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 Plant diseases significantly impact the quality and productivity of crops, 

leading to substantial economic losses. This paper introduces two enhanced 

EfficientNet-B5 architectures, EfficientNetB5-sigca and EfficientNetB5-

sigbi, specifically designed to detect and classify diseases in cucurbit leaves. 

We employ EfficientNet-B5 for feature extraction, using a 456×456×3 input 

and omitting the top layer to generate feature maps with Swish activation.  

A global average pooling 2D layer replaces the conventional fully connected 

layer, producing a flattened vector. This is followed by a dense layer with 

four output units, L2 regularization, and sigmoid activation, using either 

categorical or binary cross-entropy as the loss function. We also developed a 

novel image dataset targeting cucumber and cantaloupe leaves, including 

11,425 augmented images categorized into four disease classes: anthracnose, 

powdery mildew, downy mildew, and fresh leaf. Our experiments dataset 

demonstrates that the EfficientNetB5-sigbi achieves an accuracy of 97.07%, 

marking a significant improvement in classifying similar diseases in cucurbit 

leaves. 
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1. INTRODUCTION 

The Cucurbitaceae family, also known as the gourd or cucurbits family, encompasses a diverse 

range of agriculturally significant crops, including cucumbers and cantaloupes, which are pivotal to local and 

global food economies. These crops are rich sources of nutrients such as carotenoids, terpenoids, saponins, 

and phytochemicals [1]. As we delve deeper into the challenges confronting the Cucurbitaceae family, it 

becomes crucial to spotlight the diseases that pose significant threats to these agriculturally valuable crops. 

Among these, anthracnose, downy mildew, and powdery mildew are particularly detrimental, epitomizing the 

array of pathogens - viruses, fungi, and bacteria - that endanger the health and productivity of cucumbers, 

cantaloupes, and their kin [2]. These diseases compromise these crop’s quality and yield, which pose a 

substantial risk to the broader agricultural ecosystem. Dealing with these threats effectively is essential for 

maintaining the viability and sustainability of cucumbers, cantaloupes, and the entire Cucurbitaceae family, 

ensuring they continue to play their critical role in global food economies and nutritional security. 

The widespread nature of anthracnose [3], downy mildew [4], and powdery mildew [5] within the 

Cucurbitaceae family underlines the necessity for early detection and accurate diagnosis. Based on manual 

inspection and expert analysis, traditional disease detection methods are fraught with challenges, including 

time consumption, labor intensity, and the potential for subjective errors which underscore the urgent need 

for innovative solutions in the agricultural sector, highlighting the potential of machine learning and other 

advanced technologies to revolutionize disease detection and management in these vital crops. The field of 

https://creativecommons.org/licenses/by-sa/4.0/
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machine learning, advancements in computer vision [6], and artificial intelligence have significantly 

propelled the development of capabilities in diagnosing plant diseases and creating automated solutions. 

They have become a popular method for plant disease recognition, accommodating the challenge of 

identifying multiple diseases on a single leaf by considering a range of features, including color, texture, and 

shape [6]. Convolutional neural networks (CNNs) stand out as a foundational network structure in deep 

learning algorithms, enabling the automatic learning of key features directly from data and eliminating the 

need for manual feature extraction [7]. CNNs have been effectively used in complex tasks such as image 

classification, semantic segmentation, and pattern recognition. The evolution of deep learning classification 

methods has seen the development of CNN-based architectures like AlexNet [8], VGGNet [9], and 

MobileNet [10]. These architectures have achieved heightened accuracy through network depth and width 

innovations and optimizing model parameters. Howard et al. [10] introduced MobileNet, a new series of 

efficient models distinguished by their use of depth-wise separable convolutions. This technique effectively 

divides standard convolutions into depth-wise and pointwise convos, enhancing model efficiency.  

EfficientNet, introduced by Tan and Le [11], enhances model’s precision and operational efficiency by 

minimizing their size and the number of floating-point operations without compromising model quality.  

This architecture was developed through a method known as neural architecture search [12], enabling the 

scaling of the base model to produce various EfficientNet variants. 

