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The application of data mining techniques for the extraction of patterns from
medical datasets is useful in the prediction of various diseases from the data
of patients. An appropriate feature selection method is required for the
medical datasets to give better results for the medical data mining process. In
data preprocessing, feature selection is an important process that finds the
most relevant features from the dataset. Considering all features of the
medical dataset without using any feature selection process may sometimes
lead to inaccurate results. Most of the medical datasets contain meaningless
data that are not relevant to the data mining process. These data can be
eliminated through the feature selection process. This paper presents an
integration of an ensemble feature selection approach and an ensemble
classification approach through a classifier called the ensemble recursive
feature elimination-based ensemble classifier (ERFE-EC) for the
classification of medical data. Four different medical datasets were used for

testing the ERFE-EC method, which showed promising results.
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1. INTRODUCTION

This research work focuses on enhancing and applying a feature selection method called recursive
feature elimination [1] for the medical diagnosis problem by using an ensemble classification approach. The
recursive feature elimination method is one of the feature selection methods that selects the best features
based on the machine learning classifier and the importance scores of the features generated by the trained
classifier. It is possible to generate the feature weights that accurately represent the significance of each
feature when a classifier is trained using the dataset. The feature with the lowest weight value is eliminated
once the features have been ranked based on their respective weights. Until it runs out of features to train
with, the classifier is then retrained using the remaining features. Lastly, the feature importance-based
recursive feature elimination method can be used to acquire the whole feature ranking. Some of the latest
research works are reviewed below, which apply the recursive feature elimination method for selecting the
features from medical datasets.

The recursive feature elimination method based on the support vector machine (SVM) [2] model is
used for the feature selection in [3]. Here, the SVM classifier is used for classification from the selected
features. In their study, the Wisconsin diagnostic breast cancer (WDBC) dataset [4] is used for testing, where
the SVM classifier showed an accuracy of 99%.
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The recursive feature elimination method based on logistic regression model is used for the feature
selection in [5]. Here, the logistic regression [6], artificial neural network [7], Naive bayes [8], SVM, and
decision tree classifiers are used for classification from the selected features. In their study, the Pima Indian
diabetes (PID) dataset [9] is used for testing where all the classifiers showed an average accuracy of 80%.

The recursive feature elimination approach integrated with the decision tree, K-nearest neighbor
(KNN) [10], random forest [11], and SVM classifiers were applied for the classification of kidney disease in
[12]. Here, the chronic kidney dataset [4] is used for testing their proposed system. Based on their study, the
SVM, KNN, decision tree, and random forest classifiers showed the accuracy of 96.67%, 98.33%, 99.17%,
and 100%. The recursive feature elimination method based on logistic regression model is used for the
feature selection in [13]. Here, the gradient boosting technique [14] based on decision tree learning [15] is
used for classification from the selected features. Their proposed system showed an accuracy of 89.7% when
testing using the cardiovascular disease dataset [16].

The recursive feature elimination method based on different classifiers including logistic regression,
random forest, and decision tree classifiers are studied in [17] for the feature selection from PID dataset.
Here, the decision tree, KNN, Naive bayes, SVM, and random forest classifiers are studied for the
classification of diabetes from the selected features. Based on their experiments, the accuracies of classifiers
are varied with different recursive feature eliminators.

It can be seen from the reviewed approaches that the efficiency of recursive feature elimination
depends on the classifier used with it. For example, if the feature importance scores estimated by the machine
learning classifier is not effective for a particular dataset, then the recursive feature elimination method
employing that classifier will also be not effective. There are also research gaps from the reviewed
approaches in investigating the effectiveness of recursive feature elimination method in feature selection
method when applying the recursive feature elimination method through an ensemble approach based on
machine learning classifiers such as decision tree, and SVM, and ensemble classifiers like gradient boosting,
AdaBoost [18], and random forest.

The efficiency of recursive feature elimination approach can be improved by using an ensemble
approach. This research work improves the recursive feature elimination approach by presenting an ensemble
classification system called ensemble recursive feature elimination (ERFE) based ensemble classifier (ERFE-
EC) which is applied and investigated for the classification of breast cancer, diabetes, heart disease, and
Parkinson’s disease. The necessity of the recursive feature elimination and ERFE for the feature selection in
medical datasets can be investigated by applying the ERFE-EC to different medical datasets.

