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 Android malware detection was a complex task due to the intricate structure 

of Android applications, which consisted of numerous Java methods and 

classes. Effective detection required the extraction of meaningful features 

and the application of advanced machine learning (ML) or deep learning 

(DL) algorithms. This paper presented a novel approach to detecting 

Android malware by leveraging opcode sequences extracted from Android 

applications. These opcode sequences, which differed between malicious 

and benign apps, formed the basis of the detection model. The methodology 

involved extracting opcode sequences from decompiled Android APK files 

using the “Androguard” tool and applying recurrent neural networks (RNN) 

with long short-term memory (LSTM), Bi-LSTM, and gated recurrent unit 

(GRU) architectures to classify the apps as either malware or benign. The 

combination of these advanced DL techniques allowed for capturing 

temporal dependencies in opcode sequences, resulting in a significant 

improvement in detection capabilities. This work underscored the potential 

of using opcode sequences in conjunction with RNN, LSTM, and GRU for 

robust and accurate malware detection, while also highlighting the 

importance of further exploring additional features for comprehensive 

classification. 
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1. INTRODUCTION 

The rapid proliferation of Android applications has led to an increased risk of malware attacks, 

posing significant challenges to cybersecurity. Detecting Android malware is a complex task, primarily due 

to the intricate structure of Android applications, which consist of multiple Java programs and classes.  

These programs utilize a variety of opcodes-operational codes that serve as the fundamental building  

blocks of the application’s execution. The sequence of opcodes in malicious Android apps often  

differs from those in benign apps, making opcode sequences a valuable feature for distinguishing between  

the two. 

https://creativecommons.org/licenses/by-sa/4.0/
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To accurately classify these applications, it is essential to extract and analyze these opcode 

sequences effectively. This process requires significant effort, as the structure and behavior of malware can 

vary widely. To address this, feature selection techniques have been employed to reduce the complexity of 

the malware detection framework by focusing on the most relevant features, such as opcode sequence. In this 

context, the construction of a robust malware detection model based on opcode sequences presents a 

promising approach. By leveraging these sequences, it is possible to identify patterns that are indicative of 

malicious behavior, thereby improving the accuracy and reliability of detection mechanisms.  

Lakshmanarait and Shashi [1] came up with recurrent neural networks (RNN) as an alternative to 

ANNs. ANNs consider only present inputs and are incapable of remembering previous input values. In this 

work, several variants of RNN used for android malware detection. The proposed study explores the 

application of advanced machine learning (ML) and deep learning (DL) algorithms, specifically RNN, long 

short-term memory (LSTM), Bi-LSTM, and gated recurrent unit (GRU) architectures, to develop a 

comprehensive malware detection model that can effectively identify and classify Android malware based on 

opcode sequences. 

 

 

2. RELATED WORKS 

Dickey et al. [2] used ML to identify Android malware instead of signatures. The authors processed 

malware binary characteristics using a convolutional neural network (CNN) and tree-based models. They 

were 87%-90% accurate. The research addressed overfitting, notably in tree-based models, and showed that 

models without overfitting performed consistently throughout training and testing. Fatima and Khan [3] 

developed Android malware prediction algorithms utilizing various app permissions database. XGBoost with 

gradient boosting classifier ensemble learning yielded 81.47% accuracy. Ensemble learning captured 

complicated Android app behaviors better than many other techniques, including DL. In addition to DL, the 

research showed how ML may improve mobile security. Vanusha et al. [4] employed static Android APK 

attributes to distinguish clean from malicious apps. The study trained and evaluated five ML models using 

the Drebin-215 dataset: decision tree (DT), support vector machine (SVM) with radial basis function (RBF) 

kernel, logistic regression (LR), k-nearest neighbor (KNN), and SecuDroid neural network. Static feature-

based malware detection worked well with the SecuDroid neural network. Gu and Du [5] presented 

multimodal neural networks and static analysis for Android malware detection. This method retrieved 

permissions, opcodes, and API call sequences using pseudo-dynamic and static program analyzers. Through 

multimodal neural networks, these varied features were fused and classified to improve detection accuracy. 

The MalMem dataset showed that our strategy outperformed previous approaches in detection. 