Deep learning has thus become a vital tool in plant disease image recognition, with studies using the 

widely used PlantVillage dataset [13], [14]. With data collected from various sources, the faster R-CNN 

model is recorded with an average precision score of 87.01% for recognizing disease on tomato leaves [15], 

or disease detection [16]. Ma et al. [17] developed a dataset consisting of 1,184 images for four cucumber 

diseases and applied a deep CNN, demonstrating a significant performance improvement compared to 

traditional classifiers like random forest and support vector machines (SVM), achieving a recognition 

accuracy of 93.4%, similarly, Zhang et al. [18] introduced a method utilizing a global pooling dilated CNN 

for identifying six common cucumber diseases, reaching an accuracy rate of over 94%. Further advancing the 

field, Zhang et al. [19] explored the use of transfer learning with EfficientNet for classifying four types of 

cucumber diseases, achieving an impressive accuracy of 97%, with EfficientNet-B4 being identified as the 

most effective model for their study. The above studies show that deep learning models increase diagnostic 

accuracy with various processing techniques. However, despite the numerous studies and diverse 

methodologies developed to detect plant diseases, most of these investigations focus on specific diseases or 

individual crop types, often needing more accuracy and are unavailable for various plants. In summary, the 

main contributions of this study are as follows: 

− A new cucurbit leaves dataset, specifically cucumber and cantaloupe, has been developed for disease 

classification. This dataset visually represents the appearance of cucurbit diseases through visible light 

images. It is categorized into four classes: anthracnose, powdery mildew, downy mildew, and fresh leaf. 

The dataset initially consisted of 2,275 original photos collected from real fields under natural weather 

conditions with inconsistent lighting. After preprocessing and augmentation, the dataset now comprises 

11,425 images. This dataset is publicly available to the research community.  

− The EfficientNet-B5 model has been enhanced by replacing traditional fully connected layers with a 

global average pooling 2D layer, which averages across spatial dimensions to produce a flattened vector.  

A dense layer with four output units incorporates L2 regularization and a sigmoid activation function to 

prevent overfitting. It employs either categorical or binary cross-entropy as loss functions, enhancing 

robustness and generalization across diverse datasets. The base model, with a 456×456×3 input size, uses 

a Swish activation function. Our model outperforms previous proposals on public datasets and our actual-

world dataset. According to experiments, the proposed model has 98.2% classification accuracy on the 

training set and 97.5% on the validation set. 

The structure of this paper is organized as follows: section 2 presents the method with an 

experimental design to collect the dataset and modified models. In section 3 discusses the experimental 

metrics and the results obtained. Lastly, the conclusions are shown in section 4. 

 

 

2. METHOD 

2.1.  Image dataset 

The image dataset of cucurbit leaf diseases, particularly for cantaloupe, is rarely available, 

highlighting a significant gap in the resources needed for effective disease detection. To address this, we 

proposed a novel cucurbit dataset aimed at precise object detection and localization of diseases on the leaves. 

The dataset comprises several infected leaves collected from four distinct locations: cucumbers from a 

greenhouse at the Vietnam National University of Agriculture, Gia Lam District, Hanoi City, Vietnam 

(cucumbers); fields in Hai Phong City, Vietnam; GenXanh Farm in Dan Phuong District, Hanoi City, 

Vietnam; and cantaloupes from a greenhouse in Long Bien District, Hanoi City, Vietnam. The cucumbers 
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were cultivated in nutrient-rich loamy soil, renowned for their excellent water retention and aeration 

properties. In contrast, the cantaloupes were grown in a sandy loam mixed with coconut coir, which 

combines the drainage and aeration advantages of sandy loam with the moisture retention and organic 

enrichment benefits of coconut coir. Figure 1 presents visual representations of the experimental 

environments from which data were gathered. On the left, the fields in Hai Phong are illustrated, while the 

right side features the greenhouse in Long Bien. This dataset contains 2,275 original photos as shown in 

Figure 2, categorized into four types of diseases: anthracnose (Figure 2(a)), downy mildew (Figure 2(b)), 

powdery mildew (Figure 2(c)), and fresh leaf (Figure 2(d)). We also divided it into training and test sets at an 

80:20 ratio. The images were captured using an iPhone XS Max with a resolution of 3,024×4,032 pixels, a 

focal length of 26 mm, an aperture of f/1.8, and a shutter speed of 1/50s. To enhance the dataset, we applied 

data augmentation techniques such as rotation at 60 degrees, zooming to 0.5 times, and adjusting brightness 

to 1.2 times. From 2,275 original images, we received 11,425 augmented images. The proportions of 

anthracnose, downy mildew, powdery mildew, and fresh leaf are 26.8%, 20.3%, 31.8%, and 21.1%, 

respectively as shown in Table 1. 