This paper is organized as follows. The section 2 describes about the proposed ERFE-EC. The
section 3 describes the performance of ERFE-EC for the classification of various diseases. The section 4
gives conclusion about the research work presented in this paper.

2. PROPOSED SYSTEM
The dataset used in this research work and the ERFE-EC are described in this section.

2.1. Dataset description

Four medical datasets, including WDBC, heart disease, Parkinson’s disease datasets available at
University of California machine learning repository [4] and PID dataset available at Kaggle repository [9]
are used for testing the ERFE-EC. The WDBC dataset [4] consists of 30 input features which are the standard
error (SE), mean, and worst values of features: compactness mean (CM), compactness standard error (CSE),
compactness worst (CW), smoothness mean (SM), smoothness SE (SSE), smoothness worst (SW), perimeter
mean (PM), perimeter SE (PSE), perimeter worst (PW), area mean (AM), area SE (ASE), area worst (AW),
symmetry mean (SYM), symmetry SE (SYSE), symmetry worst (SYW), radius mean (RM), radius SE
(RSE), radius worst (RW), texture mean (TM), texture SE (TSE), texture worst (TW), concave points mean
(CPM), concave points SE (CPSE), concave points worst (CPW), concavity mean (CYM), concavity SE
(CYSE), concavity worst (CYW), fractal dimension mean (FDM), fractal dimension SE (FDSE), and fractal
dimension worst (FDW) of the cell nuclei. The output categories of the WDBC dataset are malignant and
benign. There are 569 samples in the WDBC dataset.

The PID dataset [9] contains 768 samples where the input features are triceps skin fold thickness
(TSFT), plasma glucose concentration (PGC), body mass index (BMI), number of times pregnant (NTP),
age, 2-Hour serum insulin (2HSI), diastolic blood pressure (DBP), and diabetes pedigree function (DPF). The
output categories of the PID dataset are non-diabetic and diabetic.

The heart disease dataset [4] contains 303 samples where the input features are exercise induced
angina (EIA), number of major vessels colored by fluoroscopy (NMVCF), serum cholesterol (SC), resting
electrocardiographic results (RES), gender, slope of the peak exercise ST segment (SPESTS), types of chest
pain (TCP), thalassemia, resting blood pressure (RBP), fasting blood sugar (FBS), maximum heart rate
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achieved (MHRA), age, and oldpeak. The output categories of the heart disease dataset are below 50%
narrowing and above 50% narrowing.

The Parkinson’s disease dataset [4] consists of 22 input features where the input features are
different measures that are estimated by the multidimensional voice program (MVP). The input features of
Parkinson’s disease dataset are MVP: Fo, MVP: Fhi, MVP: Flo, MVP: jitter (%), MVP: jitter (Abs), MVP:
RAP, MVP: PPQ, jitter: DDP, MVP: shimmer, MVP: shimmer (dB), shimmer: APQ3, shimmer: APQ5,
MVP: APQ, shimmer: DDA, NHR, HNR, RPDE, D2, DFA, spreadl, spread2, and PPE. The output
categories of the Parkinson’s disease dataset are healthy and Parkinson’s disease. There are 195 samples in
the Parkinson’s disease dataset.

2.2. The proposed classification system

The architecture of ERFE-EC is shown in the Figure 1. In ERFE-EC, the ERFE method combines
the decision tree-based recursive feature eliminator (DT-RFE), random forest-based recursive feature
eliminator (RF-RFE), AdaBoost based recursive feature eliminator (AB-RFE), gradient boosting based
recursive feature eliminator (GB-RFE), and SVM based recursive feature eliminator (SVM-RFE). The
decision tree, random forest, AdaBoost, gradient boosting, and SVM classifiers are used as the estimators in
DT-RFE, RF-RFE, AB-RFE, GB-RFE, and SVM-RFE, respectively, where the best features are selected
through the recursive feature elimination method. The majority of the features selected by the DT- RFE, RF-
RFE, AB-RFE, GB-RFE, and SVM-RFE are considered as the best features which are processed through an
ensemble classifier for final classification. The ensemble classifier employed in ERFE-EC consists of
decision tree, KNN, naive bayes, SVM, AdaBoost, gradient boosting, and random forest classifiers. The
classifiers: decision tree, KNN, naive bayes, random forest, AdaBoost, gradient boosting, and SVM used in

ERFE-EC are described below.
EDatasetﬁ
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Figure 1. ERFE-EC architecture

2.2.1 Decision tree

A non-parametric supervised learning approach called a decision tree, with its hierarchical tree
structure, is used for both regression and classification tasks. It is made up of leaf nodes, internal nodes,
branches, and a root node. The decision tree's nodes are connected by directed edges. The internal and root
nodes represent the input features of the training dataset. The terminal nodes reflect the output categories that
are connected to the training dataset. There will be precise test criteria to divide the internal and root nodes
based on their respective categories. The splitting procedure is repeated until the decision tree finds every
category of the output variable given in the training dataset.