Udayakumar et al. [6] used global image shape transform (GIST) characteristics from grayscale 

application pictures to identify Android malware. The virus sharing website included malware and benign 

program samples. To represent the applications’ global spatial architecture, GIST characteristics were 

retrieved from grayscale photos. The apps were classified using LR, KNN, and AdaBoost. Malware 

identification was also improved using a feed-forward neural network (FFNN) over standard classifiers.  

Odat and Yaseen [7] proposed permissions and API calls for Android malware detection using ML. The 

model revealed that malware seeks unusual combinations of these traits compared to harmless programs. 

From a new dataset of permissions and API requests at different levels, the FP-growth algorithm selected the 

most essential co-existing properties. For Android malware categorization, random forest (RF) outperformed 

other traditional ML algorithms. On the Malgenome and Drebin datasets, state-of-the-art methods were less 

accurate. Awais et al. [8] developed the ANTI-ANT framework to identify and prevent Android malware.  

It extracted features using static and dynamic analysis and three-layer detection. SVM and logistic regressor 

were used for classification. The architecture was accurate on the CCCS-CIC-AndMal-2020 dataset, with 

SVM performing best. Mahindru et al. [9] introduced “YarowskyDroid,” a semi-supervised ML and 

federated learning method to identify malware-infected applications while protecting user privacy. Locally 

installed apps on cellphones collected data to enhance the detecting algorithm. On 50,000 malware-free and 

25,000 malicious program downloads, the framework showed good detection rates with federated learning 

across different users. Subash et al. [10] used static permissions and ML to identify Android malware.  

The Android API use study found suspected malicious activities in 398 Android apps. After preprocessing, 

naive bayes, decision tree, and k-neighbors were compared. 

Baghirov [11] tested ML techniques for Android malware detection using benign and dangerous 

applications. The algorithms’ accuracy, precision, recall, and F1-score were evaluated. LightGBM performed 

best across all criteria, indicating it might be used for Android malware detection. Chowdhury et al. [12] 

provided a comprehensive review of Android malware detection techniques using ML. It covered various 

supervised, unsupervised, and DL approaches, compared their performance, and discussed the metrics used 

for evaluating their effectiveness. Lakshmanarao et al. [13] tested ML techniques for AMD using a dataset of 

benign and dangerous applications. The sticking was evaluated on accuracy, precision, recall, and F1-score. 
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Two types of stacking namely blending and stacking applied and reported good results. Doğanay and Bülbül 

[14] employed ML to identify Android malware using the Drebin dataset’s extensive static and dynamic 

properties. The dataset was reduced to manifest file permissions for speedier detection. ML algorithms 

included RF, naive bayes, J48, and AdaBoost. Android malware detection was better using the RF method. 

Sharma and Sangal [15] used ML to identify Android malware on the CICInvesAndMal2019 dataset, which 

focuses on permissions and intents. PCA selected features. The dataset was analyzed using Naive Bayes 

(NB), decision tree classifier (DTC), RF, and KNN. RF was the most successful binary and malware category 

classifier. Smmarwar et al. [16] suggested XAI-AMD-DL, an explainable AI-based hybrid model for 

Android malware detection, using CNNs and Bi-GRUs. Research tackled the important problem of 

increasing DL model interpretability while retaining high detection accuracy. The XAI-AMD-DL model 

outperformed conventional DL approaches. Lakshmanarao and Shashi [17] addressed the shortcomings of 

signature-based malware detection, notably against advanced Android malware obfuscation. The authors 

presented a framework to extract Android app permissions, opcodes, API packages, system calls, intents, and 

API calls. RF was initially the most accurate classifier. The work used multilayer autoencoders for feature 

extraction and a RF classifier to improve detection accuracy. Real-world datasets showed that this integrated 

technique can detect Android malware with excellent accuracy. Salah et al. [18] addressed the increased need 

for automated malware detection in Android applications due to mobile phone use and privacy and security 

concerns. Analysis of program permissions identified static malware. A large application dataset was used to 

calculate permissions. The study classified these features using tree-based ML. 