 

 

 
 

Figure 1. Real cucumbers in Hai Phong (left) and cantaloupes in the field in Hanoi, Vietnam (right) 

 

 

    

(a) (b) (c) (d) 

 

Figure 2. Sample images for each class in the dataset: (a) anthracnose, (b) downy mildew,  

(c) powdery mildew, and (d) fresh leaf 

 

 

Table 1. Statistics of the cucurbit dataset 
Dataset Classes Original images Augmented images 

Training Anthracnose 490 2,940 
Downy mildew 371 2,226 

Powdery mildew 583 3,498 

Fresh leaf 386 2,316 
Testing Anthracnose 123 123 

Downy mildew 93 93 

Powdery mildew 133 133 
Fresh leaf 96 96 

Overall  2,275 11,425 
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2.2.  Methods 

After comparing classification performances using our dataset among various EfficientNet and 

MobileNet models using the study dataset, EfficientNet-B5 had the best performance and was selected for 

further optimization as shown in Table 2. Initially, we discarded the pre-trained weights to allow a more 

tailored adaptation to our dataset, focusing on cucurbit diseases [20]. We replaced the traditional fully 

connected layer with a global average pooling 2D layer, simplifying the model’s architecture by averaging 

the spatial dimensions of width and height into a flattened vector while preserving the depth. This step 

enhances the model’s capability to manage spatial hierarchies effectively. Following the pooling layer, we 

incorporated a dense layer configured with four output units corresponding to our classification categories, 

ensuring alignment with our specific classification objectives. This dense layer employs L2 regularization 

with a factor of 0.01 to mitigate overfitting, maintaining minimal model weights to foster better 

generalization. A sigmoid activation function is also used to produce probability outputs for each class, 

which is crucial for effective multi-label classification. The sigmoid function [21] is: 

 

𝜎(𝑥) =
1

1+𝑒−𝑥 (1) 

 

The base model, EfficientNet-B5, operates without its top layer and serves as a feature extractor, producing a 

set of feature maps. These feature maps are activated by a Swish activation function, enhancing the non-

linearity of the processing and potentially improving the model’s learning capability. The Swish activation 

formula [21] is: 

 

𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ∗ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛼 ∗ 𝑥) (2) 

 

where α is a trainable parameter. 

 

 

Table 2. Performance comparison of 10 ten kinds of classification networks 

Network 
Accuracy (%) 

No pre-trained weights ImageNet weights PlantVillage weights 

EfficientNet-B4 72.13% 20.22% 77.53% 

EfficientNet-B5 82.25% 61.12% 82.25% 
EfficientNetV2-B0 24.94% 21.57% 21.57% 

EfficientNetV2-B1 23.60% 19.33% 27.64% 

EfficientNetV2-B2 21.57% 21.57% 21.57% 
EfficientNetV2-B3 16.85% 28.76% 26.29% 

EfficientNetV2-S 15.28% 32.81% 17.53% 

MobileNetV2 78.65% 79.78% 76.18% 
MobileNetV3-Large 21.57% 29.89% 27.64% 

MobileNetV3-Small 19.78% 18.88% 21.57% 

 

 

Related to the loss functions, we have created two separate model variations to cater to distinct 

classification requirements: 

− EfficientNetB5-sigca: utilizes categorical cross-entropy as the loss function, suitable for multi-class 

classification tasks. The standard categorical cross-entropy function [22] is: 

 

𝐽𝑐𝑐𝑒 =  −
1

𝑁
 ∑ ∑ 𝑦𝑖

𝑘 log(ℎ𝜃(𝑥𝑖 , 𝑘))𝐼
𝑖=1

𝐾
𝑘=1  (3) 

 

