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 Cognitive radio (CR) has proven to be an excellent alternative to the 

problem of inefficient spectrum use in wireless networks. However, the vast 

majority of proposals found in the current literature are restricted to the 

access of a single secondary user (SU) to the network, and the few proposals 

with multiple access do not take into account the access of other primary 

users (PUs) during the opportunistic transmission of the SU. The objective 

of this work is to perform a comparative evaluation of the spectral handoff 

(SH) rate in cognitive wireless networks with multi-user access in an 

environment with other PUs interacting. To carry out this evaluation, four 

SH models with better performance were selected: deep learning (DL), 

feedback fuzzy analytic hierarchy process (FFAHP), simple additive 

weighting (SAW), and Naïve Bayes (NB), which were validated according 

to the metric of the number of total handoffs, under four scenarios given by 

the combination of the following parameters: low spectral availability, high 

spectral availability, active presence of others SUs, and passive presence of 

others SUs. The results show that each model performs well according to the 

scenario in which it is executed, suggesting an adaptive multi-model as a 

proposal. 
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1. INTRODUCTION 

The idea behind cognitive radio (CR) stems from the understanding that the radio frequency 

spectrum is a finite resource, which is often significantly underutilized. This underutilization results in 

diminished overall spectrum efficiency. As noted in various studies, CR technology aims to fulfill the 

increasing bandwidth (BW) demands of modern devices through its ability to dynamically reconfigure itself. 

Consequently, the operation of a cognitive network (specifically regarding the allocation and deallocation of 

radio resources) is inherently complex. This complexity arises because the network nodes must continuously 

adapt their behavior based on the local information available about their surrounding environment [1]-[4]. 

Cognitive radio networks (CRNs) have been proposed as a viable solution to address the issue of 

spectral scarcity by allowing secondary users (SUs) to temporarily utilize unused spectrum segments, known 

as spectral opportunities (SOs). This access is provided on the condition that primary users (PUs) do not 

experience any degradation in their quality of service. A significant challenge within this context is managing 

spectral handoffs (SHs) (or the switching of channels among CRs) efficiently, with the aim of minimizing the 

frequency of these handoffs during extended communication periods [5]-[8]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Moreover, it is critical to consider scenarios where multiple SUs simultaneously seek to 

opportunistically access the licensed spectrum held by PUs. In such cases, effective multi-user access 

strategies must be developed to account for the unpredictable arrival and departure of PUs during the ongoing 

transmissions of SUs. This dynamic behavior necessitates sophisticated approaches to ensure seamless 

communication and optimal use of the available spectrum [9]-[13]. 

Building upon the aforementioned context, this study aims to conduct a comparative analysis of the 

SH rate in cognitive wireless networks featuring multi-user access within a realistic environment. 

Specifically, this environment includes PUs dynamically entering and exiting the licensed spectrum during 

the opportunistic utilization by SUs. For this evaluation, four SH models demonstrating superior performance 

were chosen: deep learning (DL), feedback fuzzy analytic hierarchy process (FFAHP), simple additive 

weighting (SAW), and Naïve Bayes (NB). These models were assessed based on the total number of 

handoffs (AAH) under four distinct scenarios, characterized by the following combinations of parameters: 

low spectral availability (high traffic or HT), high spectral availability (low traffic or LT), active presence of 

SUs (real mode), and passive presence of SUs (conventional mode). In the current literature we do not find 

related works that consider a realistic multi-user environment with dynamic behavior of the PUs. 

The structure of this study is organized into five sections. Section 2 provides a detailed description 

of the research methodology, including the selection of SH models, experimental design, decision-making 

criteria, and performance metrics. Section 3 presents the results obtained from the analysis and offers a 

comparative examination of the evaluation metrics. Section 4 focuses on the discussion of these results, 

interpreting the findings in the context of the objectives set forth. The final section summarizes the main 

conclusions of the study, highlighting the key contributions and potential areas for future research. 

 

 

2. METHOD 

This section outlines the methodology employed in the research. It begins with a detailed 

description of the experimental design, which forms the foundation of the study. Following this, the criteria 

used for decision-making in selecting the optimal frequency channel or spectral opportunity (SO) for 

executing the SH are explained. Next, the section provides an overview of the specific handoff (HS) models 

that were chosen for evaluation. Finally, it concludes with a presentation of the performance metrics that 

were applied to facilitate the comparative analysis of these models.  

