
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 38, No. 2, May 2025, pp. 1106~1114

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v38.i2.pp1106-1114 1106

Journal homepage: http://ijeecs.iaescore.com

Android malware detection through opcode sequences using

deep learning LSTM and GRU networks

Annemneedi Lakshmanarao1, Jeevana Sujitha Mantena2, Krishna Kishore Thota3,

Pavan Sathish Chandaka4, Chinta Venkata Murali krishna5, Madhan Kumar Jetty6
1Department of Information Technology, Aditya University, Surampalem, India

2Department of Computer Science and Engineering, SRKR Engineering College(A), Bhimavaram, India
3Department of Computer Science and Engineering (Honors), Koneru Lakshmaiah Education Foundation (Deemed to be University),

Vaddeswaram, India
4Department of Computer Science and Engineering, Chaitanya Engineering College, Visakhapatnam, India

5Department of Computer Science and Engineering (Data Science), NRI Institute of Technology, Pothavarappadu, India
6Department of Information Technology, R.V.R and J.C College of Engineering, Guntur, India

Article Info ABSTRACT

Article history:

Received Aug 30, 2024

Revised Nov 6, 2024

Accepted Nov 11, 2024

 Android malware detection was a complex task due to the intricate structure

of Android applications, which consisted of numerous Java methods and

classes. Effective detection required the extraction of meaningful features

and the application of advanced machine learning (ML) or deep learning

(DL) algorithms. This paper presented a novel approach to detecting

Android malware by leveraging opcode sequences extracted from Android

applications. These opcode sequences, which differed between malicious

and benign apps, formed the basis of the detection model. The methodology

involved extracting opcode sequences from decompiled Android APK files

using the “Androguard” tool and applying recurrent neural networks (RNN)

with long short-term memory (LSTM), Bi-LSTM, and gated recurrent unit

(GRU) architectures to classify the apps as either malware or benign. The

combination of these advanced DL techniques allowed for capturing

temporal dependencies in opcode sequences, resulting in a significant

improvement in detection capabilities. This work underscored the potential

of using opcode sequences in conjunction with RNN, LSTM, and GRU for

robust and accurate malware detection, while also highlighting the

importance of further exploring additional features for comprehensive

classification.

Keywords:

Android malware detection

Deep learning

GRU

LSTM

Machine learning

This is an open access article under the CC BY-SA license.

Corresponding Author:

Annemneedi Lakshmanarao

Department of Information Technology, Aditya University

Surampalem, India

Email: laxman1216@gmail.com

1. INTRODUCTION

The rapid proliferation of Android applications has led to an increased risk of malware attacks,

posing significant challenges to cybersecurity. Detecting Android malware is a complex task, primarily due

to the intricate structure of Android applications, which consist of multiple Java programs and classes.

These programs utilize a variety of opcodes-operational codes that serve as the fundamental building

blocks of the application’s execution. The sequence of opcodes in malicious Android apps often

differs from those in benign apps, making opcode sequences a valuable feature for distinguishing between

the two.

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Android malware detection through opcode sequences using deep learning … (Annemneedi Lakshmanarao)

1107

To accurately classify these applications, it is essential to extract and analyze these opcode

sequences effectively. This process requires significant effort, as the structure and behavior of malware can

vary widely. To address this, feature selection techniques have been employed to reduce the complexity of

the malware detection framework by focusing on the most relevant features, such as opcode sequence. In this

context, the construction of a robust malware detection model based on opcode sequences presents a

promising approach. By leveraging these sequences, it is possible to identify patterns that are indicative of

malicious behavior, thereby improving the accuracy and reliability of detection mechanisms.

Lakshmanarait and Shashi [1] came up with recurrent neural networks (RNN) as an alternative to

ANNs. ANNs consider only present inputs and are incapable of remembering previous input values. In this

work, several variants of RNN used for android malware detection. The proposed study explores the

application of advanced machine learning (ML) and deep learning (DL) algorithms, specifically RNN, long

short-term memory (LSTM), Bi-LSTM, and gated recurrent unit (GRU) architectures, to develop a

comprehensive malware detection model that can effectively identify and classify Android malware based on

opcode sequences.