− EfficientNetB5-sigbi: employs binary cross-entropy as the loss function, optimized for binary 

classification tasks. The standard binary cross-entropy function [22] is given as: 

 

𝐽𝑏𝑐𝑒 = −
1

𝑁
 ∑ [𝑦𝑖 log(ℎ𝜃(𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − ℎ𝜃(𝑥𝑖))]𝑁

𝑖=1  (4) 

 

These adaptations provide targeted solutions to different classification challenges, enhancing the 

‘model’s accuracy and efficiency across diverse scenarios. In (3), 𝑁 signifies the total count of training 

examples, with 𝐾 indicating the distinct number of classes involved. The expression 𝑦𝑖
𝑘 is defined as the 

target label for the 𝑖𝑡ℎ training example specific to the class 𝑘, while 𝑥 is the input corresponding to the 𝑖𝑡ℎ 

example. Here, ℎ𝜃 represents the model structured by the neural network weights 𝜃. For (4), 𝑁 denotes the 

number of training samples, where 𝑦𝑖  is the target label for each training example indexed by 𝑖, and 𝑥𝑖 is the 

respective input for that example. The model, symbolized by ℎ𝜃, is defined by the neural network weights 𝜃. 
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The function 𝑦𝑖 ∗ log(ℎ𝜃(𝑥𝑖)) is incorporated to minimize the occurrence of probabilistic false negatives 

during the model training phase. The modified EfficientNet-B5 architecture is in Figure 3. 

 

 

 
 

Figure 3. The architecture of modified Efficient-B5 
 

 

3. RESULTS AND DISCUSSION 

3.1.  Performance evaluation metrics 

In this study, the data were partitioned into training and test sets at an 80:20 ratio, as detailed in 

Table 1. Subsequent experimental analyses were conducted using the Matplotlib software environment [23] 

on a laboratory computer equipped with a 2080Ti Nvidia GeForce graphics card, 32Gb RAM, and Intel® 

Xeon® Processor E5-2680. The hyperparameters, illustrated in Figure 3, were consistent across both 

proposed models and included a batch size of 8, a learning rate of 0.001, and a duration of 50 epochs. The 

evaluation metrics employed in this research included accuracy, recall, precision, and F1-score [24] were 

analyzed in conjunction with a confusion matrix with receiver-operating characteristic (ROC) curves to 

assess model performance [3] comprehensively. These metrics allowed us to measure the effectiveness of the 

models in identifying true positives, true negatives, false positives, and false negatives, ultimately enabling a 

robust analysis of the classifier’s performance across various thresholds.  
 

3.2.  Results and discussion 

This study investigated the effects of two modifications to the EfficientNetB5 model for cucurbit 

leaf disease detection. While earlier studies have explored various deep learning techniques for plant disease 

recognition, they have not explicitly addressed the influence of incorporating a sigmoid activation function 

combined with a binary cross-entropy loss on model stability and overall performance across diverse 

evaluation metrics. Our experiments revealed that both proposed modifications demonstrated a continuous 

upward trend in accuracy during training and validation. Notably, EfficientNetB5-sigbi showed a more stable 

performance, as evidenced by Figure 4, which illustrates the consistent increase in accuracy, recall, and 

precision. EfficientNetB5-sigbi achieved a stable recall of 98.02% and maintained a validation precision of 

97.5%, while EfficientNetB5-sigca exhibited fluctuations (for example, a recall dip to 70.68% at epoch 7 

before recovering to 92.7%). Further analysis using the confusion matrices Figure 5 and Figure 6 shows ROC 

curves for EfficientNetB5-sigca in Figure 6(a) and EfficientNetB5-sigbi in Figure 6(b) confirmed these 

observations, and an F1-score comparison summarized in Table 3 indicated that EfficientNetB5-sigbi 

(96.42%) outperformed EfficientNetB5-sigca (80.73%). 

