models without transferring them. Figure 1 

shows the basic architecture of FL. 
 

 

 
 

Figure 1. Basic architecture of federated learning 
 

 

FL in Edge AI leverages the computational power of edge devices like smartphones devices, or edge 

server to train ML models locally without needing to transmit sensitive data to a central server. Edge devices 

perform model training using local data. This could include data collected from sensors, user interactions or 

other resources. Only modifications to models are uploaded to a central server; raw data cannot be sent.  

User privacy is upheld in this way. FL enables personalized and context-aware intelligence directly on 

devices without relying heavily on cloud services. 

Cloud computing emerged as a unique computer architecture for the Internet based on highly 

resourced data centers as Information technology advanced after 2000. Development and interest in cloud 

computing has grown to the point where, by 2020, more than 90 % of all data center traffic will originate 

from sources in the cloud [1]. The immense potential of edge AI has finally been realized to the most recent 

strides in AI efficiency, the growth of edge computing, and the explosion of IoT devices. When AI 

computations are performed in proximity to consumers on a network edge, they are referred to as edge-based 

AI. This is in contrast to centralized data storage, such as cloud service providers or privately held data 

warehouses [2]. The successful operation of tasks is enhanced through the 6G services provided for edge 

computing and autonomous vehicular driving applications. The significant amount of data generated by these 

applications can be advantageous for the AI and ML industry. By preserving the ability to learn from 

decentralized data sets, FL, also known as FL, is an essential element in an integrated solution to privacy and 

technological issues. Training is limited to user devices, and the server receives the locally computed 

parameter, which aggregates the updated weights to optimize a global model [3]. The emergence of novel 

technologies like big data, edge computing, fog computing, artificial intelligence of things (AIoT), and fog 

computing has caused problems for smart city applications, including the disclosure of sensitive and private 
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data. FL can deal with plenty of smart city concerns, including enormous amounts of data and safeguarding 

privacy, empowering decision-makers to act swiftly. FL is beneficial in training shared statistics through 

decentralized devices or servers [4]. The widespread deployment of AI in healthcare poses challenges due to 

the scattered nature of health data. Privacy concerns can be effectively handled with the use of privacy-

preserving algorithms in FL, which was developed to address data fragmentation. To enhance security and 

computational effectiveness, FL can be paired with other technologies such as edge computing and 

blockchain [5]. The single point of failure that is the bottleneck of both traditional FL and HFL systems is 

their reliance on a centralized server to manage the learning process [6]. 

Edge computing is one way of AI enhancing cybersecurity. Edge computing analyzes data at the 

network’s edges, including individual devices, routers, and firewalls, rather than forwarding it to a central 

place. This has a number of security benefits, including threat detection and prevention, anomaly detection, 

enhanced data privacy, adaptive security policies, and fraud detection. Gaining user trust will require 

addressing difficulties related to performance, data processing, and human monitoring. As edge and IoT 

adoption grows, solid localized security will become more vital. In cyber security, FL allows businesses to 

interact and share insights from their data without disclosing the data itself, reducing the dangers connected 

with data breaches and privacy violations. This decentralized strategy also aids in the creation of more 

resilient and accurate models by integrating several data sources while maintaining individual data  

privacy [7]. 

The remainder of this paper is organized as follows: In section 2 discusses the overview, 

importance, different types of models, applications, privacy challenges and preservation techniques of FL in 

Edge AI. In section 3 presents the results and discussions. Finally, section 4 concludes the paper with future 

research directions. 

 

 

2. OVERVIEW OF FEDERATED LEARNING IN EDGE AI 

FL in Edge AI combines the principles of FL with edge computing, facilitating the immediate 

training of ML models on edge gadgets while preserving data privacy and reducing communication 

overhead. FL is a cooperatively decentralized solution that protects privacy while addressing issues with data 

sensitivity and silos. 

In FL, instead of aggregating data in a centralized server, the training process occurs locally on 

peripheral devices such as edge computing servers, mobile devices and IoT devices. By retaining raw data on 

edge devices, it guarantees data privacy. The only updates to the model that are sent to the centralized server 

for aggregation are the weights or gradients. This approach minimizes the risk of data breaches or privacy 

violations. By performing training locally on edge devices, FL reduces the need for data transmission to a 

central server. This is particularly beneficial in edge computing environments with limited bandwidth or 

intermittent connectivity. Edge devices collaboratively contribute to model training by performing local 

updates based on their respective datasets. These updates are then aggregated to improve the global model, 

leveraging insights from diverse edge devices. FL enables models to be trained and updated in real-time on 

edge devices, facilitating quick decision-making and inference without relying on a centralized server [8].  

It is inherently scalable as it distributes computation across numerous edge devices. This allows for large-

scale deployment of edge AI systems without overburdening any single device or central server. Models 

trained using FL can adapt to changing data distributions and environmental conditions in real-time,  

making them well-suited for dynamic edge computing environments. Here’s a step-by-step explanation of 

how it works: 

1. Initial model distribution: a central server initializes a global ML model, which could be a neural network 

or another type of model (global model initialization). The initial version of this model is then sent to all 

participating edge devices. Each device receives a copy of the same model (model distribution). 