2. RELATED WORKS

Dickey et al. [2] used ML to identify Android malware instead of signatures. The authors processed

malware binary characteristics using a convolutional neural network (CNN) and tree-based models. They

were 87%-90% accurate. The research addressed overfitting, notably in tree-based models, and showed that

models without overfitting performed consistently throughout training and testing. Fatima and Khan [3]

developed Android malware prediction algorithms utilizing various app permissions database. XGBoost with

gradient boosting classifier ensemble learning yielded 81.47% accuracy. Ensemble learning captured

complicated Android app behaviors better than many other techniques, including DL. In addition to DL, the

research showed how ML may improve mobile security. Vanusha et al. [4] employed static Android APK

attributes to distinguish clean from malicious apps. The study trained and evaluated five ML models using

the Drebin-215 dataset: decision tree (DT), support vector machine (SVM) with radial basis function (RBF)

kernel, logistic regression (LR), k-nearest neighbor (KNN), and SecuDroid neural network. Static feature-

based malware detection worked well with the SecuDroid neural network. Gu and Du [5] presented

multimodal neural networks and static analysis for Android malware detection. This method retrieved

permissions, opcodes, and API call sequences using pseudo-dynamic and static program analyzers. Through

multimodal neural networks, these varied features were fused and classified to improve detection accuracy.

The MalMem dataset showed that our strategy outperformed previous approaches in detection.

Udayakumar et al. [6] used global image shape transform (GIST) characteristics from grayscale

application pictures to identify Android malware. The virus sharing website included malware and benign

program samples. To represent the applications’ global spatial architecture, GIST characteristics were

retrieved from grayscale photos. The apps were classified using LR, KNN, and AdaBoost. Malware

identification was also improved using a feed-forward neural network (FFNN) over standard classifiers.

Odat and Yaseen [7] proposed permissions and API calls for Android malware detection using ML. The

model revealed that malware seeks unusual combinations of these traits compared to harmless programs.

From a new dataset of permissions and API requests at different levels, the FP-growth algorithm selected the

most essential co-existing properties. For Android malware categorization, random forest (RF) outperformed

other traditional ML algorithms. On the Malgenome and Drebin datasets, state-of-the-art methods were less

accurate. Awais et al. [8] developed the ANTI-ANT framework to identify and prevent Android malware.

It extracted features using static and dynamic analysis and three-layer detection. SVM and logistic regressor

were used for classification. The architecture was accurate on the CCCS-CIC-AndMal-2020 dataset, with

SVM performing best. Mahindru et al. [9] introduced “YarowskyDroid,” a semi-supervised ML and

federated learning method to identify malware-infected applications while protecting user privacy. Locally

installed apps on cellphones collected data to enhance the detecting algorithm. On 50,000 malware-free and

25,000 malicious program downloads, the framework showed good detection rates with federated learning

across different users. Subash et al. [10] used static permissions and ML to identify Android malware.

The Android API use study found suspected malicious activities in 398 Android apps. After preprocessing,

naive bayes, decision tree, and k-neighbors were compared.

Baghirov [11] tested ML techniques for Android malware detection using benign and dangerous

applications. The algorithms’ accuracy, precision, recall, and F1-score were evaluated. LightGBM performed

best across all criteria, indicating it might be used for Android malware detection. Chowdhury et al. [12]

provided a comprehensive review of Android malware detection techniques using ML. It covered various

supervised, unsupervised, and DL approaches, compared their performance, and discussed the metrics used

for evaluating their effectiveness. Lakshmanarao et al. [13] tested ML techniques for AMD using a dataset of

benign and dangerous applications. The sticking was evaluated on accuracy, precision, recall, and F1-score.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1106-1114

1108

Two types of stacking namely blending and stacking applied and reported good results. Doğanay and Bülbül

[14] employed ML to identify Android malware using the Drebin dataset’s extensive static and dynamic

properties. The dataset was reduced to manifest file permissions for speedier detection. ML algorithms

included RF, naive bayes, J48, and AdaBoost. Android malware detection was better using the RF method.