Guyton et al. [19] considered Android malware detection feature selection, a key but often 

overlooked factor. It evaluated 11 feature selection approaches on three Android feature sets-permissions, 

intents, and API calls using ML classifiers. Gupta and Anne [20] compared ML malware detection 

technologies to conventional methods. It assessed three ML models for harmful software detection and 

described their accuracy and efficiency. Lee et al. [21] examined Android malware detection feature 

selection using genetic algorithms. Genetic algorithm-based feature selection enhanced malware detection 

performance and time efficiency. Mantoro et al. [22] used dynamic analysis in the mobile security 

framework to identify Android malware, especially obfuscators. A percentage of malware samples were 

identified using dynamic analysis. Though successful, the solution suffered hardware restrictions and 

emulator application behavior unpredictability. To overcome dataset quality, Wang et al. [23] presented 

selective ensemble learning for Android malware detection. The evolutionary algorithm selects the top 

component learners, making the model more resilient to weak training data. The findings showed that the 

suggested Android malware detection approach was more resilient and effective. Han et al. [24] used API 

calls as characteristics to identify fraudulent Android apps in a large, sparse dataset. A large dataset of 

Android apps and features was employed. Using SVM, a machine-learning strategy for malicious application 

detection performed competitively. Jhasi et al. [25] examined Android malware, specifically from apps that 

ask users for rights they may unintentionally authorize. The research used ML to find the most important 

permissions for categorizing malware and benign apps. 

 

 

3. METHOD 

The proposed methodology is shown in Figure 1. The proposed model for android malware 

detection using LSTM from opcode sequences was shown in Figure 1. Android apks are collected (both 

malware and non-malware) and opcode sequences are extracted from android apps. Smali files were created 

from classes.dex files. Details about opcodes is obtained from smali files. To extract the features, a python 

utility called “Androguard” was utilized. Androguard comes with a number of instructions for working with 

Android apps. This tool can be installed using pip. It is also available in Ubuntu/Debian. It can be easily 

installed using apt command in ubuntu. It can also be directly installed through git. There several commands 

available in androguard for doing several operations with android applications. “androguard decompile” 

generates control flow graphs (CFG) for the specified android app. It also creates.ag files (smali-like form) 

for all of the decompiled classes and methods. Opcode sequences are extracted using the.ag files.  

After getting a sequence of opcodes, various variants of RNN namely LSTM, Bi-LSTM, GRU are applied to 

these sequences for detection of android malware. 

 

3.1.  Data collection 

Malware applications are gathered from the website “virusshare.com”. Apks that do not include 

malicious software have been selected from apkpure.com and Play Store. In the collected apks, 1000 

malware apps and 1000 benign apps are used in this experiment. 
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Figure 1. Proposed methodology for android malware detection 

 

 

3.2.  Creation of control flow graph 

A CFG, is a diagram that shows how control move through an application as it runs. The data flow 

routes in a CFG are represented by edges, while the basic blocks are represented by nodes. The CFG 

illustrates all of the possible directions that might be taken while a programmed is being run. So, it is 

important to analyze CFGs for differentiating malware and benign apks. There is a command in androguard 

for creating CFGs for android apks. 

 

3.3.  Opcode sequence extraction from android apps 

Android app generates multiple files, including the classes.dex file, the manifests file, the assets file, 

and the reference files. The “classes.dex” contains the Java code for the Android app. Smali files are 

retrieved after decompiling dex files. The number of opcode sequences varies from one app to another app. 

The decompile command creates files with an ag extension along with CFGs. One app can produce multiple 

ag files and each of these files is associated with a specific method. Opcodes sequences are extracted from 

these ag files. Figure 2 shows sample CFG and Figure 3 shows sample ag file for the same file. The opcodes 

used in this CFG are “const/4”, “invoke-virtual”. “Invoke-result”, “if-nez”, and “invoke-virtual”. 

The extraction of opcode sequences from ag files are done with below process. The process of 

generating opcode sequences from an APK begins with the APK file, alongside a Dalvik opcode list and an 

initially empty opcode sequence list. Using the Androguard tool, the APK is decompiled to produce an output 

folder containing various files, including CFGs and .ag files. Each .ag file is then processed by reading its 

contents line by line, comparing each line with the Dalvik opcode list, and adding matching opcodes to the 

opcode sequence list. Finally, any opcode sequence with fewer than 15 entries is filtered out to ensure only 

significant sequences are retained for further analysis. From this method, it is observed that it creates several 

CFGs along with ag files in an output folder. All the output folders are parsed to extract opcode sequences 

from ag files. 