Our findings suggest that the integration of the sigmoid activation function and binary cross-entropy 

loss in EfficientNetB5-sigbi significantly enhances model precision and stability. When compared with 

previous studies in Table 4 - such as those by Zhang et al. [19] and others using EfficientNetB4-Ranger or 

MobileNetV2 [25] - the superior performance metrics of EfficientNetB5-sigbi highlight its robustness and 

improved generalization across unseen data, marking a clear advancement in the detection of cucurbit leaf 

diseases. Despite these promising results, the study has certain limitations. The curated dataset, consisting of 

11,425 images across four disease categories, was limited to cucurbit leaves. As a result, questions remain 

regarding the model’s adaptability to other plant species and varying environmental conditions. These factors 

could potentially impact the generalizability of the model’s performance and warrant further investigation. 
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Figure 4. Accuracy, recall, and precision results on the training set 

 

 

 
 

Figure 5. Confusion matrix of EfficientNetB5-sigca (left) and EfficientNetB5-sigbi (right) 
 

 
 

 

  
(a) (b) 

 

Figure 6. ROC curve of (a) EfficientNetB5-sigca and (b) and EfficientNetB5-sigbi 
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Our study lays the groundwork for future research avenues. Expanding the dataset to encompass a 

wider range of disease types and environmental scenarios could enhance model robustness. Additionally, 

future studies might explore the real-time deployment of EfficientNetB5-sigbi on edge devices for 

agricultural monitoring. Integrating hyperspectral or multispectral imaging also presents a promising 

opportunity to improve early-stage disease detection further, bridging the gap between laboratory 

performance and practical, field-level applications. In conclusion, the results from Figures 4 to 6, along with 

the performance metrics detailed in Table 3 provide conclusive evidence that EfficientNetB5-sigbi offers 

state-of-the-art performance in cucurbit leaf disease detection. The study demonstrates that advanced image 

segmentation techniques, when combined with appropriate activation and loss functions, significantly 

enhance model performance. These findings not only outperform previous methodologies but also pave the 

way for future innovations in agricultural disease management. 

 

 

Table 3. Comparison of performance between EfficientNet-B5 versions 
Network Accuracy (%) Recall (%) Precision (%) F1-score 

EfficientNet-B5 [11] 82.25% 91.80% 82.54% 82.17% 
EfficientNetB5-sigca 88.54% 94.61% 70.4% 80.73% 

EfficientNetB5-sigbi 97.07% 98.02% 95.78% 96.42% 

 

 

Table 4. Comparing EfficientNetB5-sigbi with other relevant studies 
Study Number of layers Original data Network Test accuracy 

Their data Our data 

Mia et al. [25] 7 525 MobileNetV2 93.23% 89.66% 
Zhang et al. [19] 4 2816 EfficientNetB4-Ranger 96.39% 96.56% 

This study 4 2275 EfficientNetB5-sigbi - 97.07% 

 

 

4. CONCLUSION 

Our study establishes a robust foundation for detecting and differentiating plant diseases in 

controlled environments, significantly contributing to the field. We have developed a novel dataset featuring 

11,425 augmented images of cucumber and cantaloupe plants, categorized into four disease classifications: 

anthracnose, powdery mildew, downy mildew, and fresh leaf. We provide a publicly available resource that 

has the potential to drive future research and innovation in plant disease management. Additionally, we 

introduced an enhanced classification model, the EfficientNetB5-sigbi, which utilizes the EfficientNet-B5 

architecture fine-tuned with a sigmoid activation function and binary cross-entropy loss, achieving an 

impressive accuracy of 97.07%, demonstrating its capability for precise disease identification and 

classification. However, the scope of this research extends beyond its immediate results. The dataset needs to 

be expanded to include more data from a wider range of species within the Cucurbitaceae family. While the 

current dataset focuses on cucumber and cantaloupe plants, other significant crops in the family, such as 

watermelon, squash, pumpkin, and zucchini, should be incorporated to increase diversity and make the model 

applicable to a broader spectrum of cucurbit diseases. Furthermore, collecting data under varying 

environmental conditions, such as different humidity levels, temperatures, and light exposures, will enhance 

the model’s robustness and adaptability to real-world scenarios. Including images of plants at different 

growth stages and varying severities of disease symptoms will also allow the model to identify early-stage 

infections and provide a more granular classification. Expanding the dataset to include hyperspectral and 

multispectral imaging could enhance recognition accuracy and enable early-stage disease detection, 

addressing a pressing need in real-world agricultural scenarios. 
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