Sharma and Sangal [15] used ML to identify Android malware on the CICInvesAndMal2019 dataset, which

focuses on permissions and intents. PCA selected features. The dataset was analyzed using Naive Bayes

(NB), decision tree classifier (DTC), RF, and KNN. RF was the most successful binary and malware category

classifier. Smmarwar et al. [16] suggested XAI-AMD-DL, an explainable AI-based hybrid model for

Android malware detection, using CNNs and Bi-GRUs. Research tackled the important problem of

increasing DL model interpretability while retaining high detection accuracy. The XAI-AMD-DL model

outperformed conventional DL approaches. Lakshmanarao and Shashi [17] addressed the shortcomings of

signature-based malware detection, notably against advanced Android malware obfuscation. The authors

presented a framework to extract Android app permissions, opcodes, API packages, system calls, intents, and

API calls. RF was initially the most accurate classifier. The work used multilayer autoencoders for feature

extraction and a RF classifier to improve detection accuracy. Real-world datasets showed that this integrated

technique can detect Android malware with excellent accuracy. Salah et al. [18] addressed the increased need

for automated malware detection in Android applications due to mobile phone use and privacy and security

concerns. Analysis of program permissions identified static malware. A large application dataset was used to

calculate permissions. The study classified these features using tree-based ML.

Guyton et al. [19] considered Android malware detection feature selection, a key but often

overlooked factor. It evaluated 11 feature selection approaches on three Android feature sets-permissions,

intents, and API calls using ML classifiers. Gupta and Anne [20] compared ML malware detection

technologies to conventional methods. It assessed three ML models for harmful software detection and

described their accuracy and efficiency. Lee et al. [21] examined Android malware detection feature

selection using genetic algorithms. Genetic algorithm-based feature selection enhanced malware detection

performance and time efficiency. Mantoro et al. [22] used dynamic analysis in the mobile security

framework to identify Android malware, especially obfuscators. A percentage of malware samples were

identified using dynamic analysis. Though successful, the solution suffered hardware restrictions and

emulator application behavior unpredictability. To overcome dataset quality, Wang et al. [23] presented

selective ensemble learning for Android malware detection. The evolutionary algorithm selects the top

component learners, making the model more resilient to weak training data. The findings showed that the

suggested Android malware detection approach was more resilient and effective. Han et al. [24] used API

calls as characteristics to identify fraudulent Android apps in a large, sparse dataset. A large dataset of

Android apps and features was employed. Using SVM, a machine-learning strategy for malicious application

detection performed competitively. Jhasi et al. [25] examined Android malware, specifically from apps that

ask users for rights they may unintentionally authorize. The research used ML to find the most important

permissions for categorizing malware and benign apps.

3. METHOD

The proposed methodology is shown in Figure 1. The proposed model for android malware

detection using LSTM from opcode sequences was shown in Figure 1. Android apks are collected (both

malware and non-malware) and opcode sequences are extracted from android apps. Smali files were created

from classes.dex files. Details about opcodes is obtained from smali files. To extract the features, a python

utility called “Androguard” was utilized. Androguard comes with a number of instructions for working with

Android apps. This tool can be installed using pip. It is also available in Ubuntu/Debian. It can be easily

installed using apt command in ubuntu. It can also be directly installed through git. There several commands

available in androguard for doing several operations with android applications. “androguard decompile”

generates control flow graphs (CFG) for the specified android app. It also creates.ag files (smali-like form)

for all of the decompiled classes and methods. Opcode sequences are extracted using the.ag files.

After getting a sequence of opcodes, various variants of RNN namely LSTM, Bi-LSTM, GRU are applied to

these sequences for detection of android malware.

3.1. Data collection

Malware applications are gathered from the website “virusshare.com”. Apks that do not include

malicious software have been selected from apkpure.com and Play Store. In the collected apks, 1000

malware apps and 1000 benign apps are used in this experiment.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Android malware detection through opcode sequences using deep learning … (Annemneedi Lakshmanarao)

1109

Figure 1. Proposed methodology for android malware detection

3.2. Creation of control flow graph

A CFG, is a diagram that shows how control move through an application as it runs. The data flow

routes in a CFG are represented by edges, while the basic blocks are represented by nodes. The CFG

illustrates all of the possible directions that might be taken while a programmed is being run. So, it is

important to analyze CFGs for differentiating malware and benign apks. There is a command in androguard

for creating CFGs for android apks.

3.3. Opcode sequence extraction from android apps

Android app generates multiple files, including the classes.dex file, the manifests file, the assets file,

and the reference files. The “classes.dex” contains the Java code for the Android app. Smali files are

retrieved after decompiling dex files. The number of opcode sequences varies from one app to another app.