2. Local training on edge devices: each edge device has its own local dataset, which could be user-specific 

data like text messages, images, sensor data, or application usage patterns. Each device trains the received 

global model on its local data. This training involves several iterations of an optimization algorithm (e.g., 

stochastic gradient descent) to update the model’s parameters based on the local dataset. After local 

training, each device computes the changes to the model parameters (e.g., gradients or weight updates) 

based on its local data. 

3. Communication with the central server: instead of sharing the actual data, each edge device sends only 

the model updates (i.e., the changes in the model parameters) to the central server. These updates can be 

encrypted or processed using techniques like differential privacy to ensure that sensitive information from 

the local data is not exposed. 

4. Aggregation of updates: the central server collects updates from multiple devices. It then aggregates these 

updates to form a new global model. A common method is to average the updates, but more sophisticated 
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techniques can be used to ensure robustness against outliers or malicious updates. The central server 

updates the global model based on the aggregated information and prepares it for the next round of 

training. 

5. Iterative process: the updated global model is then redistributed to all participating edge devices. Steps 2 

through 4 are repeated for several iterations (or rounds) until the model converges, meaning that further 

updates result in minimal improvement. 

6. Final model deployment: once the model has reached a satisfactory level of accuracy, it can be deployed 

for inference on the edge devices, allowing them to make predictions locally based on the trained model. 

Overall, FL in Edge AI offers a decentralized and privacy-preserving approach to ML that is well-

suited for edge computing environments, including IoT, smart cities, autonomous vehicles, and more.  

It addresses challenges related to data privacy, communication overhead, scalability, and adaptability, 

making it a powerful paradigm for deploying AI applications at the edge. 

 

2.1.  Importance of federated learning 

FL is a training method for deep-learning AI models that involves collaboration. FL takes models to 

user’s devices for training with local data until they mature, instead of centralizing customer data in a single 

repository. The fully trained models are then sent back to the provider or business. This method ensures that 

the AI provider doesn’t access any end-user data while training, preserving data privacy while still making 

crucial use of end-user data for model improvement. Edge AI is an AI system that runs AI-driven operations 

closer to where the actual user data is located instead of on a centralized server. A combination of edge 

computing and AI is used to enable digital services to use AI capabilities locally without the need for central 

cloud connectivity. When FL is applied to Edge AI, it enables Edge AI applications to continuously evolve 

their understanding of end-user dynamics without the need for taking end-user data to their central cloud 

storage. End users can take advantage of this by not having to share sensitive data with any business. 

The combination of FL and Edge AI allows for the development of more robust and privacy-

preserving AI systems that can learn and adapt in real-time, precisely where the data is created, at the 

network’s edge. This results in faster response times, a decrease in network latency, and improved data 

privacy. FL in Edge AI offers significant advantages that cater to the unique demands of edge computing 

environments. Here’s a deeper dive into its importance: 

1. Privacy preservation: FL enables AI merely sending raw data to a distant server, models can be trained 

locally on common devices like smartphones or IoTs sensors. This protects user privacy by keeping 

sensitive data decentralized and lowering the likelihood of data breaches or privacy violations [9]. 

2. Reduced latency: FL reduces the requirement to send data to a central server for processing by executing 

model training and inference on edge devices. This decreases latency and provides real-time 

responsiveness, making it perfect for low-latency interactions in applications like self-driving cars and 

augmented reality [10]. 

3. Bandwidth conservation: huge amounts of data transmitted from edge devices to a central server can 

strain network bandwidth and result in significant expenditures, particularly in settings with restricted 

connection. FL alleviates this strain by conducting model changes locally, which saves bandwidth and 

reduces network congestion. 

4. Robustness to connectivity issues: edge devices frequently operate in areas with inconsistent or 

unpredictable network access. FL is resistant to such obstacles because it allows devices to learn and draw 

conclusions independently even when they are removed from the network. 

5. Adaptability and personalization: FL allows AI models to be tailored and adjusted to specific edge 

devices or people without sacrificing privacy. Customized advice and services are made possible by this 

individualized approach, which also improves user experience. 

FL in Edge AI offers a privacy-preserving, low-latency, and bandwidth-efficient approach to 

training AI models directly on edge devices, making it indispensable for multiple applications in the IoTs, 

health care, smart cities, and various other fields. 

 

2.2.  Various federated learning model 

In this section, we explain and compare different types of FL, such as horizontal FL (HFL), vertical 

FL, federated transfer learning (FTL), and cross-silo FL, based on their features as shown in Table 1. 