The decision tree algorithm employs the attribute test condition based on the type of attributes.
There are just two possible outcomes when evaluating the binary attributes. Regarding nominal attributes, the
outputs produced by the test condition are determined by the number of unique values associated with the
relevant qualities. Ordinal attributes enable the number of unique values linked with the appropriate qualities
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to be grouped together without going against their property, which could lead to a lot of splits or binary
results. When working with continuous characteristics, the test condition can offer a binary split using a
comparison test, or many splits using different value ranges.

Entropy [19], Gini impurity [20], and classification error are a few metrics that can be used to find
the node that divides the training dataset's samples most efficiently. The splitting method chooses the node
with the lowest value when the Gini impurity measure is used, and the node with the highest value when the
information gain [21] measure is used. Let us assume that there are p number of output categories and that
the subset of samples at node x that belong to category Kk is represented by q(k|x). The entropy E(x), Gini
impurity G(x), and classification error C(x) measurements are found using (1), (2), and (3), respectively.

E()=- X7 qlklx)log,q(klx) @
G =1- Y7 [q(klxn)]? @
C(x)=1- maxq (klx) 3

The decision tree classifier in ERFE-EC will be able to choose the best features from datasets based
on the Gini impurity measure where the features with lower values are deemed to be more essential in the
dataset. The decision tree algorithm is not affected by outliers too much and has the added benefit of being
able to model non-linear associations between the features and the target variable [22]. Decision trees do
have the ability to perform feature selection during the training of the model [23]. They choose the best
features to split on based on their potential to lower impurity (like Gini impurity or entropy in classification).
This suggests that features deemed unimportant or less informative are essentially disregarded or minimally
used.

2.2.2 KNN

KNN, sometimes referred to as lazy learners, classifies the data by determining how similar the test
and training sets are to one another. In the multi-dimensional feature space, each training dataset sample is
represented by the KNN as a data point. The distance in the feature space between each new test sample's
data point and the other data points is computed. The distance between the data points can be calculated
using a variety of distance measures. The majority of the KNN models make use of the Euclidean distance
measure. Let us assume that there exist two data points, X; and X, representing instances, xi and Xai,
respectively, that possess attributes, A1, Ao, ..., Ai. The calculation of the Euclidean distance between X; and
Xz is demonstrated by (4).

dist8,, 1) = | 31, Ceae = 320 @)

The K in KNN stands for the number of closest neighbors. The nearest neighbors of the test data
point are those that are closest to it. Based on the categories of its closest neighbors in the feature space, the
category of every test data point is predicted. The test sample will be assigned to a category if all of the test
data point's closest neighbors fall into that group. The category of the majority of the closest neighbors will
be applied to the test sample if the test data point's nearest neighbors fall into more than one category.
Assume that there is a training dataset D and test instances, z = (X', yi'). Let D consists of samples ((X1i, Y1i),
(Xai, Yai), ..., (Xni, Yni)) With characteristics, A1, Ao, ..., A Let Y be the category of X; that has to be predicted,
X" be the data point of the new test sample xi’, t be the class label, X; be the data point of sample from D, and
Yi be the category of Xi wherei=1, 2, ..., |. In the new test sample z, Y" is estimated using the majority vote
with (5) for the k neighbors list D;.

(Xilyi)EDz I(t = le) (5)

Y =argmax ),
t
In (5), the indicator function I (*) returns 1 if the argument is true and returns O otherwise. The
number of nearest neighbors is set to the value of three for the KNN model used in the ERFE-EC. KNN is
expected to be effective on large datasets [24], when the dimensionality is not very high. Important features
are found by KNN through computing the distances between data points within the feature space [25].
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2.2.3 Naive bayes

The naive bayes algorithm can be viewed as a probability classifier that utilizes the bayes theorem.
The naive bayes algorithm relies on a strong independent assumption between every variable in the dataset
given a target variable. The naive bayes algorithm, despite its simple assumption and ease of implementation,
has proven useful for many applications, particularly in data classification problems. The naive bayes
classifier classifies an instance, xi, of n features, A1, A, ..., Ay, and m categories of the target variable, ti, to,
.., tm, in ti if @and only if P(tijx;) > P(tj|x;), for 1< j < m, j #i. As demonstrated, the Bayes theorem is used to
estimate P(ti|xi) by using (6) and (7).