The decompile command creates files with an ag extension along with CFGs. One app can produce multiple

ag files and each of these files is associated with a specific method. Opcodes sequences are extracted from

these ag files. Figure 2 shows sample CFG and Figure 3 shows sample ag file for the same file. The opcodes

used in this CFG are “const/4”, “invoke-virtual”. “Invoke-result”, “if-nez”, and “invoke-virtual”.

The extraction of opcode sequences from ag files are done with below process. The process of

generating opcode sequences from an APK begins with the APK file, alongside a Dalvik opcode list and an

initially empty opcode sequence list. Using the Androguard tool, the APK is decompiled to produce an output

folder containing various files, including CFGs and .ag files. Each .ag file is then processed by reading its

contents line by line, comparing each line with the Dalvik opcode list, and adding matching opcodes to the

opcode sequence list. Finally, any opcode sequence with fewer than 15 entries is filtered out to ensure only

significant sequences are retained for further analysis. From this method, it is observed that it creates several

CFGs along with ag files in an output folder. All the output folders are parsed to extract opcode sequences

from ag files.

After applying algorithm, a list of lists with opcodes is created. Later, all these opcode sequences are

transformed to csv file using python script. The python script produces n csv files (here n is number of apks)

for all applications using a loop structure. Each row of csv file contains opcode sequences for one

application. After this step, all the opcode sequences are available in excel file.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1106-1114

1110

Figure 2. Sample CFG

Figure 3. Sample .ag file

4. RESULTS AND DISCUSSION

4.1. Applying RNN

In the first experiment, we applied a RNN to the opcode sequences extracted for Android malware

detection. The RNN model was designed with three hidden layers consisting of 200, 100, and 5 neurons,

respectively. The training process involved a batch size of 64, a learning rate of 0.001, and was conducted

over 100 epochs. While the RNN effectively captured temporal dependencies in the opcode sequences,

it struggled with retaining long-term dependencies, leading to an overall accuracy of 87%. The vanishing

gradient problem inherent in RNNs likely contributed to this moderate performance, particularly when

handling longer sequences.

4.2. Applying LSTM

To improve on the limitations observed with the RNN, a LSTM network was implemented using the

same three hidden layers (200, 100, and 5 neurons) and trained over 100 epochs. LSTM networks are

designed to better manage long-term dependencies through their internal gating mechanisms, which address

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Android malware detection through opcode sequences using deep learning … (Annemneedi Lakshmanarao)

1111

the vanishing gradient issue. This model achieved a significantly higher accuracy of 96%, demonstrating its

effectiveness in differentiating between malicious and benign opcode sequences. The LSTM’s ability to

preserve information over long sequences was key to its superior performance compared to the RNN.

Figure 4 shows epoch wise performance of LSTM. Figure 4(a) shows epoch wise accuracies and Figure 4(b)

shows epoch wise loss values with LSTM. Later, Bi-LSTM also applied and achieved accuracy of 96.2%

(a) (b)

Figure 4. Epoch wise (a) accuracy with LSTM and (b) loss with LSTM

4.3. Applying GRU

Further experimentation was conducted using a GRU network, which is a variant of the LSTM that

simplifies the gating mechanisms while maintaining the ability to handle long-term dependencies. The GRU

model was configured with the same three hidden layers, consisting of 200, 100, and 5 neurons. The model

was trained under the same conditions as the LSTM. The GRU demonstrated comparable performance to the

LSTM, with a slight improvement in training efficiency due to its simpler architecture. The GRU achieved

high accuracy, successfully capturing the temporal patterns in the opcode sequences and effectively

distinguishing between malware and benign applications. The results indicate that GRU is a viable alternative

to LSTM, offering a good balance between accuracy and computational efficiency.

4.4. Comparison of RNN variants for malware detection

The standard RNN achieved an accuracy of 87%, which is lower compared to the LSTM and GRU.

The LSTM model performed the best, reaching an accuracy of 96%, Bi-LSTM given accuracy of 95.6%.

The GRU model, while slightly less accurate than LSTM at 93%, offered faster training times and good

overall performance. The comparison highlights LSTM as the most effective, with GRU as a strong

alternative when computational efficiency is important. Figure 5 shows accuracy comparison of RNN

variants for malware detection.