 

2.2.1. Horizontal federated learning 

HFL is a form of FL in which datasets from multiple nodes share the same feature space but utilize 

various samples. It can also be referred to as sample-based FL or homogeneous FL. It works well when there 

is significant overlap in the user features of two datasets but not in the total number of users. In order to 

extract the portion of the data where user attributes are similar but users are not precisely the same for 
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training, we divide the datasets horizontally (by the user dimension) in this learning process. Multi-task FL 

reduces communication costs and improves fault tolerance compared to distributed multi-task learning. 

sensitive information is preserved off the server by using client-specific data division. After calculating the 

local gradient and uploading it to the server, each client modifies the global model to account for the gradient 

changes [11]. The Figure 2 shows the architecture of HFL. 

The working of HFL consists the following steps: 

a. The remote server receives an encoded gradient from the local model. 

b. The server handles the safe combination. 

c. The model receives updates from the server. 

d. The models are updated based on the information from the server. 

 

 

 
 

Figure 2. Architecture of HFL 

 

 

2.2.2. Vertical federated learning 

Vertical federated learning (VFL) is a specialized form of FL, designed to enable multiple 

organizations or entities to collaboratively train ML models without sharing their raw data. It’s particularly 

useful when these organizations possess different types of data about the same set of users or entities.  

In VFL, the data is partitioned vertically, meaning different organizations hold different features or attributes 

of the same users. For example, a bank might have financial data about its customers, while a healthcare 

provider might have medical data about the same individuals. These organizations want to collaborate to 

build a better model, but they cannot share their raw data due to privacy concerns. The organizations 

collaborate to train a ML model by sharing encrypted intermediate computations instead of raw data. Each 

organization contributes to the model by using its local data to compute certain aspects (e.g., gradients or 

model updates) and shares these with the other parties in a secure manner. VFL employs various 

cryptographic techniques, such as secure multi-party computation (SMPC) or homomorphic encryption (HE), 

to ensure that while the computations are shared, the actual data remains private. This allows the 

organizations to learn from each other’s data without actually seeing it. A crucial step in VFL is aligning the 

data across the different parties. Since each organization has data on the same users but in different forms, 

they need to ensure they are working with the same users without directly sharing identifiable information. 

This is often done through secure alignment protocols that match users across datasets based on encrypted 

identifiers. Figure 3 shows the architecture of vertical FL. 

A typical VFL procedure for each learning time frame has seven important steps [12]: 

a. Private set intersection (PSI): to align training data samples, the system uses PSI or secure entity 

alignment to identify common identifiers shared by all participants, including guest and host 

organizations. PSI is a secure system that identifies common IDs among multiple participants’ data. 

Commonly used PSI approaches include naïve hashing, oblivious polynomial evaluation, and oblivious 

transfer. 
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b. Bottom model forward propagation: after aligning data samples, participants will use local data to do 

forward propagation based on their bottom model. The forward propagation procedure is similar to 

conventional training, with the exception of determining the loss value.  

c. Forward output transmission: each participant must provide their forward output to the label owner.  

The forward output represents the intermediate outcomes of local neural networks that translate the 

original properties into features. 

d. Backward output transmission: each guest participant receives the gradients of their forward output.  

The communication cost (transmission bits) for gradients is typically lower than for intermediate outputs. 

e. Bottom model backward propagation: participants change their bottom model parameters depending on 

local data and the label owner’s forward outputs. 

 

 

 
 

Figure 3. Architecture of VFL [12] 

 

 

2.2.3. Federated transfer learning 

FTL, similar to standard ML, involves adding a new feature to a pre-trained model. Extending 

vertical FL to include sample instances from non-collaborating organizations is a good example that 

promotes complementary exchange of information between the domains in a data federation and knowledge 

sharing without jeopardizing user privacy. This allows a target-domain party to leverage rich labels from the 

source domain to develop adaptable and powerful models. This methodology delivers the same degree of 

accuracy as non-privacy-preserving transfer learning methods with very little adjustment to the prevailing 

structure. It adapts well to secure multi-party ML workloads [13]. Figure 4 shows architecture of FTL.  

Here are the typical steps involved in FTL: 

a. Initial setup and data preparation: identify the participating entities (clients) and their respective datasets. 

Preprocess and standardize data across all clients to ensure consistency. 

b. Pre-trained model selection: select a pre-trained model that will be used as the base model for transfer 

learning. This model is typically trained on a large, diverse dataset and provides a good starting point. 

c. Local model customization: each client fine-tunes the pre-trained model on their local data. This step 

involves: downloading the pre-trained model, Training the model on local data by adjusting model 

weights based on local dataset characteristics. 

d. Local model updates: after local training, each client computes the model updates (gradients or model 

parameters) based on their local dataset. 
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e. Secure aggregation: to protect data privacy, the model updates are securely aggregated. This can be done 

using techniques like secure multiparty computation (SMC) or differential privacy to ensure that 

individual updates remain confidential. Clients send their encrypted model updates to a central server or 

an aggregator. 

f. Global model update: the central server or aggregator decrypts and aggregates the local updates to update 

the global model. This step involves: 

i. Combining the updates from all clients. 

ii. Applying the aggregated updates to the global model. 

g. Global model distribution: the updated global model is then distributed back to all clients. 

h. Iterative process: steps 3 to 7 are repeated iteratively. In each iteration, the global model becomes more 

refined as it learns from the diverse local datasets of all clients. 

i. Convergence and final model: the process continues until the global model converges to a satisfactory 

performance level or a predefined number of iterations is reached. The final model is then used by all 

clients for inference on their local data. 

j. Evaluation and deployment: evaluate the final model’s performance on a validation dataset. Deploy the 

final model for real-world use. 