— P&xilt)P(ty)
Pt == ©)

P(xilt)) = TTi=y P (x| ) @)

In this case, P(ti) is the priori probability of ti, P(x;) is the priori probability of xi, and P(x|t)) is the
probability of x; for a certain category of target variable t;.

The Gaussian Naive bayes classifier, which is predicated on the idea that the continuous values
associated with each category of the target variable are distributed in accordance with the gaussian
distribution, is used to handle the continuous data. In (8) is used to calculate the conditional probability
P(xi|t;) for the Gaussian distribution.

PO = ez ep (- 5527) ®)

Here, the variance is represented by o2 and the mean is denoted by u. The gaussian naive bayes
model is used in ERFE-EC. Naive Bayes is effective for large datasets [26], particularly when speed is
needed for all steps of the classification, because the only training needed is for calculating the probability
distributions of each feature, and making predictions is based on simple calculations using these probabilities.

2.2.4 SVM

SVM can be used to solve the curse of dimensionality issue when working with datasets that have a
lot of features. SVM classifiers can be used for both linear and nonlinear data. SVM classifiers conduct
classification based on the maximal margin hyperplane technique. The maximal margin hyperplane technique
divides the training samples of datasets into groups based on the hyperplanes that correspond to the relevant
class labels. Not all the hyperplanes that can be plotted to split the samples are useful for classifying the test
samples. The hyperplane with a larger margin will classify the test samples more accurately than the
hyperplanes with smaller margins. The linear kernel based SVM classifier uses the data points that are on the
borders of different data categories to find a hyperplane that separates the training data points shown on the
feature space into different categories. Support vectors are these data points that are utilized to locate the
hyperplane. SVM examines the data points (x;, yi) considering the training set. Here, i is the n-dimensional
vector, and y; is the target variable that is related to xi, where i = 1, 2, ..., n. The operation of the decision
boundary which divides the training data points is shown in (9).

w-x+b=0 9

Here, w is the n-dimensional weight vector and b is the scalar. The parameters w and b must be
calculated during the training phase. The SVM classifier raises the margin of hyperplanes when a particular
kind of linear model for the data that are linearly separable is found. The SVM classifier in the ERFE-EC
employs a linear kernel. SVM is well-suited for small to medium-sized datasets [27]. SVM is good for
feature selection due to the distribution of the relevant features through margin maximization, the type of
kernel being linear and nonlinear, and its robustness towards noisy and irrelevant features [28].

2.2.5 AdaBoost

AdaBoost is an ensemble classification technique that combines the results of numerous weak
classifiers to produce a powerful classifier. A few criteria are used in the AdaBoost classification approach to
choose the weak classifiers. When the training data is distributed randomly, the accuracy of the weak
classifiers should be greater than 50%. The weighted training data ought to be manageable for the weak
classifiers. When these conditions are met, the AdaBoost classification technique can provide a final
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classifier with an accuracy that outperforms all of the chosen weak classifiers. The AdaBoost classification
approach goes through several iterations in which it attempts to improve performance by lowering the
training process error rate which is estimated from the previous weak classifier for the training data. By
adjusting the weights for the training samples on each iteration, the training process's error rate is decreased.
Let Y = {y;}i2, be the outcome class where y; € {0,1} and consider X = {x;}/~, as training data
where x; € RP. Let W= {w;}1, ,,, be considered where for each sample of the training data, the initial value

of w; is set to i The stages that the AdaBoost classification method takes in each iteration are listed below.

a. The training data with an initial weight value of w; is used to train the weak classifiers, gp. Here, the
iteration level is indicated by p = 1 to k.

b. The training inaccuracy for the weak classifier gy, £y is calculated at each repetition level, p.

c. Determine oy using (10).

@ = 0.5 X (In(1- £,)/ &,) (10)

o

Using (11), the weights of the inaccurate samples are changed.