 

2.1.  Experiment design 

The comparative evaluation of the selected SH models was conducted using a simulation tool 

previously developed for this purpose. This tool utilizes real spectral occupancy data gathered from a 

measurement campaign carried out in Bogotá, Colombia [14]. The simulation tool reconstructs the spectrum 

occupancy patterns over time by employing experimental data traces recorded in the GSM band, providing a 

close approximation of the real behavior of PUs within the simulated environment. This approach enables a 

more accurate assessment of each algorithm’s actual performance [15], [16]. The data set used in the 

simulation reflects one month of continuous observation collected in Bogotá D.C., Colombia [14]. 

When a SU intends to transmit for φ minutes, the simulation tool follows a structured sequence of 

steps. First, it updates the decision criteria (DC) values based on information available before the current time 

instant, referred to as τ0, when the SU requests access to the spectral resource. Second, the tool ranks the SOs 

according to the scores generated by the decision-making algorithm under evaluation. Third, the SO with the 

highest rank is selected and assigned to the SU, initiating its transmission. Fourth, at time τ1, the tool checks 

the database of captured and processed data to determine whether the selected SO remains available. Since 

SH models rely solely on the probability of availability (AP) rather than real-time availability data, if the SO 

is still accessible, the cumulative handoff metric (AAH) is incremented by one, and the next step is executed. 

If not, the alternative handoff metric (AAFH) is incremented, and the next ranked SO is chosen, returning to 

the previous step. 

The tool then performs a continuous check at each time step (TS) to verify if the SO currently in use 

by the SU remains available. If, at any time τk, a PU demands the selected SO, rendering it unavailable 

according to the database, and the elapsed time, calculated as Δτ = τk – τ1, is less than 60 seconds, the system 

selects the next SO in the ranking and returns to the prior step. If this condition is not met, τ0 is updated to 

reflect the new current time, and the entire procedure begins anew. If, after a duration of ζ seconds, no 

suitable channel is found, the communication is deemed to have failed. 

 

2.2.  Decision criteria 

All handoff (HS) models utilized in this study relied on four key DC to identify the optimal channel 

for SH: the AP, the estimated time of availability (ETA), the signal-to-noise ratio (SINR), and the BW. These 

criteria were derived from spectral data that had been previously collected. To accurately perform the 
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evaluation, it was crucial to compute values for each of the four DC (AP, ETA, SINR, and BW) for every 

entry in the training matrix, given that the SH algorithms did not have any pre-existing knowledge of these 

values. 

The AP variable offers a normalized representation of the duty cycle for each of the 500 potential 

SOs present in the matrix. The ETA variable calculates the average duration for which each channel remains 

continuously available. This is determined by first identifying all periods during which a channel is 

continuously accessible, followed by calculating the mean of these durations for each channel. 

The SINR variable quantifies the average ratio of signal power to the noise floor, which reflects the 

quality of the channel. The BW variable denotes the average BW for each channel. Since all channels have 

an identical BW of 100 kHz, the BW variable does not provide significant differentiation in its basic form. 

To enhance the relevance of the BW criterion, the BW for each potential SO was expanded to incorporate up 

to four adjacent channels on both sides, assuming they were continuously available, thus creating a broader, 

composite channel. Although all channels in the GSM band typically have a BW of 200 kHz, due to the 

specific technical parameters set on the spectrum analyzer during the measurement campaign, the spectral 

occupancy data was captured in segments with a fixed BW of 100 kHz. 

 

2.3.  Handoff models 

A review of the current literature on SH in CRN was conducted to identify suitable algorithms for 

comparison with the newly developed algorithms presented in this study. The selection process took into 

account the performance outcomes reported for these algorithms, along with their underlying mathematical 

principles and the clarity of their methodologies, which facilitate reproducibility. Multi-criteria decision-

making (MCDM) methods were chosen as they offer a robust mathematical framework for modeling the SH 

process in situations involving multiple variables, providing a highly effective approach for evaluating and 

selecting SOs [1], [17]-[20]. Due to their proven efficacy, MCDM methods have been widely applied in SH 

contexts. The specific algorithms selected for comparison in this study are FFAHP, NB, SAW, and  

DL [1], [21]-[28]. 

 

2.3.1 FFAHP 

The FFAHP algorithm is designed to enhance the accuracy of selecting SOs. To achieve this goal, 

FFAHP utilizes feedback from previously conducted SO evaluations to refine its selection process. The 

choice of SO is determined by analyzing both current spectral data and historical assessment results. 

