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 Accurate energy demand forecasting is essential for optimizing resource 

management and planning within the energy sector. Traditional time series 

models, such as ARIMA and SARIMA, have long been employed for this 

purpose. However, these methods often face limitations in handling non-

stationary data, complexity in model tuning, and susceptibility to overfitting. 

To address these challenges, this study proposes a hybrid approach that 

integrates traditional statistical models with advanced computational 

methods. By combining the strengths of both approaches, the proposed 

models aim to enhance predictive accuracy, improve computational 

efficiency, and maintain robustness across varied energy datasets. 

Experimental results demonstrate that these hybrid models consistently 

outperform standalone traditional methods, providing more reliable and 

precise forecasts. These findings underscore the potential of hybrid 

methodologies in advancing energy demand forecasting and supporting more 

effective decision-making in energy management. 
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1. INTRODUCTION 

The ARIMA model, developed by Box and Jenkins in the 1970s, brought a structured framework to 

time series forecasting. This model breaks down a time series into three key elements: autoregression (AR), 

integration (I), and moving average (MA). The AR component captures the dependence between a value and 

its previous values, while the I component ensures stationarity by applying differencing to the data. The MA 

part focuses on the relationship between a value and the residual errors from previous observations. 

Renowned for its straightforward application and versatility, autoregressive integrated moving average 

(ARIMA) has become a widely adopted tool in diverse forecasting contexts [1]-[8]. Time series forecasting is 

a critical tool in understanding and predicting temporal data patterns across various domains, ranging from 

finance and economics to weather forecasting and resource management [9]-[14]. Its significance lies in its 

ability to extrapolate historical data into the future, providing valuable insights for decision-making 

processes. Traditional approaches, such as ARIMA models, have long been foundational in time series 

analysis due to their ability to capture linear dependencies within data and make reliable forecasts under 

certain assumptions of stationarity and linearity. However, as datasets grow in complexity and non-linear 

patterns become more prevalent, the limitations of purely statistical models like ARIMA become apparent 

[15]-[19]. This necessitates the evolution towards hybrid forecasting models that integrate machine learning 

techniques [20]-[25]. 

https://creativecommons.org/licenses/by-sa/4.0/
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This paper explores the development and application of hybrid ARIMA-machine learning models in 

time series forecasting. It aims to bridge the gap between traditional statistical methods and modern machine 

learning approaches, offering insights into how these hybrid models can overcome the limitations of 

conventional ARIMA models. The contributions of this study lie in: 

− Demonstrating the efficacy of hybrid ARIMA-machine learning models in capturing complex temporal 

patterns. 

− Providing empirical evidence of improved forecasting accuracy compared to traditional ARIMA models. 

− Offering practical guidelines for selecting and implementing hybrid models based on dataset 

characteristics and forecasting objectives. 

− Proposing a framework for integrating machine learning into time series forecasting that enhances 

prediction capabilities and scalability. 

 

 

2. LITERATURE REVIEW 

Several studies have been conducted to address the challenges observed in current systems. 

Arumugam and Natarajan [1] provide a comprehensive analysis of ARIMA and seasonal ARIMA 

(SARIMA) models, which extend ARIMA by incorporating seasonal effects. SARIMA models are 

particularly effective for data with strong seasonal patterns by including seasonal differencing and seasonal 

AR and MA terms. Their study highlights the robustness of ARIMA and SARIMA models in capturing linear 

patterns and making accurate forecasts in various applications. However, they also note the models’ 

limitations, especially their assumption of linearity and requirement for stationarity. Li et al. [2] 

demonstrated the effectiveness of long short-term memory (LSTM) in ultra-short-term power load 

forecasting, highlighting its ability to handle high-dimensional data and incorporate exogenous variables for 

improved accuracy. Similarly, the study by Xue et al. [3] explored a combined LSTM-ARIMA model for 

anomaly detection in communication networks. This hybrid approach leverages the strengths of both ARIMA 

and LSTM, with ARIMA capturing the linear component of the data and LSTM modeling the non-linear 

residuals. Their findings suggest that such hybrid models can significantly enhance forecasting performance 

by addressing the limitations of each individual approach.  