(11)

"4

(p+1) =W_ip X {e_“p if gp(xi) =Vi
zj (e if gp(xi) #

Z; is the normalizing factor in this case. The above steps above demonstrated how the weight values
of the training instances are changed at each loop to guarantee that the best classification is provided by
enhancing the output of the weaker classifiers that approached before it. In (12) provides the final AdaBoost
classification.

H(x") = arg;nangzl a, 1(g,(x") =¢) (12)

Here, f is the class label, ap, is the value computed based on the training process error rate at iteration
level p, go(x’) is the classification of the weak classifier at iteration level p for the test sample x’, and I (*) is
an indicator function that returns 1 if the argument is true or O otherwise. The decision tree is used as the
weak classifier in AdaBoost model implemented in the ERFE-EC. The AdaBoost algorithm, which focuses
on weak learner enhancement, has been reported to demonstrate positive results when classifying medical
data [29], [30]. It has the benefits of providing solutions to problems like noise in the data and overfitting. In
addition, AdaBoost can construct medical datasets using weak learner outputs to find important features and
therefore, perform feature selection [18].

2.2.6 Gradient boosting

Gradient boosting is an ensemble classifier whose output is decided by the weighting scheme. It is
built on numerous weak classifiers. In gradient boosting, the regression decision tree is typically employed as
the weak classifier. By training each weak learner based on the error of the previous weak learner, gradient
boosting reduces the error rate of the training process. Let Y = {y;}7L, be the outcome class where y; € {0,1}
and consider X = {x;}7L, as the training data where x; € R”. Gradient boosting aims to reduce the
aggregation of many specified loss functions L(y;, F (x;)) by choosing a classification function F(x), which
is provided by (13).

« _ argmin
Fr= R S L0y, F () (13)

In (14) illustrates the estimating function F in an additive form.

F(x) = X5=1 o () (14)

In this case, k denotes the iteration count. An incremental pattern of processing is applied to the
{f,(x)}. In order to maximize the aggregated loss at level p, the recently added function f is chosen, keeping
{f; 5’;11 unchanged. Each parameterized weak learner is represented by the function fi. Let 6 be the decision
tree's parameter vector. Subsequently, 8 comprises characteristics that delineate the decision tree's structure,
including the splitting feature and the threshold for splitting individual internal nodes. In (15) illustrates how
an estimated loss function is built at the level p.
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LOj Fper () + £(6)) & L, Fpa () + 955 + 7 £ (372 (15)

Here, F,,_;(x;) and g; are given by (16) and (17), respectively.

Fp1(6) =224 fi(x) (16)
OL(y;.F(x}))
95 = orey | FO5) = Fpma ) (17)

The decision tree is used as the weak classifier in gradient boosting model implemented in the
ERFE-EC. Gradient boosting algorithm, which is an ensemble of weak learners is combined with a strong
predictive model in a sequential way to make a more accurate classification [31]. Because of its ability to
model complex, nonlinear relationships between features and the target variable, it has become a preferred
approach for addressing cases of imbalanced classification [32]. Because of the implicit feature selection
which takes place during the building of the model, gradient boosting can also be used on feature selection
tasks [33].

2.2.7 Random forest

Several decision trees are used in the ensemble-based random forest classification algorithm. The
bagging technique is used by the random forest where the random samples are chosen from the training
dataset and the decision trees are fitted to these samples. The majority votes from each decision tree
constructed using the random forest model determine the final result. The candidate split technique for each
decision tree model in the random forest classifier selects a group of features at random, and the best split
feature from that subset is used to split each node of the corresponding decision tree. In the majority of
random forest models, the best split selection is carried out using the Gini impurity measure. The dataset's
features can also be ranked by the random forest classifier according to their significance. Each feature's
quality is estimated using the impurity metrics used in the random forest model. The average impurity
measure value for each feature across all the decision trees constructed using the random forest model
reflects the feature's importance; for instance, a lower value implies a feature's high importance. The
maximum depth of each decision tree is set to the value of two for the random forest model used in the
ERFE-EC. Random forest is considered for the classification problems [34], since it is resistant to overfitting
as well as being able to account for the missing values in the training data. Random forest is a highly
effective algorithm for feature selection [35], thanks to its provision of built-in methods for ranking and
selecting the important features based on their contribution in the decision-making process.