The spectrum data detection process involves capturing key parameters, such as frequency, signal 

power, and time intervals. These measurements are influenced by settings on the spectrum analyzer, 

including the resolution bandwidth (RBW), the frequency span, and the sweep time [14], [16]. All the 

acquired data are systematically stored in a dedicated database. The processing unit periodically calculates 

the values for the DC (such as AP, ETA, SINR, and BW) and normalizes these values on a scale from 0 to 

100. The FFAHP algorithm then utilizes this normalized data to assess each SO. The score assigned to each 

SO, indicated by i, is determined using (1), where the score ranges between 0 and 100, with 100 indicating 

the highest possible score. Figure 1 illustrates the design and workflow of the FFAHP algorithm. 

 

 

 
 

Figure 1. Schematic representation of the proposed FFAHP algorithm 

 

 

At this stage of the process, each SO is initially ranked based solely on the current values of the DC. 

However, the SO that ranks highest at this point may not ultimately be chosen, as the final evaluation 

incorporates weighted adjustments using historical survey data. The feedback mechanism integrates the 
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current survey results (PS) for each SO with both the most recent survey data (LS) and the average survey 

results (AS) collected over the preceding hour. These weighted inputs are then used to compute a final 

ranking for each SO. The method for calculating this final ranking is outlined in (1). 

 

𝐹𝑖𝑛𝑎𝑙_𝑆𝑐𝑜𝑟𝑒 = 𝛼 × 𝑃𝑆 + 𝛽 × 𝐿𝑆 + (1 − 𝛼 − 𝛽) × 𝐴𝑆 (1) 

 

Here, α and β are coefficients within the range [0,1], and the term “Final_Score” represents the final 

survey value assigned to each SO. The SO with the highest final score is chosen to initiate data transmission 

for the SU. Subsequently, the feedback mechanism updates the last survey (LS) value by transferring the 

present survey (PS) value and recalculates the AS value to reflect the new LS value. If the chosen SO is 

found to be occupied, the FFAHP algorithm resets the LS value to zero for that particular SO [21]. 

 

2.3.2. Naïve Bayes 

A key factor in selecting an appropriate prediction model is its ability to incorporate multiple 

characteristics or criteria that enhance the accuracy of predictions. This is important because during the 

training phase, various criteria such as AP, ETA, SINR, and BW can be used, all of which contribute to 

improving the prediction performance [22], [25]. 

Given this context and the principles of NB theorem, it can be concluded that the independent 

variables, or predictors, in this specific scenario are AP and ETA, while the dependent variable, or the class 

to be predicted, is channel availability. The NB model is particularly effective for predicting multiple classes 

because it operates under the assumption that each predictor is independent of the others. In other words, a 

NB classifier assumes that the presence or absence of a particular feature is not influenced by any other 

feature. Even when some features may have dependencies, the model treats all these characteristics as if they 

contribute independently to the outcome. One of the main benefits of this approach is its capacity to 

efficiently handle very large datasets. 

Bayes’ theorem offers a framework to calculate the posterior probability P(c∣x) using the prior 

probabilities P(c), P(x), and the likelihood P(x∣c), as shown in (2). 

 

P(c|x) =
P(x|c)P(c)

P(x)
        (2) 

 

Where: 

− P(c∣x) represents the posterior probability of the class c (the target variable) given the predictor x (the 

input features). 

− P(c) denotes the prior probability of the class. 

− P(x∣c) is the likelihood, or the probability of the predictor given that the class is known. 

− P(x) indicates the prior probability of the predictor. 

Using (2) and considering the independent variables (AP and ETA) as outlined in earlier paragraphs, 

along with the dependent variable or class, which in this context is the channel’s status (either “occupied” or 

“available”), we can derive the expressions presented in (3) and (4). 

 

Posterior(occupied) =
P(occupied)p(TED|ocuppied)p(PD|occupied)

evidence
 (3) 

 

Posterior(available) =
P(available)p(TED|available)p(PD|available)

evidence
     (4) 

 

Where “evidence” would be given by (5). 