 

 

 
 

Figure 4. Illustration of federated transfer learning architecture [13] 

 

 

2.2.4. Cross-silo federated learning 

Cross-silo FL is utilized when there are fewer participating devices and they are available for all 

rounds. The training data may be in horizontal or vertical FL format. Cross-silo is mostly utilized for 

organizational cases [14]. Cross-silo FL is a collaborative ML strategy in which multiple companies, each 

with its own data silo, work together to train a common model without sharing their raw data. Instead, they 

exchange model updates or gradients while keeping their data local, which protects privacy and security.  

This method allows enterprises to harness collective expertise while protecting sensitive data. Figure 5 shows 

the architecture of cross-silo FL. 

A typical cross-silo FL method comprises multiple rounds. Each round has four steps: 

a. The central server provides the clients with the global model from the previous cycle. The downloaded 

model is initialized at random in the first round. 

b. Users train acquired models on private local data sets, resulting in updated local models. 

c. Local model updates are uploaded by clients to the central server. 

d. In the subsequent round, clients will receive a new global model that the server has created by combining 

the submitted model revisions. 

In the below Table 1 shows the comparison between different types of FL such as HFL, VFL, FTL, 

and cross-silo FL based on their features like data distribution, model architecture, communication overhead, 

model accuracy, client heterogeneity and use case. 
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Figure 5. Architecture of cross-silo federated learning 

 

 

Table 1. Comparison between different types of federated learning 

 

 
2.3.  Applications 

2.3.1. Healthcare 

Distributed intelligence using edge devices is made possible by edge AI, an interdisciplinary 

technology. It involves models for FL, DL, and ML that are developed and run at the edge of the network, 

independent of centralized data centers. It also includes data analytics and AI. Edge computing allows for 

local data processing and analysis, which lowers latency and facilitates quick decision-making [15]. 

A distributed ML technique called FL uses information from several decentralized edge clients to 

build a global model. Data protection and scalability are only two of its many benefits. When dealing  

with heterogeneous devices, FL techniques also come with some dangers and computational  

complexity limitations. Healthcare providers, for example, can use FL to collectively train a model, 

leveraging the pooled expertise of all participating entities while ensuring that each entity’s data stays  

private [16]. 

 

 

 

Features HFL VFL FTL Cross-silo FL 

Data 

distribution 

Data is distributed 

horizontally, with each 
client having a subset of 

the total data 

Data is distributed vertically, 

with each client having a 
subset of the features 

Data across clients is often 

non-IID (non-Independent 
and Identically 

Distributed), unbalanced 

and different feature spaces 

IID or non-IID, 

overlapping feature 
spaces 

Model 

architecture 

Typically uses a single, 

shared model architecture 

across all clients 

Requires a customized model 

architecture for each client as 

each client has a unique set 
of features 

Different architectures, 

fine-tuning 

Same architecture 

across clients 

Communicati

on overhead 

High communication 

overhead 

Reduce communication 

overhead 

Lower, but variable Higher, but 

predictable 
Model 

accuracy 

High model Accuracy Require additional technique 

to achieve high model 

accuracy 

Variable, depends on 

transfer effectiveness 

Generally high, 

consistent 

improvements 
Client 

heterogeneity 

Homogenous client with 

similar data distribution 

Heterogeneous client with 

different data distribution 

High, different data and 

capabilities 

Low to moderate, 

similar data and 
resources 

Use case Suitable for applications 

with horizontally 
distributed data such as 

images, videos 

Suitable for application with 

vertically distributed data 
such as financial 

transactions, medical records 

Personalized, domain-

specific adaptations 

Collaborative 

learning across 
organizations with 

similar data 
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2.3.2. Finance 

Edge AI is a technique that makes edge devices capable of distributed intelligence. It enables the 

deployment and execution of AI and data analytics at the network’s edge, away from centralized data centers. 

This allows for faster decision-making and lower latency [17]. A ML method called FL uses a network of 

decentralized edge clients to learn from in order to create a global model. Scalability and data privacy are 

among the benefits it provides. But when it comes to processing complexity, it does cause some problems 

when dealing with heterogeneous devices. 

Furthermore, FL enables Edge AI apps to continuously improve their understanding of end-user 

dynamics without having to transfer end-user data to a central cloud store. This gives end users an edge 

because they do not have to disclose sensitive information with any firm. This ensures that no personal data 

leaves the device. For example, financial organizations might train a model cooperatively using FL, which 

allows them to exploit the aggregate intelligence of all participating institutions while ensuring that each 

institution’s data stays private [18]. 