The flowchart of ERFE-EC is shown in Figure 2. As shown in Figure 2, initially, the decision tree,
random forest, AdaBoost, gradient boosting, and SVM classifiers are trained with the dataset individually.
Then the trained classifiers are individually used to estimate the scores of features from the dataset. Then the
accuracy of the dataset is estimated. Then the feature with the least score is eliminated from the dataset. The
resulting dataset is used again to train the classifiers individually. Then again, the trained classifiers are
individually used to estimate the scores of features from the dataset. Then again, the accuracy of the dataset is
estimated. Then again, the feature with the lowest score is eliminated from the dataset. This process gets
repeated until the feature subset becomes empty. Finally, the feature subset with maximum accuracy is used
for training the ensemble classifier. The trained ensemble classifier is used for performing the final
classification.

3. RESULTS AND DISCUSSION

The performance measures: accuracy, precision, sensitivity, specificity, and F-measure are used to
test the performance of machine learning classifiers for the optimized medical datasets obtained from RF-
EMLC method. The performance measures: accuracy, sensitivity, and specificity are estimated using (18),
(19), and (20), respectively [36]. The performance measures: precision and F-measure are estimated using
(21) and (22), respectively [37]. Here, TP, TN, FP, and FN represent true positive, true negative, false
positive, and false negative, respectively.

TP+TN
Accuracy = ———— (18)
TP+TN+FP+FN
.. TP
Precision = —— (29)
TP+FP
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Sensitivity = TPT:;N (20)
Specificity = TNTiVFP (21)
F-measure = 2XPrecision x sensitivity 22)

precision+sensitivity
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Figure 2. Flowchart of ERFE-EC

The PID diabetes and heart disease datasets contain missing values which are replaced by KNN
imputation method [38]. Tables 1 shows the list of features that are selected by various recursive feature
eliminators such as DT-RFE, RF-RFE, AB-RFE, GB-RFE, SVM-RFE and their respective classification

As shown in Table 1, the AB-RFE and RF-RFE showed relatively high accuracy, whereas the DT-
RFE and SVM-RFE showed relatively low accuracy for the WDBC dataset. The SVM-RFE showed
relatively high accuracy whereas the DT-RFE, AB-RFE, and GB-RFE showed relatively low accuracy for the
PID dataset. The RF-RFE showed relatively high accuracy whereas the DT-RFE showed relatively low
accuracy for the heart disease dataset. The AB-RFE showed relatively high accuracy whereas the DT-RFE
and SVM-RFE showed relatively low accuracy for the Parkinson disease dataset. Table 2 shows the common
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list of features that are selected by the ERFE method based on the majority voting from the recursive feature
eliminators and their respective classification accuracy for the four medical datasets.

Table 1. Features selected by various recursive feature eliminators for different medical datasets

Datasets Classifiers Selected features Accuracy (%)
WDBC Decision tree RW, TW, SW, CPW 93
WDBC AdaBoost TM, PM, SM, CM, CYM, CPM, SYM, RSE, TSE, PSE, 97

ASE, SSE, CSE, CPSE, SSE, FDSE, RW, TW, PW, AW,
SW, Cw, CYWw, CPW, SW, FDW
WDBC Gradient boosting ™™, PM, AM, CYM, CPM, SYM, FDM, RSE, TSE, ASE, 96
SSE, CSE, CPSE, FDSE, RW, TW, PW, AW, SW, CW,
CYW, CPW, SW, FDW

WDBC Random forest RM, TM, PM, AM, CM, CYM, CPM, ASE, RW, TW, PW, 97
AW, SW, CW, CYW, CPW, SW

WDBC SVM RM, CYM, TSE, RW, SW, CW, CYW, CPW, SW 93

PID Decision tree PGC, 2HSI, BMI, DPF, age 75

PID AdaBoost PGC, TSFT, 2HSI, BMI, DPF 75

PID Gradient boosting NTP, PGC, 2HSI, BMI, age 75

PID Random forest PGC, TSFT, 2HSI, BMI, age 77

PID SVM NTP, PGC, DBP, BMI, DPF 81

Heart disease Decision tree Age, gender, TCP, RBP, SC, FBP, RER, MHRA, EIA, 74

oldpeak, SPESTS, NMVCF, thalassemia

Heart disease AdaBoost Age, gender, TCP, RBP, SC, MHRA, EIA, oldpeak, 82
SPESTS, NMVCEF, thalassemia