 

evidence = P(occupied)p(TED│ocuppied)p(PD│occupied) +
P(available)p(TED|available)p(PD|available) (5) 

 

2.3.3 Simple additive weighting 

The algorithm creates a decision matrix that incorporates multiple attributes and possible 

alternatives. For each intersection within this matrix, a weight is allocated according to the designer’s 

predefined criteria. This process of assigning weights enables the calculation of a score for each SO under 

evaluation, resulting in a prioritized ranking of all potential alternatives. The SO that achieves the highest 

score in this ranking is selected as the optimal choice. The mathematical representation of an alternative, 

denoted as Ai, is presented in (6). 
 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 1, July 2025: 190-201 

194 

𝑢𝑖 = ∑ 𝜔𝑖
𝑀
𝑗=1 𝑟𝑖,𝑗  ∀𝑖 ∈ 1, . . . , 𝑁 (6) 

 

Here, ri,j represents an element within the matrix, and the total of all assigned weights equals 1. The 

steps involved in developing this algorithm are as follows: (1) identify the objectives and potential 

alternatives; (2) perform an evaluation of these alternatives; (3) assign weights to each combination based on 

their importance; (4) calculate the aggregated values according to the established preferences; and (5) 

conduct a sensitivity analysis to assess the robustness of the results. In several studies, the SAW method has 

been applied to identify the optimal SO within a GSM frequency band, to assess the number of handoffs 

executed, and to compare the performance with that of other spectrum allocation algorithms [1]. 
 

2.3.4 Deep learning 

A comprehensive description of the DL algorithm employed in this study can be found in reference [24]. 
 

2.4.  Evaluation 

The performance of the selected handoff (HS) models was evaluated using four specific metrics: the 

total number of channel changes (AAH), the number of interfering channel changes (AAI), the number of 

anticipated channel changes (AAU), and the number of perfect channel changes (AAP). These metrics were 

assessed under two traffic levels (high (HT) and low (LT)) as well as for two types of SU behavior: passive 

(conventional mode) and active (real mode). 

To conduct a comprehensive multi-user evaluation, the selected SH models were applied across four 

different scenarios: (1) conventional mode with HT, (2) real mode with HT, (3) conventional mode with low 

traffic (LT), and (4) real mode with low traffic (LT). For each scenario, the performance of the SH model 

was analyzed with varying numbers of simultaneous users, specifically for 1, 2, 4, 6, 8, and 10 users. Given 

the volume of data, complete results are summarized in tables provided in the results section, while the 

figures primarily illustrate the behavior for the case of 10 users. 

Table 1 outlines the evaluation metrics used to assess the performance of the SH models, including 

AAH, AAI, AAU, and AAP. The table details the acronyms, definitions, descriptions, and types of evaluation 

metrics, indicating whether a metric represents a benefit (where a higher value is better) or a cost (where a 

lower value is preferred). The term “average” in the context of evaluation metrics reflects that these results 

are based on the mean values obtained from multiple experiments. While the AAH metric applies to all HS 

models, the other metrics are specific to the NB prediction model. 
 

 

Table 1. Evaluation metrics for HS models 
Acronym Name Description Evaluation metric type 

AAH Cumulative average 

handoff number 

This is the total number of handoffs performed during the 9 

minutes of SU transmission 

Cost 

AAI Cumulative average 

interference handoff 

number 

It is the total number of reactive handoffs performed once the 

PU arrives, during the transmission time of the SU 

Cost 

AAP Cumulative average 

perfect handoff number 

It is the number of non-interference handoffs performed very 

close to the arrival of the PU, but without causing interference 
to the latter, during the transmission time of the SU 

Cost 

AAU Cumulative average 

anticipated handoff 
number 

It is the number of non-interference handoffs performed well in 

advance of the arrival of the PU, during the transmission time 
of the SU 

Cost 

 

 

To facilitate the comparative analysis of each algorithm, the relative values (in percentage) of each 

evaluation metric were calculated. For the cost metrics, the relative value (Rel) of algorithm i was calculated 

based on the absolute value (Abs) and the minimum value (Min) of the evaluation metric, as described in (7). 
 

