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 In this paper, we propose and investigate an improved mathematical model 

of malware propagation in network structures based on a modification of the 

well-known raw-immune-response susceptible-infected-recovered (SIR) 

model. For detailed numerical analysis, our study introduces the fourth-order 

Runge-Kutta method, which provides higher accuracy in determining 

fundamental parameters such as infection, recovery and immunity loss 

coefficients of network nodes. The obtained simulation results demonstrate 

that the peak of the epidemic occurs when 34.7% of all nodes are infected, 

with a peak after 32.5-time units. The main contribution of this work  

is the in-depth understanding and quantification of cyber threats, which 

emphasizes the importance of prompt response, regular system software 

updates, and continuous monitoring of network activity. This research makes 

a significant contribution to cybersecurity applications by providing 

quantitative tools and strategies to help strengthen network defenses against 

malicious attacks. The identified patterns and their numerical interpretation 

can be integrated into processes for optimizing measures to prevent the 

widespread spread of malware, thereby enhancing the overall security and 

stability of networked systems. 
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1. INTRODUCTION 

With the rapid growth and development of cyber threats, traditional security methods, which are 

often reactive in nature, are becoming less effective. There is an urgent need for advanced tools that can 

model and predict the spread of malware, which is critical for proactive protection and optimizing 

cybersecurity resources. One of the key challenges is the lack of in-depth understanding of how factors such 

as infection rates, the effectiveness of measures implemented and the potential for re-infection affect the 

dynamics of threat propagation in a networked environment. This limits the ability to make informed 

decisions when developing security strategies. Thus, the focus of this study is to develop a mathematical 

model that can accurately describe and predict the behavior of malware on networks. Such a model will be a 

powerful tool for analyzing risks and creating effective defense strategies, improving the overall resilience of 

networks in the face of cyber threats. 

https://creativecommons.org/licenses/by-sa/4.0/
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Mathematical modeling of malware propagation in networks has a long history. The fundamental 

basis for this was laid by [1], which first applied epidemiological models to describe the spread of computer 

viruses. Subsequently, various models have been developed that adapt to specific conditions and network 

types, including network saturation accounting [2] and node scanning [3]. Susceptible-infected-recovered 

(SIR) models and their modifications, such as susceptible-exposed-infected-recovered-susceptible (SEIRS) 

[4] and time-delay susceptible-infected-recovered-susceptible (SIRS) [5], have been widely used, offering 

methods for analyzing software propagation in wireless and other network environments. Current research 

shifts the focus to complex network structures [6], [7] and human factors [8], which makes the models more 

realistic and deeper in describing everyday network interactions. Also important is the direction of threat 

modeling related to risk assessment for cyber-physical systems [9].  

Another important aspect of mathematical modeling in cybersecurity is the formulation of 

vulnerabilities and threats into a single system. An example of this approach is the ICAR model proposed by 

[10], which uses category theory to establish mathematical relationships. Traditional defense mechanisms 

have not kept pace with the rapidly changing tactics of cyber adversaries, who use advanced techniques such 

as machine learning and deep learning to avoid detection. In response, researchers are exploring the 

application of machine learning and game theory to develop more effective cybersecurity solutions [11], [12]. 

Commercial antivirus products remain one of the primary defenses for computer security. Many researchers 

[13]-[18] have proposed the use of deep learning for malware classification as a key component of next-

generation malware defense systems. 

Many authors have focused on adversarial learning-based attacks, but few have proposed defenses 

[19] offering adverse pattern learning; in [20] proposed a defense against distillation-based attacks based on 

adverse learning. More recently, several authors have proposed ensemble-based defense against unfavorable 

patterns [21]-[24]. Bellamy [25], potentially unfavorable patterns are identified by measuring the difference 

between a new pattern and the original pattern with the unwanted input features removed. An extrusion 

system was proposed. 