 

2.3.3. Smart homes 

Edge AI is a revolutionary development in AI that fundamentally changes how we think about data 

processing and device interaction. Whether it’s an edge server, smartphone, or other IoT device, the magic 

happens right there or very close to the data source. This change fundamentally affects how quickly and 

efficiently devices can function, not just where they are located. Real-time decision-making and quicker 

replies are made possible by Edge AI, which reduces the latency of transferring data back and forth to  

remote computers. Furthermore, data privacy benefits greatly from this specialized processing. Edge AI 

maximizes user control by reducing the inherent dangers associated with frequent data transfers to  

external servers by storing critical information closer to home [19]. Conversely, FL allows for joint AI 

training without jeopardizing the privacy of personal information. With this ML technique, all training  

data is retained on the original device and a shared global model is learnt across several devices.  

This promotes privacy because no raw data is shared or kept in a central location. One example of this is the 

Fed Home framework, which is an architecture for in-home health monitoring based on the cloud edge. It 

creates a shared global model in the cloud by utilizing several houses at the network edges, and it preserves 

user privacy by storing user data locally. 

 

2.3.4. Telecommunication 

In the context of telecommunications, edge AI refers to the application of AI algorithms to network 

edge devices like switches, routers, and other devices. This facilitates quicker answers and real-time 

decision-making, both of which are essential in a communications network. Additionally, Edge AI can help 

safeguard data privacy because it processes data locally rather than transferring it to a central server [20].  

FL is becoming increasingly popular in the telecom sector as communication service providers (CSPs) 

consider how to leverage their data assets while upholding privacy regulations. Over five billion consumers’ 

data are stored by the top 50 carriers worldwide. The utilization of FL is increasingly important in the 

development of centralized models with distributed training data, as telecommunication companies employ 

AI/ML technology to extract analytical and predictive capabilities. Significantly more network capacity, 

reduced latency, faster speeds, and greater efficiency are made possible by 5G and edge computing. 5G Edge 

computing will disperse data and AI models among numerous nodes, however sharing the data can be 

difficult due to security, bandwidth, storage, and other limitations. FL is perfect for this kind of setting. 

 

2.3.5. Smart farm 

FL-based monitoring systems for smart farms detect animal diseases. Unlike prior studies, which 

did not use FL for animal disease diagnosis, this technique is based on extensive experimentation with 

information from the internet of animal health things (IoAHT). These studies on clinical mastitis in cows 

provide a strong foundation for assessing FL’s efficacy in actual agricultural settings. Smart farming involves 

solar-powered sensors attached to each animal to monitor their health. The information is periodically sent 

via long-range (LoRa) transmission to edge devices, such gateways, and subsequently to a cloud server. 

Farmers are able to effectively oversee farm operations and keep an eye on livestock thanks to this 

infrastructure. While solar-powered sensors offer labor-saving and environmental benefits, they also pose 

substantial problems. To enhance smart farming automation, a cloud server can use a deep learning (DL) 

model to analyze data from gateways and detect diseases like mastitis in cattle. This approach protects  

data privacy and encourages sustainable agricultural practices by enhancing disease prediction in smart  

farms through the use of FL. Local elements, including sensors, are crucial to improving FL’s forecast 

accuracy [21]. 
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2.4.  Privacy threats in federated learning 

Privacy flaws are among the most common worries about traditional ML. To preserve their privacy, 

FL requests that participants contribute the local training model parameters rather than their actual data. The 

dangers present in FL can be broadly classified into many types of inference-based assaults. The main 

privacy protection issues and data security risks that FL faced while working at EC include [22]: 

a. Model inversion attack: by decentralizing the training process and enabling devices to cooperatively learn 

a shared model while maintaining local access to the raw data, FL seeks to safeguard data privacy. 

However, the model parameters and updates exchanged during FL can still leak information. The server 

gathers updates from client models in FL. An attacker can deduce details about the training set by 

examining the parameters if they manage to obtain access to either the global model or these updates.  

The assailant reconstructs the input data using the model parameters. This can be accomplished by 

optimizing an input so that the observed outputs from the valid mode coincide with the outputs from the 

model (or intermediate layer outputs). An attacker can exploit these gradients to approximate the training 

data because FL requires exchanging gradients or model updates [23]. 

b. Model poisoning: model poisoning attack is also known as adversarial attack. A malicious client might 

send manipulated model updates to the central server. These updates can be crafted to degrade the 

performance of the global model. This could be done by training on poisoned data or by deliberately 

introducing errors into the model updates. 

c. Backdoor attacks: in this scenario, an attacker injects a hidden backdoor into the global model.  