Figure 5. Comparison of deep learning RNN variants for malware detection

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1106-1114

1112

5. CONCLUSION

This research demonstrated the effectiveness of using opcode sequences for Android

malware detection through advanced DL models, specifically RNN, LSTM, and GRU. The study showed that

LSTM achieved the highest accuracy of 96%, highlighting its superior ability to capture long-term

dependencies in the data. Bi-LSTM produced a good accuracy of 95.6% for malware detection. GRU,

with an accuracy of 93%, proved to be a strong alternative, offering a good trade-off between performance,

and computational efficiency. The standard RNN, while effective, lagged behind with an accuracy of

87%. Overall, this work underscores the potential of DL techniques, particularly LSTM, and GRU, in

enhancing malware detection capabilities. The results suggest that further exploration of these models,

possibly incorporating additional features, could lead to even more robust and accurate malware

detection systems.

REFERENCES
[1] A. Lakshmanarao and M. Shashi, “Android Malware Detection with Deep Learning using RNN from Opcode Sequences,”

International Journal of Interactive Mobile Technologies (iJIM), vol. 16, no. 01. International Association of Online Engineering

(IAOE), pp. 145–157, Jan. 18, 2022. doi: 10.3991/ijim.v16i01.26433.

[2] K. Dickey, D. Hwang, and D. Kim, “Analyzing various machine learning approaches for detecting
Android malware,” SoutheastCon 2024, Atlanta, GA, USA, 2024, pp. 1288-1293,

doi: 10.1109/southeastcon52093.2024.10500178.
[3] N. Fatima and H. F. Khan, “A comprehensive analysis and evaluation of Android malware prediction using AI,” 2024 ASU

International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain,

2024, pp. 1-5, doi: 10.1109/ICETSIS61505.2024.10459543.
[4] D. Vanusha, S. Singh, A. B. Jha, and D. R. S, “SecuDroid: Android malware detection using ML classifier on static features,”

2024 2nd International Conference on Networking and Communications (ICNWC), Chennai, India, 2024, pp. 1-9,

doi: 10.1109/ICNWC60771.2024.10537417.
[5] F. Gu and Z. Du, “Multimodal neural network based malware detection for Android,” 2024 2nd International Conference On

Mobile Internet, Cloud Computing and Information Security (MICCIS), Changsha City, China, 2024, pp. 63-67,

doi: 10.1109/MICCIS63508.2024.00019.
[6] P. Udayakumar, S. Yalamati, L. Mohan, M. J. Haque, G. Narkhede, and K. M. Bhashyam, “Android malware detection using

GIST based machine learning and deep learning techniques,” Indonesian Journal of Electrical Engineering and Computer

Science, vol. 35, no. 2. Institute of Advanced Engineering and Science, vol. 35, no. 2, pp. 1244-1252, 2024,
doi: 10.11591/ijeecs.v35.i2.pp1244-1252.

[7] E. Odat and Q. M. Yaseen, “A novel machine learning approach for Android malware detection based on the co-existence of

features,” IEEE Access, vol. 11, pp. 15471-15484, 2023, doi: 10.1109/ACCESS.2023.3244656.
[8] M. Awais, M. A. Tariq, J. Iqbal, and Y. Masood, “Anti-ant framework for Android malware detection and prevention using

supervised learning,” 2023 4th International Conference on Advancements in Computational Sciences (ICACS), Lahore, Pakistan,

2023, pp. 1-5, doi: 10.1109/ICACS55311.2023.10089629.
[9] A. Mahindru, S. K. Sharma, and M. Mittal, “YarowskyDroid: semi-supervised based Android malware detection using federation

learning,” 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan,

India, 2023, pp. 380-385, doi: 10.1109/InCACCT57535.2023.10141735.
[10] A. Subash, R. S. Shane, G. Vijay, G. E. Selvan, and M. P. Ramkumar, “Malware detection in Android application using static

permission,” In 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 1241-1245,

2023, doi: 10.1109/ICIRCA57980.2023.10220934.
[11] E. Baghirov, “Evaluating the performance of different machine learning algorithms for android malware detection,” 2023 5th

International Conference on Problems of Cybernetics and Informatics (PCI), Baku, Azerbaijan, 2023, pp. 1-4,

doi: 10.1109/PCI60110.2023.10326006.
[12] M. N.-U.-R. Chowdhury, A. Haque, H. Soliman, M. S. Hossen, T. Fatima, and I. Ahmed, “Android malware detection using

machine learning: a review,” arXiv, 2023, doi: 10.48550/ARXIV.2307.02412.