Methods include statistical and advanced machine learning approaches, such as Fisher-Boshloo 

exact criterion and polynomial vector learning, which demonstrate high accuracy in threat classification. In 

the area of reinforcement learning, a method for malware classification using multinomial connected latent 

latent modular dual Q-learning has been presented, demonstrating the potential of applying complex 

algorithms in cybersecurity tasks. Research in Android malware detection has a long history. Early works 

included the application of neural network with back propagation of error [26]. Machine learning techniques 

continue to evolve, including the use of deep networks to improve data security [27] and the comparison of 

different algorithms, which contributes to the selection of effective cyber defense strategies.  

The main objective of the research is to develop an effective mathematical model that can accurately 

describe and predict the behavior of malware in computer networks. This aims to create a tool that will assist 

information security professionals in developing more effective defense and risk management strategies.  

The objectives of the research are to investigate current approaches to modeling malware propagation to 

identify their strengths and weaknesses, create an improved model that takes into account the unique 

characteristics of today’s cyber threats and network infrastructure, based on the findings, propose specific 

recommendations to improve existing and develop new strategies to defend against cyber threats. 

 

 

2. METHOD  

2.1.  Mathematical model 

Consider a mathematical model of malware propagation in a network using a modified SIR model: 

 

{
 
 

 
 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼 + 𝛾𝑅

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛿𝐼

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 − 𝛾𝑅

 (1) 

 

where 𝑆 is the number of vulnerable nodes, 𝐼 is the number of infected nodes, 𝑅 is the number of protected 

nodes, 𝛽 is the infection rate, 𝛿 is the recovery rate, and 𝛾 is the rate of immunity loss. Vulnerable nodes 𝑆 

can be infected with a probability proportional to the number of infected nodes 𝐼. Infected nodes 𝐼 can be 

recovered at a certain rate. Recovered nodes 𝑅 may become vulnerable again over time. 

 

2.2.  Numerical model 

The application of the 4th order Runge-Kutta method for the SIR model (1) begins with defining a 

function for each equation of the system: 
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{

𝑓1(𝑡, 𝑆, 𝐼, 𝑅) = −𝛽𝑆𝐼 + 𝛾𝑅

𝑓2(𝑡, 𝑆, 𝐼, 𝑅) = 𝛽𝑆𝐼 − 𝛿𝐼

𝑓3(𝑡, 𝑆, 𝐼, 𝑅) = 𝛿𝐼 − 𝛾𝑅

 (2) 

 

The required parameters 𝑆, 𝐼, 𝑅 are expressed as follows: 

 

𝑆𝑛+1= 𝑆𝑛 + 
ℎ

6
∙ (𝑘1,1 + 2𝑘2,1 +  2𝑘3,1 + 𝑘4,1)  

 

𝐼𝑛+1= 𝐼𝑛 + 
ℎ

6
∙ (𝑘1,2 + 2𝑘2,2 +  2𝑘3,2 + 𝑘4,2)  

 

𝑅𝑛+1= 𝑅𝑛 + 
ℎ

6
∙ (𝑘1,3 + 2𝑘2,3 +  2𝑘3,3 + 𝑘4,3)  

 

𝑡𝑛+1= 𝑡𝑛 + ℎ  

 

here where h= 
𝑏−𝑎

𝑁
 is step length. 𝑘1,1, 𝑘1,2, 𝑘1,3, 𝑘2,1, 𝑘2,2, 𝑘2,3 𝑘3,1, 𝑘3,2, 𝑘3,3 𝑘4,1, 𝑘4,2, 𝑘4,3 are defined as 

follows: 

 

𝑘1,𝑖 = 𝑓𝑖(𝑥𝑛, 𝑆𝑛 , 𝐼𝑛 , 𝑅𝑛)  

 

𝑘2,𝑖 = 𝑓𝑖 (𝑡𝑛 +
ℎ

2
, 𝑆𝑛 +

ℎ

2
𝑘1,1, 𝐼𝑛 +

ℎ

2
𝑘1,2, 𝑅𝑛 +

ℎ

2
𝑘1,3)  