This backdoor activates when the model encounters specific trigger inputs, causing it to behave 

incorrectly while performing normally on regular data. The backdoor can be implanted by subtly 

modifying the model updates. 

d. Data poisoning: although this is not a refactoring of the model updates themselves, data poisoning 

involves injecting malicious data into the training dataset. This can indirectly cause the model to learn 

incorrect or harmful patterns, affecting its performance. 

e. Model extraction attack: in FL, a model extraction attack occurs when a hostile party uses their local  

data to try and rebuild or extract sensitive information about the global model that is being trained.  

The fact that FL frequently uses proprietary or sensitive models and that its objective is to preserve 

individual data privacy while learning a global model makes this assault especially worrisome. 

 

2.5.  Privacy preservation techniques 

Global and local privacy are the two categories into which FL privacy falls. Every iteration,  

all unreliable third parties’ privacy is safeguarded, with the exception of the trusted central aggregation 

server, using global privacy regulations and locally created model updates. For the server privacy to be 

protected, model changes are needed for local privacy. Currently, adversarial training (AT), blockchain, 

disturbance, cryptography, and KD are common technologies for enhancing FL privacy security. 

 

2.5.1. Differential privacy technology 

Fuzzy processing is commonly employed in DML to safeguard training dataset’s privacy and 

security. This includes using generalization, noise disturbance, randomization and compression to conceal 

training data and improve privacy performance to some extent. In FL, DP is typically employed to disguise 

significant features by adding noise to training data, model parameters, or gradient information. DP can 

ensure data privacy. DP improves data privacy and security by adding noise into sensitive data. The use of 

DP in FL to introduce noise disturbances to model parameters provided by FL participants, or to apply 

generalization methods to disguise critical data features, prevents reverse data retrieval, allowing ML models 

to tolerate adversarial examples [24]. 

The communication overhead of SMPC is much higher than that of DP. DP algorithms have been 

developed in existing studies. An algorithm for DP-protection FL optimization on the client side. To provide 

a user-level DP training process for large neural networks, a user-level privacy protection is additionally 

incorporated to the FL averaging method. Both sought to protect private data by masking user-uploaded 

model parameters during training, weighing model performance against privacy loss. These methods were 

tested on genuine datasets. This demonstrated that with enough devices participating in federated training, 

privacy protection can be achieved with low overhead. Both approaches ensured high model correctness. 

However, this technique neglected to consider the possibility that incorporating DP in FL with fewer 

participants may impair overall model accuracy. DP noise was substituted into a neural network by pruning a 

specific layer, with the purpose of safeguarding sensitive data from leaking while maintaining model 

accuracy. There is a novel privacy-preserving learning framework based on graph neural networks (GNNs). 

The framework provides a formal privacy guarantee by utilizing edge-local DP to protect node features and 

edge privacy. The system combines a GNN with a privacy utility to secure user data privacy within a budget. 
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2.5.2. Cryptography technologies 

FL employs encryption to protect model parameter data, which must be uploaded in plaintext.  

This strategy enhances the privacy and security characteristics of FL systems. Currently, the most widely 

used encryption algorithms are SMPC and HE [25]. Each encryption technology has distinct technological 

characteristics. SMPC can keep user input data confidential and allow for cooperative calculation on private 

data, but the compute overhead is substantial. Security-wise, HE schemes operate similarly to SMPC.  

This requires fewer processing resources than SMPC. 

SMPC, also known as MPC, was originally created to protect the inputs of numerous participants.  

In the FL framework, the SMPC is used to secure clients’ model modifications. SMPC ensures that each 

participant in the FL system only knows its own inputs and outputs, with no knowledge of other clients. 

Using SMPC to build a FL security model can increase efficiency by reducing security needs. The SMPC is a 

lossless approach that allows many parties to perform collaborative computations on sensitive data. SMPC 

guarantees data confidentiality and privacy protection. Despite being a research-oriented approach, the 

SMPC-based FL privacy protection strategy has significant obstacles. The key issue is balancing the 

effectiveness of the FL system with privacy concerns. SMPC encryption and decryption can be time-

consuming, potentially impacting model training. Developing a lightweight SMPC system remains a big 

challenge. As a result, many scholars prefer higher education technology. HER technologies are preferred by 

researchers when creating FL security protocol frameworks due to their lower computation consumption, 

even with the same security performance scheme. 

HE is a method of encrypting plaintext and ciphertext that enables third parties to process data while 

protecting sensitive information. It has been included in the FL framework to protect private information 

from enemies. Early HE algorithms relied on single-key arithmetic, which increased the risk of private key 

leakage and malicious client access to other clients’ data. However, there is also a need to address security 

issues with present cryptography approaches in FL, such as member inference attacks and reverse attacks that 

cause privacy leaks in training data. Additional computing is also required. There is still space for 

technological innovation in HE, including improving processing efficiency, interaction logic complexity, and 

secret sharing systems to reduce communication delays and bandwidth costs.  