[13] A. Lakshmanarao et al.,“An efficient android malware detection framework with stacking ensemble model,” International
Journal of Engineering Trends and Technology, vol. 70, no. 4. Seventh Sense Research Group Journals, pp. 294–302, Apr. 25,

2022. doi: 10.14445/22315381/ijett-v70i4p22.

[14] H. A. Doğanay and H. İ. Bülbül, “Detection success assessment of machine learning algorithms through manifest file permissions
demanded by malicious android wares,” 2023 International Conference on Machine Learning and Applications (ICMLA),

Jacksonville, FL, USA, 2023, pp. 1684-1686, doi: 10.1109/ICMLA58977.2023.00254.

[15] N. Sharma and A. L. Sangal, “Machine learning approaches for analysing static features in Android malware detection,” 2023
Third International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 2023, pp. 93-96,

doi: 10.1109/ICSCCC58608.2023.10176445.

[16] S. K. Smmarwar, G. P. Gupta and S. Kumar, “XAI-AMD-DL: an explainable AI approach for android malware detection system
using deep learning,” 2023 IEEE World Conference on Applied Intelligence and Computing (AIC), Sonbhadra, India, 2023,

pp. 423-428, https://ieeexplore.ieee.org/document/10263974.

[17] A. Lakshmanarao and M. Shashi, “Android malware detection using multilayer autoencoder and random forest,”
International Journal of Engineering Trends and Technology, vol. 70, no. 11, pp. 249-257, 2022,

doi: 10.14445/22315381/IJETT-V70I11P227.

[18] A. T. Salah, M. A. Hassan, M. I. Abbas, Y. H. Sayed, Z. M. Elsahaer, and G. A. Khoriba, “Android static malware detection using
tree-based machine learning approaches,” 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference

(MIUCC), Cairo, Egypt, 2022, pp. 3-10, doi: 10.1109/MIUCC55081.2022.9781765.

[19] F. Guyton, W. Li, L. Wang, and A. Kumar, “Analysis of feature selection techniques for android malware detection,”
SoutheastCon 2022, Mobile, AL, USA, 2022, pp. 96-103, doi: 10.1109/SoutheastCon48659.2022.9764071.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Android malware detection through opcode sequences using deep learning … (Annemneedi Lakshmanarao)

1113

[20] M. Gupta and S. V. N. S. Anne, “Predicting malicious activity in Android using machine learning,” 2022 International
Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), Greater Noida, India, 2022,

pp. 121-124, doi: 10.1109/CISES54857.2022.9844358.

[21] J. Lee, H. Jang, S. Ha, and Y. Yoon, “Android malware detection using machine learning with feature selection based on the
genetic algorithm,” Mathematics, vol. 9, no. 21, p. 2813, 2021, doi: 10.3390/math9212813.

[22] T. Mantoro, D. Stephen, and W. Wandy, “Malware detection with obfuscation techniques on Android using dynamic analysis,”

2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED), Sukabumi, Indonesia, 2022, pp. 1-6,
doi: 10.1109/ICCED56140.2022.10010359.

[23] J. Wang, Q. Jing, J. Gao, and X. Qiu, “SEdroid: a robust Android malware detector using selective ensemble learning,” 2020

IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020, pp. 1-5,
doi: 10.1109/WCNC45663.2020.9120537.

[24] H. Han, S. Lim, K. Suh, S. Park, S. -j. Cho, and M. Park, “Enhanced Android malware detection: an SVM-based machine

learning approach,” 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea (South),
2020, pp. 75-81, doi: 10.1109/BigComp48618.2020.00-96.

[25] K. S. Jhasi, S. Chakravarty, and R. K. Varma P., “Feature selection and evaluation of permission-based android malware

detection,” 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI) (48184), Tirunelveli, India,
2020, pp. 795-799, doi: 10.1109/ICOEI48184.2020.9142929.

BIOGRAPHIES OF AUTHORS

Dr. Annemneedi Lakshmanarao currently working as assistant professor in

Aditya University, Surampalem. He completed his B. Tech in CSIT and M. Tech in Software

Engineering. He Completed Ph.D. in Andhra University, Vishakhapatnam. His areas of

interest are machine learning, cyber security, and deep learning. He is a life member

of Computer Society of India (CSI) and ISTE. He can be contacted at email:

laxman1216@gmail.com.