 

𝑘3,𝑖 = 𝑓𝑖 (𝑡𝑛 +
ℎ

2
, 𝑆𝑛 +

ℎ

2
𝑘2,1, 𝐼𝑛 +

ℎ

2
𝑘2,2, 𝑅𝑛 +

ℎ

2
𝑘2,3)  

 

𝑘4,𝑖 = 𝑓𝑖(𝑡𝑛 + ℎ, 𝑆𝑛 + ℎ𝑘3,1, 𝐼𝑛 + ℎ𝑘3,2, 𝑅𝑛 + ℎ𝑘3,3)  

 

here 𝑖 = 1,2,3 for 𝑆, 𝐼, 𝑅 respectively. 

For particular SIR system (2), the coefficients 𝑘1,𝑖, 𝑘2,𝑖, 𝑘3,𝑖, 𝑘4,𝑖 will be calculated as follows: 

 

𝑘1,1 = −𝛽𝑆𝑛𝐼𝑛 + 𝛾𝑅𝑛  

 

𝑘1,2 = 𝛽𝑆𝑛𝐼𝑛 − 𝛿𝐼𝑛  

 

𝑘1,3 = 𝛿𝐼𝑛 − 𝛾𝑅𝑛  

 

𝑘2,1 = −𝛽 (𝑆𝑛 +
ℎ

2
𝑘1,1) (𝐼𝑛 +

ℎ

2
𝑘1,2) + 𝛾 (𝑅𝑛 +

ℎ

2
𝑘1,3)  

 

𝑘2,2 = 𝛽 (𝑆𝑛 +
ℎ

2
𝑘1,1) (𝐼𝑛 +

ℎ

2
𝑘1,2) − 𝛿 (𝐼𝑛 +

ℎ

2
𝑘1,2)  

𝑘2,3 = 𝛿 (𝐼𝑛 +
ℎ

2
𝑘1,2) − 𝛾 (𝑅𝑛 +

ℎ

2
𝑘1,3)  

 

𝑘3,1 = −𝛽 (𝑆𝑛 +
ℎ

2
𝑘2,1) (𝐼𝑛 +

ℎ

2
𝑘2,2) + 𝛾 (𝑅𝑛 +

ℎ

2
𝑘2,3)  

 

𝑘3,2 = 𝛽 (𝑆𝑛 +
ℎ

2
𝑘2,1) (𝐼𝑛 +

ℎ

2
𝑘2,2) − 𝛿 (𝐼𝑛 +

ℎ

2
𝑘2,2)  

 

𝑘3,3 = 𝛿 (𝐼𝑛 +
ℎ

2
𝑘2,2) − 𝛾 (𝑅𝑛 +

ℎ

2
𝑘2,3)  

 

𝑘4,1 = −𝛽(𝑆𝑛 + ℎ𝑘3,1)(𝐼𝑛 + ℎ𝑘3,2) + 𝛾(𝑅𝑛 + ℎ𝑘3,3)  

 

𝑘4,2 = 𝛽(𝑆𝑛 + ℎ𝑘3,1)(𝐼𝑛 + ℎ𝑘3,2) − 𝛿(𝐼𝑛 + ℎ𝑘3,2)  

 

𝑘4,3 = 𝛿(𝐼𝑛 + ℎ𝑘3,2) − 𝛾(𝑅𝑛 + ℎ𝑘3,3)  
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This method allows to numerically solve the system of differential equations of the SIR model with 

high accuracy, taking into account the nonlinearity of interactions between different groups (susceptible, 

infected and recovered) in the process of malware distribution in the network. For the numerical 

implementation of the SIR model, the values of the coefficients of the system of (1) and the initial conditions 

of the sought variables from Table 1 will be used. 