Heart disease Gradient boosting age, gender, TCP, RBP, SC, MHRA, EIA, oldpeak, 79
SPESTS, NMVCEF, thalassemia

Heart disease Random forest age, gender, TCP, RBP, SC, RER, MHRA, EIA, oldpeak, 85
SPESTS, NMVCEF, thalassemia

Heart disease SVM Gender, TCP, RER, EIA, oldpeak, SPESTS, NMVCF, 84

thalassemia

Parkinson’s disecase Decision tree MVP: Fo, MVP: Fhi, shimmer: APQ5, RPDE, spread2, PPE 87

Parkinson’s disecase AdaBoost MVP: Fo, shimmer: APQ5, DFA, spread2, PPE 92

Parkinson’s disecase Gradient boosting MVP: Fo, MVP: Fhi, shimmer: APQ5, D2, PPE 90

Parkinson’s disecase Random forest MVP: Fo, MVP: Flo, spreadl, spread2, PPE 90

Parkinson’s disease SVM MVP: shimmer (dB), RPDE, DFA, spreadl, D2 87

Table 2. Final list of features selected by the ERFE-EC method

Datasets Selected final features
WDBC TM, PM, CYM, CPM, TSE, ASE, RW, TW, PW, AW, SW, CW, CYW, CPW, SW
PID PGC, 2HSI, BMI, DPF, Age
Heart Disease Age, gender, TCP, RBP, SC, RER, MHRA, EIA, oldpeak, SPESTS, NMVCF, thalassemia
Parkinson’s Disease MVP: Fo, shimmer: APQ5, spread2, PPE

Figure 3 compares the classification accuracies of decision tree, random forest, AdaBoost, gradient
boosting, and SVM classifiers with and without the ERFE feature selection method for the WDBC dataset.
Figure 4 compares the classification accuracies of decision tree, random forest, AdaBoost, gradient boosting,
and SVM classifiers with and without the ERFE feature selection method for the PID dataset. Figure 5
compares the classification accuracies of decision tree, random forest, AdaBoost, gradient boosting, and
SVM classifiers with and without the ERFE feature selection method for the heart disease dataset. Figure 6
compares the classification accuracies of decision tree, random forest, AdaBoost, gradient boosting, and
SVM classifiers with and without the ERFE feature selection method for the Parkinson’s disease dataset.

As shown in Figure 3, the decision tree, random forest, AdaBoost, and gradient boosting classifiers
showed relatively high accuracies for the optimized WDBC dataset after the ERFE based feature selection
process when compared to their accuracies that are evaluated for the whole WDBC dataset. But the SVM
classifier showed relatively low accuracy for the optimized WDBC dataset after the ERFE based feature
selection process when compared to its accuracy that is evaluated for the whole WDBC dataset.

As shown in Figure 4, the SVM classifier showed relatively high accuracy for the optimized PID
dataset after the ERFE based feature selection process when compared to its accuracy that is evaluated for the
whole PID dataset. But the decision tree, random forest, AdaBoost, and gradient boosting classifiers showed
relatively low accuracies for the optimized PID dataset after the ERFE based feature selection process when
compared to their accuracies that are evaluated for the whole PID dataset.

As shown in Figure 5, the SVM classifier showed relatively high accuracy for the optimized heart
disease dataset after the ERFE based feature selection process when compared to its accuracy that is
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evaluated for the whole heart disease dataset. But the random forest, AdaBoost, and gradient boosting
classifiers showed relatively low accuracies for the optimized heart disease dataset after the ERFE based
feature selection process when compared to their accuracies that are evaluated for the whole heart disease
dataset. In case of the decision tree classifier, it showed the same accuracy for the heart disease dataset when
evaluated with and without the feature selection process.

As shown in Figure 6, the random forest, gradient boosting, and SVM classifiers showed relatively
low accuracies for the optimized Parkinson’s disease dataset after the ERFE based feature selection process
when compared to their accuracies that are evaluated for the whole Parkinson’s disease dataset. In case of the
decision tree and AdaBoost classifiers, they showed the same accuracies for the Parkinson’s disease dataset
when evaluated with and without the feature selection process.