Deep learning models like convolutional neural networks (CNNs) and hybrid CNN-LSTM 

architectures have also been explored for time series forecasting. Mehtab and Sen [4] utilized CNN and 

LSTM-based deep learning models for stock price prediction, demonstrating that the combined approach 

could capture both spatial and temporal dependencies in the data, leading to superior forecasting accuracy 

compared to traditional methods. Xu et al. [5] proposed a deep belief network (DBN)-based AR model for 

non-linear time series forecasting. Their model integrates deep learning with traditional statistical methods, 

capturing intricate patterns in the data that are often missed by standalone ARIMA models. This I of deep 

learning techniques has opened new avenues for more accurate and reliable time series forecasts. In the realm 

of energy systems, Zhao et al. [6] reviewed the application of emerging information and communication 

technologies for smart energy systems and renewable transitions. Their work underscores the potential of 

machine learning models in optimizing energy consumption forecasts, enhancing the efficiency and 

sustainability of energy systems. Hybrid models that combine ARIMA with machine learning algorithms 

have also been proposed to address specific forecasting challenges. Saleti et al. [7] introduced a hybrid 

ARIMA-LSTM model that integrates MA techniques to enhance forecasting accuracy. Their study highlights 

the practical benefits of combining traditional statistical models with deep learning, providing a robust 

framework for time series analysis. Pomorski and Gorse [8] explored the use of adaptive MA in Markov-

switching regression models, demonstrating improvements in forecasting performance.  

This approach emphasizes the importance of adaptivity in handling evolving time series data, a 

feature that is well-captured by machine learning models. Peleg et al. [9] leveraged the triple exponential MA 

for fast-adaptive moment estimation, further enhancing the adaptability of forecasting models. This technique 

allows for more responsive adjustments to changes in data patterns, improving the overall accuracy and 

reliability of forecasts. In addition to deep learning, other machine learning techniques such as gradient 

boosting machines (GBM) have shown promise in time series forecasting. He et al. [10] reviewed the 

technologies and economics of electric energy storage systems, highlighting the role of advanced machine 

learning models in optimizing storage and distribution strategies. The I of machine learning with traditional 

methods offers a comprehensive approach to forecasting, addressing both linear and non-linear aspects of 

time series data. Dey et al. [11] developed a hybrid CNN-LSTM and internet of things (IoT)-based system 

for monitoring and predicting coal mine hazards. Their study demonstrates the applicability of hybrid models 

in safety-critical environments, where accurate and timely forecasts are essential for preventing accidents and 

ensuring operational efficiency. The literature indicates a clear trend towards the I of machine learning with 

traditional statistical models in time series forecasting. These hybrid approaches leverage the strengths of 
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both methodologies, offering a more comprehensive and accurate forecasting framework. By addressing the 

limitations of standalone ARIMA models, such as their inability to capture non-linear patterns and their 

sensitivity to parameter selection, hybrid models provide a robust solution for modern time series analysis.  

 

 

3. METHOD 

This study proposes a hybrid ARIMA-machine learning model to enhance the accuracy and 

robustness of time series forecasting. Specifically, we explore the I of ARIMA with LSTM networks and 

GBM. The proposed hybrid models, ARIMA-LSTM and ARIMA-GBM, leverage the strengths of both 

traditional statistical methods and modern machine learning techniques to capture both linear and non-linear 

patterns in time series data. We employ machine learning models such as XGBoost regressor, Lasso, and 

Ridge for initial predictions, followed by time series models like ARIMA and VAR for refined forecasting. 

 

3.1.  ARIMA-LSTM model 

The ARIMA-LSTM model combines the linear modeling capabilities of ARIMA with the non-linear 

pattern recognition strengths of LSTM networks. The process involves two main stages: modeling the linear 

component using ARIMA and capturing the non-linear residuals with LSTM. 

1. Modeling the linear component with ARIMA: 

− Identification: the first step involves identifying the appropriate parameters (p,d,q)(p, d, q)(p,d,q) for the 

ARIMA model. This is achieved by analyzing the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plots. The ACF and PACF help in determining the order of the AR and 

MA components, while the differencing parameter ddd is chosen to make the series stationary. 

− Estimation: once the parameters are identified, the ARIMA model is fitted to the time series data. The 

model is formulated as follows: 

 

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2……+ 𝜙𝑝𝑌𝑡−𝑝 + ϵ𝑡 − θ1ϵ𝑡−1 − θ2ϵ𝑡−2………θ𝑞ϵ𝑡−𝑞    

 

where 𝑌𝑡 is the actual value at time t, 𝜙  are the coefficients of the AR terms, θ𝑗 are the coefficients of the 

MA terms, and ϵ𝑡is the error term. 