The values of 𝛽 = 0,3, 𝛿 = 0,1, 𝛾 = 0,05 are based on an analysis of modern malware and its 

ability to spread quickly. These values take into account the average propagation rate for different types of 

malware, from relatively slow worms to fast botnets, both automatic defenses and manual intervention by 

administrators, the cycle of security updates and the emergence of new malware versions. These parameters 

were selected based on analysis of real-world malware propagation data and consultation with cybersecurity 

experts. They provide a realistic representation of malware propagation dynamics in modern network 

environments, taking into account both the technical aspects of virus propagation and organizational factors 

that affect response and recovery rates. 

 

 

Table 1. Simulation parameters 
Determination Value 

Infection rate, 𝛽 0.3 

Recovery rate, 𝛿 0.1 

The rate of immune loss, 𝛾 0.05 

Initial number of nodes in the network, 𝑁 1,000 

Initial number of vulnerable nodes, 𝑆 995 

Initial number of infected nodes, 𝐼 5 

Number of protected nodes, 𝑅 0 

 

 

3. RESULTS AND DISCUSSION 

Figure 1 shows the spread of malware in the network. There is a rapid increase in the number of 

infected nodes, then a peak is reached, after which the number of infected nodes begins to decrease.  

The maximum number of infected nodes reaches ~347, which is about 34.7% of the entire network.  

This occurs about 32.5 time units after the start of propagation. By the end of the simulated period  

(100 time units), about 442 nodes, 44.2% of the network, are in a state of recovery. 

 

 

 
 

Figure 1. Results of the SIR model 

 

 

The model shows that even after a long period, infected nodes remain in the network, which can 

pose a persistent threat. The initial malware propagation rate is high, emphasizing the importance of rapid 

threat response. The recovery rate 𝛿 plays a key role in deterring malware propagation. Increasing this 

parameter can significantly reduce the infection peak. The presence of immunity loss rate 𝛾 indicates that the 

network may be vulnerable to repeated attacks or new malware variants. 

Early detection and rapid response systems should be in place to minimize the initial spread of 

malware. Regular updates and patches can increase the recovery rate 𝛿 and reduce network vulnerability. 
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After the main wave of infection subsides, monitoring should continue as there may still be infected nodes in 

the network. Increasing user awareness can reduce the infection rate 𝛽 and increase the overall resilience of 

the network. Given the possibility of loss of immunity 𝛾, it is important to continuously adapt defense 

measures to new threats. 

Figure 2 shows how quickly malware spreads across the network over time, reaching a peak 

infection rate and then declining. The peak infection rate indicates the point at which the virus spreads most 

intensely. After this point, containment and remediation measures begin to have a significant impact. 

Figure 3 of the recovery rate illustrates the effectiveness of the infection removal measures, it shows 

how quickly nodes recover from infection. As the number of infected nodes increases, the recovery rate also 

increases, reaching a peak and then decreases as the number of infected nodes decreases. The peak of the 

recovery rate coincides with the peak of the number of infected nodes, indicating the effective application of 

recovery measures. 

 

 

 
 

Figure 2. Time dependence of the rate of infection 

 

 

 
 

Figure 3. Dependence of recovery rate on time 

 

 

Figure 4 of the state distribution of nodes at the end of the simulation gives a clear picture of the 

final state of the network after the infection wave has passed. A high percentage of recovered nodes indicates 

that the threat was successfully contained and eliminated. A low number of infected nodes at the end of the 

period indicates that the infection has been almost completely suppressed. 
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The model exhibits typical infestation behavior, where the initial phase is characterized by a rapid 

increase in infestation followed by a recovery phase. The effectiveness of recovery and threat containment 

measures is evidenced by the high percentage of nodes recovered. It is important to continue monitoring and 

maintaining security measures to prevent repeat attacks or new threats. 

The phase portrait in Figure 5 shows the trajectories of the changing states of the system 𝑆, 𝐼, 𝑅 in 

phase space. The graph shows how the system moves from an initial state where most nodes are susceptible 𝑆 

to a state where most nodes are recovered 𝑅. The trajectories show that as the number of infected nodes 𝐼 
increases, the number of susceptible nodes 𝑆 decreases and the number of recovered nodes 𝑅 increases.  