 

2.5.3. Adversarial training 

In Florida, information privacy-preserving strategies built on disruptive technologies and encryption 

have gained popularity recently. These technologies are mostly concerned with secure local computing, 

parameter encryption, and raw data. The risk of privacy leakage in distributed learning is decreased when 

computation results are transferred to a third party. Generative adversarial networks (GANs) can be used by 

malicious attackers to steal data from trustworthy parties. Computed gradient information gives the attacker 

the ability to reverse some or all of the private data. GANs have been proposed as a way to steal personal 

information on FL systems recently. A great deal of study has been done to protect privacy in Florida from 

adversarial attacks. The primary objectives include detection and defense. There are three basic directions for 

defending against adversarial attacks [26]. 

− During the testing phase, make changes to the input sample or the training protocol. 

− Change the neural network, for instance, by adding or deleting sublayers and raising the activation or loss 

function. 

− Identify or completely categorize hostile samples.  

Using potential limits, the latent-boundary-guided AT approach trained DNN models on adversarial 

samples. By introducing disturbances to potential characteristics, superior adversarial sample samples were 

generated. The trade-off between adversarial toughness and standard accuracy was improved by this tactic. 

Generally speaking, AT improves user data privacy. By using AT samples, the chance of drawing 

conclusions from the real training data is decreased. The trade-off between standardization and robustness 

has garnered significant attention in recent studies on enhancing AT robustness. Additionally, this creates 

new opportunities for the advancement of federal confrontation training in the future. 

 

2.5.4. Blockchain 

Conventional, centralized FL frameworks rely on a single aggregating server, resulting in a single 

point of failure. The central node incurs higher costs and performs less efficiently when communication is 

heavy. Participants are not motivated to engage in cooperative learning due to a lack of incentives. There are 

also insufficient security mechanisms to detect malevolent users that breach the model. To remedy these 

issues, academics have coupled blockchain and FL. The blockchain’s participating nodes replace the central 

server, reducing the risk of single-point failures. 

Next, miner nodes calculate local device model parameters without downloading raw data. The local 

device model modifications are then verified and recorded using the blockchain’s consensus mechanism. 
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Local devices upload aggregate model parameters, while global updates are applied to fresh blocks. The local 

devices download the global model from blockchain blocks [27].  

In blockchain, privacy-preserving Byzantine robust FL (PBFL) employed cosine similarity to 

identify gradients uploaded by malicious clients. Secure aggregation was achieved using full HE. To limit the 

effects of poor clients and central servers, PBFL often uses a blockchain system to facilitate the execution of 

transparent PBFL rules and processes. The integration of blockchain and FL technology has significantly 

improved the traditional FL area. However, even after integrating these two technologies, there are still issues 

related to blockchain. Traditional blockchain consensus mechanisms and network topology can lead to issues 

including slow transaction confirmation, limited throughput, and complex communication structures.  

As a result, there are delays in the blockchain network’s model parameter aggregation for every FL cycle. 

Every FL participant makes use of a different local device. Different devices may experience different 

latency delays when updating a model on the blockchain network. This can result in decreased prediction 

accuracy for the trained global model. 

With the present problems with blockchain-based FL frameworks, there is a growing movement 

toward the current decentralized FL architecture approach. In low-bandwidth or high-latency networks, 

decentralized training performs better than centralized training for federated systems. The suggested 

asynchronous FL architecture, in conjunction with blockchain technology, eliminates the possibility of model 

parameter manipulation. The asynchronous FL expedites global aggregation at the same time. Asynchronous 

FL frameworks based on blockchain technology can solve issues with existing FL technology development 

by striking a compromise between efficiency, security, and anonymity. 

 

2.5.5. Knowledge distillation 

The idea behind Knowledge distillation (KD) technology was to transmit knowledge from large 

models to small models. Conventional ML and deep learning techniques are susceptible to privacy breaches. 

Since KD in FL allows model training without centrally gathering potentially sensitive raw data, it can 

improve privacy. This offers more robust privacy protections for predictive model construction. Even with 

the benefits of anonymity, KD in Florida is not risk-free. For example, KD usually uses a proxy dataset, and 

the quality, size, and feature distribution of the publicly available shared dataset can have a big influence on 

how well the model performs in terms of generalization and accuracy. There’s also a significant chance of 

privacy leaking. 

Mechanisms for selective information exchange for federated distillation have been proposed to 

reduce these hazards. The objective of these systems is to discern exact and accurate knowledge from local 

and ensemble forecasts, in that order. This method routinely beats baseline and improves the Federated 

Distillation framework’s capacity for generalization. 

 

 

3. DISCUSSION AND FUTURE SCOPE 

The systematic review reveals that FL has emerged as a significant paradigm in distributed ML, 

particularly in scenarios where data privacy is a concern, and data is distributed across multiple devices or 

locations. FL allows for the training of models across decentralized data sources without the need to transfer 

raw data to a central server, making it especially relevant in the context of Edge AI. The review identifies 

VFL as a key type where different entities possess different feature spaces for the same sample set. This is 

particularly useful in scenarios where organizations with complementary data (e.g., banks and insurance 

companies) can collaborate without sharing raw data. HFL is another common type where different entities 

or devices have data with the same feature space but different samples. This is typical in scenarios like 

mobile devices where similar data types (e.g., user activity data) are distributed across different devices. 