− Diagnostic checking: after fitting the ARIMA model, diagnostic checks are performed to ensure the 

residuals are white noise. This involves examining the residuals for any autocorrelation and checking 

their normality using the Ljung-Box test. 

2. Modeling the non-linear residuals with LSTM: 

− Residual extraction: the residuals ϵt\epsilon_tϵt from the ARIMA model, which represent the portion of 

the data not explained by the linear model, are extracted. These residuals are then used as the input for the 

LSTM network. 

− LSTM network configuration: the LSTM network is configured with an appropriate number of layers and 

units to capture the temporal dependencies in the residuals. The LSTM model is defined as (1): 

 
𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡 + 𝑖𝑡 ∗  𝐶�̈�
ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝐶𝑡 }

  
 

  
 

 (1) 

 

where 𝑖𝑡, 𝑓𝑡,  𝑜𝑡, are the input, forget, and output gates, respectively, 𝐶𝑡 is the cell state, and ℎ𝑡is the hidden 

state. 

− Training the LSTM: the LSTM network is trained on the residuals using a suitable loss function (e.g., 

mean squared error (MSE)) and an optimizer (e.g., Adam). The training process involves backpropagation 

through time (BPTT) to update the network weights. 

 

3.2.  ARIMA-GBM model 

The ARIMA-GBM model integrates the linear ARIMA model with the powerful ensemble learning 

capabilities of GBM. The GBM algorithm enhances the predictive accuracy by combining multiple weak 

learners to form a strong predictive model. 

Modeling the linear component with ARIMA: 
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The ARIMA modeling process is identical to that described for the ARIMA-LSTM model, involving 

identification, estimation, and diagnostic checking. 

Modeling the non-linear residuals with GBM: 

− Residual extraction: the residuals ϵt\epsilon_tϵt from the ARIMA model are used as the input for the 

GBM. 

− GBM configuration: the GBM is configured with a suitable number of trees, learning rate, and maximum 

depth. These hyperparameters are tuned using cross-validation to prevent overfitting and ensure robust 

performance. The GBM model is formulated as (2): 

 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) + γ𝑚ℎ𝑚(𝑥)𝐹𝑚(𝑥) (2) 

 

where 𝐹𝑚(𝑥)is the model prediction at iteration mmm, ℎ𝑚(𝑥) is the weak learner (decision tree) added at 

iteration m, and γ𝑚 is the learning rate. 

Data preprocessing involves cleaning and transforming the raw data to make it suitable for analysis. 

The steps include handling missing values, normalizing the data, and creating new features. 

1. Handling missing values: missing values in the temperature and energy consumption data are imputed 

using linear interpolation. 

2. Normalization: the data is normalized to a common scale to ensure uniformity and facilitate model 

training. This is done using min-max scaling: 

 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
 (3) 

 

where x is the original value, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the minimum and maximum values in the dataset, and x′ is 

the normalized value. 

3. Feature engineering: feature engineering involves creating new features to enhance model performance. 

For instance, we derive average temperature from minimum and maximum temperatures: 
 

𝐴𝑣𝑔_𝑇𝑒𝑚𝑝 =
𝑀𝑖𝑛_𝑇𝑒𝑚𝑝+𝑀𝑎𝑥_𝑇𝑒𝑚𝑝2

2
 (4) 

 

Machine learning models: 

1. XGBoost regressor: XGBoost is an ensemble learning method known for its efficiency and effectiveness 

in regression tasks. The model is trained to predict energy consumption based on temperature data and 

other features extracted during preprocessing. The objective function for XGBoost can be written as: 
 

𝑜𝑏𝑗(𝛩) = ∑ 𝑙(𝑦𝑖
𝑛
𝑖=1 − �̈�𝑖) +  ∑ Ω(f(k)𝑘

𝑘=1  (5) 
 

where l is the loss function (e.g., MSE), and Ω is the regularization term to control model complexity. 

2. Lasso regression: lasso regression performs both variable selection and regularization to enhance 

prediction accuracy. The Lasso objective function is: 
 

min
β
(
1

2𝑛
∑ (𝑦𝑖 − 𝑥𝑖β)

2𝑛
𝑖=1 ) + λ∑ β𝑗

𝑝
𝑗=1  (6) 

 

where λ is the regularization parameter. 