Figure 7 shows the performance measures of ERFE-EC for the four medical datasets. As shown in
Figure 7, the sensitivity of ERFE-EC is relatively high, and the precision of ERFE-EC is relatively low when
compared to the other performance measures for the WDBC dataset. The specificity of ERFE-EC is
relatively high, and the sensitivity of ERFE-EC is relatively low when compared to the other performance
measures for the PID dataset. The sensitivity of ERFE-EC is relatively high, and the specificity of ERFE-EC
is relatively low when compared to the other performance measures for the heart disease dataset. The
sensitivity of ERFE-EC is relatively high, and the specificity of ERFE-EC is relatively low when compared
to the other performance measures for the Parkinson’s disease dataset.

This study investigated the effects of recursive feature elimination method through an ensemble-
based approach. While earlier studies [3], [5] have explored the impact of recursive feature elimination
method for classifying the WDBC and PID datasets, they have not explicitly addressed its influence on
medical data classification using an ensemble-based approach. We found that the effectiveness of ERFE
method gets varied according to the testing datasets as shown in Figures 3-6. The ERFE method proposed in
this study reduced the WDBC dataset to the most impactful features, preserving only those essential for
predicting more accurate outcomes as shown in Figure 3.
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Figure 3. Performance comparison of various classifiers for the WDBC dataset
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Figure 4. Performance comparison of various classifiers for the PID dataset
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Figure 5. Performance comparison of various classifiers for the heart disease dataset
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Figure 7. Performance of ERFE-EC

Although the accuracy of ERFE-EC is relatively low as shown in Figure 7, the sensitivity of ERFE-
EC is relatively high for the WDBC, heart disease dataset, and Parkinson’s disease datasets which shows that
the ERFE-EC is able to show the positive test results for anybody who has the illness. The specificity of
ERFE-EC is relatively high for the PID dataset which shows that the ERFE-EC is able to show the negative
test results for anybody who doesn’t have diabetes. Although there are research works done on applying
ERFE [39]-[41], an investigation of recursive feature elimination process for the medical diagnosis problem
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in an ensemble architecture with using an ensemble of maximum machine learning classifiers is a research
challenge when we apply such an ensemble feature extraction process for the medical datasets. To address
this research investigation, ERFE-EC is proposed and applied for the classification of different medical
datasets. Our study suggests that higher number of machine learning classifiers in ERFE-EC is not associated
with poor performance in classification. The proposed ERFE-EC may benefit in producing optimizing
datasets without adversely impacting its performance on classification. This study explored a comprehensive
study on recursive feature elimination method with an ensemble-based approach. However, further and in-
depth studies may be needed to confirm the efficiency of ERFE-EC, especially regarding its performance
with different deep learning models. Our study demonstrates that ERFE method is more resilient than the
recursive feature elimination method. Future studies may explore the performance of EFRE-EC based on
deep learning models with feasible ways of producing optimized datasets. Recent observations suggest that
the feature selection approach is not necessary for all the datasets as some models showed slightly improved
classification accuracy only when getting trained with the whole dataset when compared to the classification
accuracy of the EFRE-EC as shown Figures 4-6. However, the outcomes of the EFRE-EC based on
sensitivity and specificity measures implies that the ensemble feature selection approach-based classifier is
more effective in diagnosing the diseases. Our findings provide conclusive evidence that this phenomenon is
associated with datasets, not due to elevated numbers of multiple recursive feature elimination methods based
on different machine learning algorithms.

4.  CONCLUSION

ERFE-EC ensembles several machine learning classifiers for the classification of medical datasets.
In ERFE-EC, the decision tree, SVM, and ensemble classifiers, including random forest, AdaBoost, and
gradient boosting classifiers, are used to select the best features from medical datasets based on the recursive
feature elimination process through an ensemble approach. The ensemble classifier consisting of decision
tree, KNN, naive bayes, SVM, AdaBoost, gradient boosting, and random forest classifiers is used to perform
the final classification from the optimized dataset in ERFE-EC. The ERFE-EC showed promising outcomes
for the WDBC, PID, heart disease, and Parkinson’s disease datasets as discussed in Section III which proves
the effectiveness of ERFE-EC for the medical data classification. Based on the performance of ERFE-EC in
different medical datasets, it can be concluded that in order to make the recursive feature elimination method
function properly, it is necessary to select an appropriate model (for instance, feature ranking). Although the
recursive feature elimination method can be computationally expensive for large datasets with many features,
as it requires training the model multiple times, it can be a very powerful technique. Recursive feature
elimination method is a powerful method to boost model performance, increase interpretability, and
overcome overfitting, particularly when working with high-dimensional datasets.
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