𝑋𝑖
𝑅 𝑒 𝑙 =

𝑋𝑖
𝑀𝑖𝑛

𝑋𝑖
𝐴𝑏𝑠 × 100% (7) 

 

 

3. RESULTS 

Figures 2 to 9 describe the results for each of the HS models. Figure 2 shows deep learning with 10 

SUs in HT with and without additional random SUs, Figure 2(a) conventional mode in HT and Figure 2(b) 

real mode in HT. Figure 3 shows deep learning with 10 SUs in LT with and without additional random SUs, 

Figure 3(a) conventional mode in LT and Figure 3(b) real mode in LT. Figure 4 shows FFAHP with 10 SUs 

in HT with and without additional random SUs, Figure 4(a) conventional mode in HT and Figure 4(b) real 
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mode in HT; Figure 5 shows FFAHP with 10 SUs in LT with and without additional random SUs,  

Figure 5(a) conventional mode in LT and Figure 5(b) real mode in LT. Figure 6 shows Naïve Bayes AAH 

with 10 SUs in HT with and without additional random SUs, Figure 6(a) conventional mode in HT and 

Figure 6(b) real mode in HT; Figure 7 shows Naïve Bayes AAH with 10 SUs in LT with and without 

additional random SUs, Figure 7(a) conventional mode in LT and Figure 7(b) real mode in LT; Figure 8 

shows SAW AAH with 10 SUs in HT with and without additional random SUs, Figure 8(a) conventional 

mode in HT and Figure 8(b) real mode in HT; Figure 9 shows SAW AAH with 10 SUs in LT with and 

without additional random SUs, Figure 9(a) conventional mode in LT and Figure 9(b) real mode in LT. Each 

figure shows the SH models’ results during a 9-minute transmission, with a trace of HT and LT in 

conventional and real modes on a GSM network. 

 

 

  
(a) (b) 

 

Figure 2. Deep learning with 10 SUs in HT with and without additional random SUs 

(a) conventional mode in HT and (b) real mode in HT 

 

 

  
(a) (b) 

 

 

Figure 3. Deep learning with 10 SUs in LT with and without additional random SUs 

(a) conventional mode in LT and (b) real mode in LT 

 

 

  
(a) (b) 

 

Figure 4. FFAHP with 10 SUs in HT with and without additional random SUs 

(a) conventional mode in HT and (b) real mode in HT 
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(a) (b) 

 

Figure 5. FFAHP with 10 SUs in LT with and without additional random SUs 

(a) conventional mode in LT and (b) real mode in LT 

 

 

  
(a) (b) 

 

Figure 6. Naïve Bayes AAH with 10 SUs in HT with and without additional random SUs 

(a) conventional mode in HT and (b) real mode in HT 

 

 

  
(a) (b) 

 

Figure 7. Naïve Bayes AAH with 10 SUs in LT with and without additional random SUs 

(a) conventional mode in LT and (b) real mode in LT 

 

 

  
(a) (b) 

 

Figure 8. SAW AAH with 10 SUs in HT with and without additional random SUs 

(a) conventional mode in HT and (b) real mode in HT 
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(a) (b) 

 

Figure 9. SAW AAH with 10 SUs in LT with and without additional random SUs 

(a) conventional mode in LT and (b) real mode in LT 

 

 

3.1.  Multi-user benchmarking 

Tables 2-5 present the comparative percentages of the performance of each algorithm for the multi-

user environment in conventional mode and the real mode for 1, 2, 4, 6, 8, and 10 users. The above aims to 

analyze each model’s behavior as the number of simultaneous accesses of the ED increases. Table 2 and 

Table 3 present the multi-user benchmarking for HT and LT in conventional and real modes. Table 4 presents 

the overall benchmarking by traffic type for HT and LT in conventional and real modes. Finally, Table 5 

presents the multi-user benchmarking for the prediction metrics for NB. 
 

 

Table 2. Multi-user benchmarking for HT 
Multi-user features Deep learning Armed forces Naïve Bayes SAW 

MSU1 - Conventional 100 96,22 80,05 86,43 

MSU2 – Conventional 100 89,9 97,42 89,6 

MSU4 – Conventional 84,65 83,65 100 79,71 
MSU6 – Conventional 77,6 78,26 100 76,59 

MSU8 – Conventional 74,79 74,57 100 75,36 

MSU10 – Conventional 71,87 72,22 100 72,61 

Conventional Score 84,82 82,47 96,25 80,05 

MSU1 – Real 85,29 100 83.2 89,82 

MSU2 – Real 80,94 80,7 100 83,77 
MSU4 – Real 78,3 75,12 100 75,64 

MSU6 – Real 78,58 77,49 100 77,7 

MSU8 – Real 71,94 71,41 100 73,33 
MSU10 – Real 66,12 68,97 100 70,75 

Score Real 76,86 78,95 97,2 78,5 

 