3. Ridge regression: ridge regression also adds a regularization term but uses the L2 norm. Its objective 

function is: 
 

min
β
(
1

2𝑛
∑ (𝑦𝑖 − 𝑥𝑖β)

2𝑛
𝑖=1 ) + λ∑ β𝑗

2𝑝
𝑗=1  (7) 

 

Time series models: 

After initial predictions using machine learning models, we employ time series models to capture temporal 

dependencies and refine the forecasts. 

1. ARIMA: ARIMA is a popular time series forecasting technique that combines AR and MA components 

with differencing to achieve stationarity. The ARIMA model is defined as: 
 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡 − 1 + 𝜙2𝑦𝑡 − 2 +⋯+ 𝜙𝑝𝑦𝑡 − 𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡 − 1 + 𝜃2𝜖𝑡 − 2 +⋯+ 𝜃𝑞𝜖𝑡−𝑞(8) 

 

where 𝑦𝑡 is the value at time t, ϕ and θ are the coefficients, and ϵt is the error term. 
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2. VAR (vector autoregressive model): VAR is a multivariate time series model that captures the linear 

interdependencies among multiple time series. The VAR model for a two-variable case is: 
 

𝑦1, 𝑡 = 𝑐1 + 𝜙11,1𝑦1, 𝑡 − 1 + 𝜙12,1𝑦2, 𝑡 − 1 + 𝜖1, 𝑡 (9) 
 

𝑦2, 𝑡 = 𝑐2 + 𝜙21,1𝑦1, 𝑡 − 1 + 𝜙22,1𝑦2, 𝑡 − 1 + 𝜖2, 𝑡 (10) 
 

where 𝑦1, 𝑡 and 𝑦2, 𝑡 t are the time series variables, c are the constants, ϕ are the coefficients, and ϵ is the 

error term. 

Model evaluation: 

The performance of each model is evaluated using standard metrics: 

− MSE:  

 

𝑀𝑆𝐸 =  
1

𝑛
∑ 𝑙(𝑦𝑖
𝑛
𝑖=1 −�̈̂�𝑖)

2
 (11) 

 

MSE calculates the average squared difference between predicted values 𝑦 and actual values (�̂�). It penalizes 

larger errors more heavily due to squaring each difference. Lower MSE values indicate better model 

performance. MSE quantifies the accuracy of predictions made by each model (XGBoost regressor, Lasso, 

Ridge, ARIMA-LSTM, ARIMA-GBM) for peak energy demand. Models with lower MSE are considered 

more accurate in forecasting energy consumption patterns. 

− Root mean squared error (RMSE): 

 

RMSE = √
1

𝑛
∑ 𝑙(𝑦𝑖
𝑛
𝑖=1 −�̈�𝑖)

2
 (12) 

 

RMSE is the square root of MSE, providing a measure of the average magnitude of error between predicted 

and actual values in the same units as the original data. It gives a more intuitive understanding of the model’s 

prediction errors. RMSE assesses the overall deviation of predicted energy demand values from actual 

observations. Models with lower RMSE are preferred as they indicate closer alignment between predicted 

and actual values. 

− Mean absolute percentage error (MAPE):  
 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖− 𝑦�̈�

𝑦𝑖
|  ×  100𝑛

𝑖=1  (13) 

 

In evaluating the performance of each model, standard metrics such as MSE, RMSE, and MAPE are 

employed. MSE quantifies the average squared difference between predicted (y^i\hat{y}_iy^i) and actual 

(yiy_iyi) values, providing a measure of overall model accuracy. RMSE, derived from MSE, represents the 

square root of the average squared differences, offering a more interpretable measure in the original units of 

the predicted variable. MAPE calculates the average percentage difference between predicted and actual 

values relative to the actual values, making it particularly useful for assessing prediction accuracy across 

different scales and magnitudes of data. These metrics are crucial in comparing and selecting the best-fit 

model for predicting peak energy demand based on historical data and temperature variables from Tamil 

Nadu. By systematically evaluating these metrics, the study ensures robustness and reliability in forecasting 

energy consumption patterns, contributing to effective energy management strategies in the region. 

− Theil’s U-statistics 
 

U = √

1
𝑛
∑ (𝑦𝑖̅̅̅̅
𝑛
𝑖=1 −�̈�𝑖)

2

�̈�𝑖
2

1

𝑛
∑ (𝑛
𝑖=1

𝑦
𝑖2

𝑦2
)

 (14) 

 

where: 

− n is the number of observations. 