The phase portrait demonstrates that the system tends towards a state where the number of infected nodes is 

minimized and most nodes are either susceptible or recovered. This indicates a natural attenuation of the 

epidemic in the absence of new infections. 

Figure 6 shows the value of the base reproductive number 𝑅0, which in this case is 3. This means 

that each infected node on average infects 3 other nodes in a fully susceptible population. A value of 𝑅0 > 1 

indicates that the infection can spread in the network, causing an epidemic. This emphasizes the importance 

of measures to reduce 𝑅0, such as reducing the infection rate 𝛽 or increasing the recovery rate 𝛿. 

 

 

 
 

Figure 4. State distributions of nodes at the end of the simulation 

 

 

 
 

Figure 5. Phase portrait of the SIR model 
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Figure 6. Basic reproductive number 𝑅0 
 
 

Figure 7 shows that increasing the infection rate 𝛽 leads to faster and more intense spread of 

infection, while increasing the recovery rate 𝛿 reduces the peak infection and speeds up recovery. The 

scenarios show that measures to increase the recovery rate more. Figure 8 shows the total number of nodes 

that have been infected since the start of the simulation. A high cumulative number of infections indicates the 

severity of the threat and the need for preventive measures to reduce the initial spread of infection. 
 

 

 
 

Figure 7. Comparative analysis of different scenarios 
 

 

 
 

Figure 8. Cumulative infections over time 
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Figure 9 shows how the vulnerability of the network changes over time. At the beginning of the 

simulation, the vulnerability decreases rapidly but then starts to increase slowly due to the loss of immunity 

𝛾 > 0. The increase in network vulnerability over the long term indicates the need for continuous monitoring 

and updating of defense measures to prevent reoccurring attacks or new threats. 

 

 

 
 

Figure 9. Network vulnerability over time 

 

 

The phase portrait and 𝑅0 plot emphasise the importance of understanding the dynamics of the 

system and the key parameters affecting the spread of infection. Our study demonstrates that effective 

management of SIR model parameters can significantly affect the dynamics of malware propagation in 

networks. Without timely intervention and network updates, the peak of infection can be significant, 

emphasizing the need for rapid response and strategies to improve security. The baseline reproductive 

number 𝑅0 shows the potential for rapid infection spread, requiring measures to reduce infection rates and 

increase recovery rates. Increasing the recovery rate 𝛿 has proven effective in reducing the peak of infection 

and shielding the network from prolonged malicious attacks. The immunity loss parameter 𝛾 indicates the 

need for continuous adaptation of defense measures and updates for resilience to new threats. These results 

emphasize the need for preventive measures and continuous monitoring in real-world scenarios, which can 

help protect the network from cyber threats. These results emphasize the importance of dynamic adaptation 

and management of model parameters to improve cybersecurity and network resilience. 

 

 

4. CONCLUSION 

The paper provides a comprehensive analysis of the use of a modified SIR model to model and 

understand malware propagation in network infrastructures. The findings emphasize the importance of: 

clearly understanding and managing infection, recovery, and immunity loss rates are key components in 

developing effective strategies to counter cyber threats. The simulations highlight the critical role of 

operational responses, such as updating network security protocols and user education, in reducing infection 

peaks and protecting the network. The data shows that even after the main wave of infection has subsided, 

the network can remain vulnerable, emphasizing the need for continuous monitoring and adaptation of 

security measures. The results of the study can be practically applied to strengthen cybersecurity in various 

sectors, including corporate networks and government information systems. The utilization of the identified 

strategies helps to increase the resilience of the system to new types of threats. Thus, this study makes a 

meaningful contribution to understanding the dynamics of malware propagation and presents relevant 

solutions for enhancing the cybersecurity of modern networks. 
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