FTL combines FL with transfer learning to address situations where both the feature space and the 

sample set differ across participants. This is useful when organizations with limited data can benefit from the 

knowledge transferred from another domain. Cross-silo FL involves a smaller number of participants, 

typically organizations or institutions, who collaborate over long periods. Cross-silo FL is applicable in 

sectors like healthcare and finance where collaboration is essential but the number of participating entities is 

relatively small and stable. The review identifies model inversion attacks as a significant threat, where 

adversaries attempt to reconstruct input data by exploiting the model updates shared during FL. This type of 

attack can compromise the privacy of participants’ data, especially in scenarios with sensitive information. 

Model poisoning is another identified threat where malicious participants intentionally corrupt the 

model by sending harmful updates. This can degrade the model’s performance or even introduce biases, 

posing a significant challenge in maintaining the integrity of the FL process. Backdoor attacks involve 

embedding hidden triggers in the model that cause it to behave maliciously under certain conditions.  

This type of attack is particularly dangerous as it can go unnoticed during training and only activates under 

specific inputs. In data poisoning attacks, adversaries inject malicious data into the training process to skew 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 40, No. 2, November 2025: 926-940 

938 

the model’s output. This type of attack is challenging to detect and can significantly undermine the 

trustworthiness of the model. 

Model extraction attacks focus on stealing the model by analyzing the outputs of the FL process. 

These attacks can lead to intellectual property theft and reduce the competitive advantage of the entities 

involved in FL. We also discussed privacy preservation techniques in FL such as Differential privacy is 

highlighted as a critical technique for preserving privacy in FL by adding controlled noise to the model 

updates. This ensures that the contribution of any single participant’s data is obfuscated, reducing the risk of 

data leakage through model inversion attacks. The review discusses the use of cryptographic methods,  

such as SMPC and HE, which allow participants to perform computations on encrypted data, ensuring that 

the model updates remain confidential even during aggregation. 

AT is mentioned as a method to make models more robust against adversarial attacks by training the 

model on data that includes adversarial examples. This approach can help mitigate the risk of model 

poisoning and backdoor attacks. The integration of blockchain technology with FL is explored as a means to 

enhance security and transparency. Blockchain can provide a decentralized and immutable record of model 

updates, ensuring that the contributions of each participant are verifiable and tamper-proof. KD is discussed 

as a technique to reduce the complexity of FL models while maintaining performance. By distilling the 

knowledge from a large model to a smaller one, the risk of privacy leakage can be minimized, as the distilled 

model reveals less about the underlying data. 

Challenges and future directions: 

1. Scalability: one of the key challenges identified is the scalability of FL, particularly in large-scale 

networks with numerous and diverse participants. The review suggests the need for more efficient 

communication protocols and aggregation techniques to make FL more scalable and responsive [28]. 

2. Robustness to heterogeneous data: the heterogeneity of data across different participants poses a 

challenge in FL, as varying data distributions can negatively impact the global model’s performance. 

Future research should focus on developing algorithms that are robust to these differences, ensuring 

consistent model performance across diverse datasets. 

3. Incentive mechanisms: effective incentive mechanisms are necessary to encourage participation in FL. 

Since FL relies on voluntary collaboration, particularly in cross-silo scenarios, exploring fair and 

transparent reward systems could drive greater adoption and sustained participation [29]. 

4. Regulatory and ethical considerations: as FL continues to evolve, addressing regulatory and ethical 

challenges related to data privacy, security, and bias is crucial. The review suggests that future work 

should focus on developing guidelines and frameworks that ensure FL implementations comply with legal 

standards and ethical principles [16]. 

 
 

4. CONCLUSION 

The systematic review provides a comprehensive examination of the current state of FL in Edge AI, 

emphasizing its potential and challenges. The findings demonstrate that while FL offers significant 

advantages in terms of privacy preservation and decentralized learning, it faces several challenges, 

particularly regarding scalability, data heterogeneity, and security threats. The discussion underscores the 

importance of ongoing research and development in privacy-preserving techniques and the integration of 

emerging technologies like blockchain to unlock the full potential of FL in various applications. FL reduces 

the hazards connected with centralized data collecting and processing by decentralizing the training process 

and maintaining data localized on edge devices. New technological development lessens privacy concerns for 

edge devices. There are several privacy issues with traditional machine-learning methods. An efficient FL 

approach can help us enhance edge device performance. Numerous industries, including telecommunications, 

healthcare, and smart cities, can benefit from FL. FL enhances privacy on edge devices by combining 

blockchain and cryptographic technology. The future of FL in Edge AI will depend on addressing these 

challenges and refining the techniques to ensure robust, secure, and efficient decentralized learning systems. 
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