− 𝑦𝑖  represent the observed value for the i-th data point. 

− �̈�𝑖 corresponds to the predicted value. 

− yˉ indicates mean for observed values {�̈�𝑖} 

In the study, Theil’s U-statistics is employed alongside other metrics like MSE, RMSE, and MAPE to 

comprehensively evaluate the forecast accuracy of models such as ARIMA-LSTM and ARIMA-GBM. 
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4. RESULTS AND DISCUSSION 

The methodology of this research involved developing and evaluating hybrid ARIMA-machine 

learning models for predicting peak energy demand. The hybrid models combine the strengths of ARIMA for 

linear time series modeling and machine learning techniques (LSTM and GBM) for capturing non-linear 

patterns in the data. The process began with data preprocessing, which included handling missing values, 

normalizing the data, and creating additional features such as temperature trends. The machine learning 

models (XGBoost regressor, lasso, and ridge) were trained using a training set, with hyperparameters tuned 

via cross-validation to minimize the validation error. Residuals from these models were analyzed to ensure 

they followed a white noise pattern, indicating that the systematic patterns in the data were effectively 

captured. 

The residuals were then used as inputs for the ARIMA and VAR models to capture any remaining 

temporal dependencies. The models were evaluated using MSE, RMSE, MAPE, and Theil’s U-statistics to 

compare their performance. Visualizations, including forecast summaries and alignment between predicted 

and actual observations, were created to illustrate the models’ predictive capabilities. The seven sets of data 

used in this study correspond to each day of the week: Monday, Tuesday, Wednesday, Thursday, Friday, 

Saturday, and Sunday. These data sets were collected from a major metropolitan energy provider’s historical 

record, spanning over a period of five years. The data include detailed hourly records of energy consumption, 

temperature, humidity, and other relevant environmental factors. 

Importance of day-specific data: the decision to collect and analyze day-specific data is driven by 

the inherent variability in energy consumption patterns across different days of the week. For example: 

− Weekdays (Monday to Friday): energy consumption patterns are influenced by industrial activities, 

business operations, and regular work schedules. 

− Weekends (Saturday and Sunday): consumption patterns differ due to reduced industrial activity and 

changes in residential energy use, often higher due to more time spent at home 

Table 1 presents the performance metrics of hybrid ARIMA-machine learning models compared to 

baseline models for predicting peak energy demand for each day of the week. Figure 1 provides a 

comprehensive comparison of the performance metrics among different models employed in this research for 

predicting peak energy demand. Each subplot in the figure corresponds to a specific metric: MSE, RMSE, 

MAPE, and Theil’s U-statistics. These metrics are crucial for assessing the accuracy and reliability of the 

forecasting models used. 

 

 

Table 1. Performance metrics of ARIMA model 
Model Metric Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

XGBoost regressor MSE 0.020 0.023 0.024 0.025 0.026 0.022 0.021  
RMSE 0.141 0.152 0.155 0.158 0.161 0.148 0.145  
MAPE 2.90% 3.10% 3.12% 3.20% 3.25% 3.05% 3.00%  
Theil’s U-statistics 0.14 0.15 0.15 0.16 0.16 0.14 0.14 

Lasso regression MSE 0.029 0.030 0.031 0.032 0.033 0.030 0.029  
RMSE 0.170 0.173 0.176 0.179 0.182 0.173 0.170  
MAPE 4.10% 4.50% 4.58% 4.60% 4.65% 4.55% 4.50%  
Theil’s U-statistics 0.18 0.19 0.19 0.19 0.20 0.19 0.18 

Ridge regression MSE 0.027 0.028 0.029 0.030 0.031 0.028 0.027  
RMSE 0.164 0.167 0.170 0.173 0.176 0.167 0.164  
MAPE 4.00% 4.10% 4.20% 4.30% 4.35% 4.25% 4.20%  
Theil’s U-statistics 0.17 0.17 0.18 0.18 0.19 0.17 0.17 

ARIMA-LSTM MSE 0.015 0.017 0.018 0.019 0.020 0.017 0.016  
RMSE 0.122 0.130 0.134 0.138 0.141 0.130 0.126  
MAPE 2.70% 2.80% 2.85% 2.90% 3.00% 2.80% 2.75%  
Theil’s U-statistics 0.11 0.12 0.12 0.12 0.13 0.12 0.11 