 

Table 3. Multi-user benchmarking for LT 
Multi-user features Deep learning FFAHP Naïve Bayes SAW 

MSU1 - Conventional 16,23 77,89 8,41 92,5 

MSU2 – Conventional 18,36 74,45 10,89 100 
MSU4 – Conventional 13,52 72,51 15,29 100 

MSU6 – Conventional 13,12 77,2 18,56 100 

MSU8 – Conventional 13,66 77,91 21,41 100 

MSU10 – Conventional 14,4 79,43 23,83 100 

Conventional Score 14,88 76,57 16,4 98,75 

MSU1 – Real 17,54 84,21 9,1 100 
MSU2 – Real 13,92 73,29 13,21 100 

MSU4 – Real 12,24 54,26 15,37 100 

MSU6 – Real 12,61 64,6 19,96 100 
MSU8 – Real 13,77 63,87 21,39 74,52 

MSU10 – Real 14,89 73,86 26,7 83,94 

Score Real 14,16 69,02 17,62 93,08 

 

 

Table 4. Global benchmarking by traffic type 
Scenario Deep learning FFAHP Naïve Bayes SAW 

AAH HT Conventional 84,82 82,47 96,25 80,05 
AAH HT Real 76,86 78,95 97,2 78,5 

AAH LT Conventional 14,88 76,57 16,4 98,75 

AAH LT Real 14,16 69,02 17,62 93,08 
Score HT Global 80,84 80,71 96,73 79,28 

Score LT Global 14,52 72,8 17,01 95,92 
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Table 5. Multi-User benchmarking for Naïve Bayes interference 
Multi-user features AAIH-HT AAIH-LT AAUH-HT AAUH-LT AAPH-HT AAPH-LT Score 

MSU1 - Conventional 52,6 75 100 100 100 44,67 78,71 
MSU2 – Conventional 68,18 100 65,66 47,17 98,65 52,63 72,05 

MSU4 – Conventional 86,89 82,76 52,01 26,77 91,26 79,57 69,88 

MSU6 – Conventional 92,19 60 50,33 23,24 85,42 97,34 68,09 
MSU8 – Conventional 95,65 50,51 47,08 22,34 82,89 100 66,41 

MSU10 – Conventional 100 40,27 43,65 22,04 81,79 96,26 64 

Conventional Score 82,59 68,09 59,79 40,26 90 78,41 69,86 
MSU1 – Real 47,35 62,5 100 100 100 45,93 75,96 

MSU2 – Real 79,89 100 49,67 40,98 97,51 58,41 71,08 

MSU4 – Real 76,27 58,82 53,43 23,73 89,84 94,02 66,02 
MSU6 – Real 80,54 50 49,06 23,27 83,49 100 64,39 

MSU8 – Real 87,73 28,99 45,24 21,3 82,51 97,76 60,59 

MSU10 – Real 100 31,65 37,35 21,26 81,01 94,98 61,04 
Score Real 78,63 55,33 55,79 38,42 89,06 81,85 66,51 

Score Global HT 80,61 ON 57,79 ON 89,53 ON 75,98 

Score Global LT ON 61,71 ON 39,34 ON 80,13 60,39 

 

 

4. DISCUSSION 

In the multi-user evaluation, both predictive and non-predictive models were employed. For 

scenarios involving HT, the models used include DL, the NB predictive model, and the MCDM techniques of 

FFAHP and SAW. These models were implemented under both conventional and real modes, with 

evaluations conducted for various user counts, specifically for 1, 2, 4, 6, 8, and 10 users. The primary metric 

used for this evaluation was the cumulative average handoff (AAH). The comparative results, based on the 

type of simulation (either real or conventional) and the number of users, are presented in Table 2. The 

findings indicate that as the number of simultaneous users increases, the performance of each model tends to 

decline, as the available SOs become more limited and challenging to identify. 

According to the score obtained in Table 2 for HT, in conventional mode, the best performance is 

NB, with a score of 96.25%, followed by DL, FFAHP and SAW, on average; the average difference of each 

model compared to NB is 13.65%. For the real mode, Naive Bayas continues to be the model with the best 

performance, however, there is variation with respect to the score of the other techniques, DL drops in 

position and is located in the fourth score, FFAHP and SAW increase in position maintaining the order of the 

classification; the average difference of each model with respect to NB is 17.48%.  