After applying algorithm, a list of lists with opcodes is created. Later, all these opcode sequences are 

transformed to csv file using python script. The python script produces n csv files (here n is number of apks) 

for all applications using a loop structure. Each row of csv file contains opcode sequences for one 

application. After this step, all the opcode sequences are available in excel file. 
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Figure 2. Sample CFG 
 

 

 
 

Figure 3. Sample .ag file 
 

 

4. RESULTS AND DISCUSSION 

4.1.  Applying RNN 

In the first experiment, we applied a RNN to the opcode sequences extracted for Android malware 

detection. The RNN model was designed with three hidden layers consisting of 200, 100, and 5 neurons, 

respectively. The training process involved a batch size of 64, a learning rate of 0.001, and was conducted 

over 100 epochs. While the RNN effectively captured temporal dependencies in the opcode sequences,  

it struggled with retaining long-term dependencies, leading to an overall accuracy of 87%. The vanishing 

gradient problem inherent in RNNs likely contributed to this moderate performance, particularly when 

handling longer sequences. 

 

4.2.  Applying LSTM 

To improve on the limitations observed with the RNN, a LSTM network was implemented using the 

same three hidden layers (200, 100, and 5 neurons) and trained over 100 epochs. LSTM networks are 

designed to better manage long-term dependencies through their internal gating mechanisms, which address 
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the vanishing gradient issue. This model achieved a significantly higher accuracy of 96%, demonstrating its 

effectiveness in differentiating between malicious and benign opcode sequences. The LSTM’s ability to 

preserve information over long sequences was key to its superior performance compared to the RNN.  

Figure 4 shows epoch wise performance of LSTM. Figure 4(a) shows epoch wise accuracies and Figure 4(b) 

shows epoch wise loss values with LSTM. Later, Bi-LSTM also applied and achieved accuracy of 96.2% 

 

 

  
(a) (b) 

 

Figure 4. Epoch wise (a) accuracy with LSTM and (b) loss with LSTM 
 

 

4.3.  Applying GRU 

Further experimentation was conducted using a GRU network, which is a variant of the LSTM that 

simplifies the gating mechanisms while maintaining the ability to handle long-term dependencies. The GRU 

model was configured with the same three hidden layers, consisting of 200, 100, and 5 neurons. The model 

was trained under the same conditions as the LSTM. The GRU demonstrated comparable performance to the 

LSTM, with a slight improvement in training efficiency due to its simpler architecture. The GRU achieved 

high accuracy, successfully capturing the temporal patterns in the opcode sequences and effectively 

distinguishing between malware and benign applications. The results indicate that GRU is a viable alternative 

to LSTM, offering a good balance between accuracy and computational efficiency. 

 

4.4.  Comparison of RNN variants for malware detection 

The standard RNN achieved an accuracy of 87%, which is lower compared to the LSTM and GRU. 

The LSTM model performed the best, reaching an accuracy of 96%, Bi-LSTM given accuracy of 95.6%.  

The GRU model, while slightly less accurate than LSTM at 93%, offered faster training times and good 

overall performance. The comparison highlights LSTM as the most effective, with GRU as a strong 

alternative when computational efficiency is important. Figure 5 shows accuracy comparison of RNN 

variants for malware detection. 

 

 

 
 

Figure 5. Comparison of deep learning RNN variants for malware detection 
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5. CONCLUSION 

This research demonstrated the effectiveness of using opcode sequences for Android  

malware detection through advanced DL models, specifically RNN, LSTM, and GRU. The study showed that 

LSTM achieved the highest accuracy of 96%, highlighting its superior ability to capture long-term 

dependencies in the data. Bi-LSTM produced a good accuracy of 95.6% for malware detection. GRU,  

with an accuracy of 93%, proved to be a strong alternative, offering a good trade-off between performance, 

and computational efficiency. The standard RNN, while effective, lagged behind with an accuracy of  

87%. Overall, this work underscores the potential of DL techniques, particularly LSTM, and GRU, in 

enhancing malware detection capabilities. The results suggest that further exploration of these models, 

possibly incorporating additional features, could lead to even more robust and accurate malware  

detection systems. 
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