ARIMA-GBM MSE 0.018 0.020 0.021 0.022 0.023 0.020 0.019  
RMSE 0.134 0.141 0.145 0.148 0.152 0.141 0.138  
MAPE 2.90% 2.95% 3.01% 3.10% 3.15% 2.95% 2.90%  
Theil’s U-statistics 0.13 0.13 0.14 0.14 0.14 0.13 0.13 

 

 

Figure 1 illustrates the comparative performance of various regression models (XGBoost regressor, 

lasso regression, ridge regression, ARIMA-LSTM, and ARIMA-GBM) across seven days, using metrics such 

as MSE, RMSE, MAPE, and Theil’s U-statistics. The ARIMA-LSTM model consistently shows the lowest 

MSE and MAPE values, highlighting its superior accuracy and forecasting efficiency compared to other 

models over the observed period. Figure 2 illustrates the comparison between the actual energy demand and 

the predicted values generated by the ARIMA-LSTM model over a specified period. The green line 

represents the actual observed energy demand, while the blue dashed line denotes the forecasted values from 

the ARIMA-LSTM model. The close alignment between the two lines suggests that the ARIMA-LSTM 
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model is highly effective in capturing both linear and non-linear patterns in the data. This indicates that the 

model has successfully leveraged the strengths of both ARIMA and LSTM components, with ARIMA 

capturing short-term trends and LSTM learning long-term dependencies. The minimal deviation between the 

actual and predicted values underscores the model’s robustness and accuracy in forecasting peak energy 

demand. 

 

 

 
 

Figure 1. Comparison with baseline models 

 

 

These metrics collectively highlight the ARIMA-LSTM model’s superior performance in providing 

precise and reliable forecasts. Figure 2 presents the comparison between the actual energy demand and the 

predicted values generated by the ARIMA-GBM model. The green line represents the actual observed energy 

demand, while the purple dashed line indicates the forecasted values from the ARIMA-GBM model. Similar 

to Figure 1, the ARIMA-GBM model shows a strong capability in predicting energy demand with a close 

alignment between the actual and forecasted values. However, slight deviations can be observed compared to 

the ARIMA-LSTM model, suggesting that while the ARIMA-GBM model is effective, it may not capture the 

data patterns as comprehensively as the ARIMA-LSTM model. 

 

 

 
 

Figure 2. ARIMA-LSTM 
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The performance metrics for the ARIMA-GBM model is shown in Figure 3. These metrics, while 

indicating a high level of accuracy, are slightly less optimal than those of the ARIMA-LSTM model. This 

suggests that the ARIMA-GBM model, though robust, may be better suited for datasets where gradient 

boosting techniques excel, but might not capture the same depth of temporal dependencies as the LSTM-

based approach. 

 

 

 
 

Figure 3. ARIMA-GBM 

 

 

5. CONCLUSION 

The research aimed to enhance traditional forecasting methods by integrating ARIMA with 

advanced machine learning techniques such as LSTM and GBM. Through rigorous experimentation and 

evaluation using comprehensive metrics like MSE, RMSE, MAPE, and Theil’s U-statistics, the study 

conducted a thorough comparison of model performance. The comparative analysis among XGBoost 

regressor, lasso regression, ridge regression, ARIMA-LSTM, and ARIMA-GBM highlighted the notable 

superiority of the hybrid ARIMA-LSTM model. ARIMA-LSTM consistently exhibited superior performance 

across all metrics, demonstrating its ability to effectively capture both linear and non-linear patterns in the 

data, thereby enhancing accuracy in predicting peak energy demand. The I of LSTM with ARIMA proved 

particularly advantageous by leveraging LSTM’s capability to learn temporal dependencies in data 

sequences. This research contributes significantly to advancing time series forecasting techniques in several 

critical aspects. Firstly, it achieves improved accuracy in peak energy demand prediction compared to 

standalone ARIMA models and other baseline approaches. Secondly, the hybrid models demonstrated 

robustness in handling complex data patterns and variations, underscoring their suitability for real-world 

applications where precise and reliable forecasts are essential. Lastly, the practical implications of this study 

provide valuable insights for energy management and planning, enabling stakeholders to make informed 

decisions based on dependable forecasts. 
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