Jeevana Sujitha Mantena Jeevana Sujitha Mantena is working as an assistant

professor, Dept. of CSE in SRKR Engineering College(A), Bhimavaram, Andhra Pradesh.

India. She is Perusing Ph.D in KLUniversity ,Vijayawada in the area of Software Engineering

and Machine Learning. She has more than 12 years of teaching experience. She had published

papers in reputed National and International Journals. She had attended many workshops,

conferences and presented various research papers at National and International conferences.

His areas of interest software engineering, artificial intelligence, and machine learning.

She can be contacted at email: jeevanasujitha@gmail.com.

Krishna Kishore Thota Mr. Krishna Kishore Thota, working as an assistant

professor in the Department of Computer Science and Engineering (Honors), Koneru

Lakshmaiah Education Foundation (Deemed to be University), Vaddeswaram. He received his

M.Tech. (CSE) degree from JNT University, Kakinada in 2010 and B.Tech. (CSE) degree

from JNT University, Hyderabad in 2005. He is Pursuing Ph.D. (CSE) in Sathyabama Institute

of Science and Technology (Deemed to be University), Chennai. He has more than 17 years’

experience in teaching and ratified as an assistant professor by JNT University, Kakinada.

His areas of interest include machine learning, principles of compiler design, artificial neural

networks and deep learning, network security, and theory of computation. He has

presented around 12 research papers in International Conferences, published around 10

research articles from his research finding in various reputed International Journals and 2

Indian patents. He has been an active member of several professional societies like ISTE,

CSI, IAENG. He has received awards as best teacher, best academician and best

researcher for his academic and research work. He can be contacted at email:

tkrishnakishore@kluniversity.in.

https://orcid.org/0000-0002-8068-4857
https://scholar.google.com/citations?user=8WQgPCYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57210705281
https://www.webofscience.com/wos/author/record/AFK-8043-2022
https://orcid.org/0000-0002-9753-752X
https://scholar.google.com/citations?user=5Q-H7yMAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=57215911150
https://orcid.org/0000-0002-4556-1915
https://www.scopus.com/authid/detail.uri?authorId=57211288308

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 38, No. 2, May 2025: 1106-1114

1114

Dr. Pavan Sathish Chandaka Pavan Sathish Chandaka working in the

Department of CSE at Chaitanya Engineering College, Visakhapatnam, Andhra Pradesh,

India. He is having 9 years of academic experience and 5 years of research expertise. His work

primarily focuses on medical image segmentation using machine and deep learning

techniques. He has published several articles in reputed journals. He can be contacted at email:

pavansatishch@gmail.com.

Chinta Venkata Murali Krishna currently working as associate professor and

HOD in CSE (Data Science) department at NRI Institute of Technology. He is a member of

IAENG, IFERP, and INSC. He completed his M.Tech. in Computer Science and Engineering

in 2009 and is currently pursuing a Ph.D. in Computer Science and Engineering at GITAM

(Deemed to be University), Visakhapatnam. He has published research papers in various

conferences and journals and has been granted three patents with ten others in the pipeline for

the grant. Four of his books have been published by international and national publishing

agencies. He was awarded the “Best Researcher Award” from IOSRD in 2018. He can be

contacted at email: muralikrishna_chinta2007@yahoo.co.in.

Madhan Kumar Jetty Madhan Kumar Jetty is working as an assistant professor,

Dept. of Information Technology in R.V.R and J.C College of Engineering, Guntur, Andhra

Pradesh, India. He is pursuing his Ph.D. from JNTU Kakinada in the area of machine learning.

He has 10 years of teaching experience. He had published papers in reputed National and

International Journals. He had attended many workshops, conferences and presented various

research papers at National and International conferences. His areas of interest include image

processing, machine learning, deep learning, natural language processing, and cyber security.

He can be contacted at email: madhanjetty.rvr@gmail.com.

https://orcid.org/0000-0002-3337-5154
https://orcid.org/0000-0002-4780-3551
https://scholar.google.co.in/citations?user=7S2iReEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=%2057815334200
https://www.webofscience.com/wos/author/record/37069482
https://orcid.org/0009-0009-8568-343X
https://scholar.google.com/citations?user=DT59kQYAAAAJ&hl=en