According to the score obtained in Table 3 for LT, in conventional mode, the best performance is 

obtained by multi-criteria techniques, unlike HT, DL, and the NB predictive model are not located in the first 

places, in the same way. Regarding the multi-criteria technique, SAW obtains the highest score, while 

FFAHP is in second position. The best performer is SAW, with a score of 98.75% followed by FFAHP with 

76.57%; the lowest scores are for NB and DL below 17%; the difference of each model with respect to SAW 

is below 22.18% for FFAHP, for NB 75.46%, and for DL 78.92%. For the real mode the behavior is 

proportional, the best performance is SAW, with a score of 93.08% followed by FFAHP with 69.02%, the 

lowest scores are for NB and DL with scores below 20%; the difference of each model with respect to SAW 

is below 20% for multi-criteria techniques and 75.46% and 78.92% for predictive model and DL 

respectively. 

Table 4 presents the comparative evaluation according to the number of Handoffs for HT and LT, in 

conventional and real modes. For HT the highest score is NB, additionally, this prediction technique has 

another relevant characteristic compared to the others, performance increases for a realistic model, as 

expected in a realistic scenario, with users entering and leaving in random time, the profit metrics should 

decrease, however, although there is an increase in performance, it is only 0.95%, which allows us to 

establish that this strategy is not affected by the incorporation of random users. For the rest of the strategies, 

the variation of the realistic scenario with respect to the conventional one is less than 2% for SAW and for 

FFAHP it is 3.52%, and finally, the greatest variation is DL with 7.96%.  

In LT the best scores are for the multi-criteria techniques SAW and FFAHP with 95.92% and 72.8% 

respectively, DL and NB obtain scores below 20%, with respect to the variations of the realistic scenario 

versus the conventional one, the greatest variation is presented in the multi-criteria techniques, 7.55% for 

FFAHP and 5.67% for SAW, the variations of DL and NB are below 1%, although as in HT, NB presents an 

increase in performance. 

Based on the cumulative cost metric analyzed across various decision-making models during the 

nine-minute transmission period, both in conventional and real modes, there is a notable decline in the 

performance of the multi-criteria techniques as the number of users increases. The scenario with a single SU 

demonstrates the best performance, with the fewest accumulated handoffs, while the scenario with ten SUs 
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shows the poorest performance, with the highest number of accumulated handoffs. For scenarios with 

intermediate numbers of users, the order of performance fluctuates during the first three minutes; however, 

beyond this point, scenarios involving 2 to 5 SUs experience the most significant average increase in 

handoffs. 

Performance in real mode is consistently lower than in conventional mode, primarily due to the 

introduction of random users, which diminishes the number of available SOs, making them more challenging 

to identify. It is clear from the results that as the number of users rises, the effectiveness of the MCDM 

models decreases, underscoring the limitations of these techniques in environments with higher user 

densities. 

 

 

5. CONCLUSION 

With respect to the multi-user environment, it was evident that as the number of users increases, the 

performance of each of the models decreases. NB responds very well to multi-user traffic, DL is not affected 

by realistic scenarios and the multi-criteria FFAHP and SAW techniques perform well for scenarios with low 

traffic. It is also interesting to note how at HT levels the performance of the evaluated strategies is reduced by 

around 25% when incorporating random users, while for low traffic performance is only affected by about 

12% in the same scenario of random users. This shows the importance of carrying out simulations in 

environments closer to reality, since the results can be affected by significant magnitudes. Now, taking into 

account only the number of simultaneous users, it is evident that in effect the greater the number of users, the 

lower the level of performance, however, the reduction in this case is better than that observed in the case of 

random users, for HT it is only 10% and for low traffic there is no evidence of any affectation. In general, 

each strategy performs satisfactorily in certain scenarios, to improve performance in multi-user access, an 

interesting proposal would be to hybridize the implemented strategies or develop a multi-model with an 

adaptive module that selects the best strategy based on the scenario and application that is being executed at 

that time. 

For future research, two main directions are suggested. The first involves developing an adaptive 

module capable of dynamically choosing the most suitable spectral selection model based on the specific 

requirements of the active application. The second direction focuses on conducting evaluations and 

validations using actual CR equipment that can mimic the behavior of a CRN, rather than relying solely on 

simulations. This approach would incorporate real spectral occupancy data to provide more realistic and 

reliable assessments. 
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