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 Poor road conditions present considerable obstacles for individuals, resulting 

in asset loss, bodily harm, and time inefficiency. Approximately 1.35 million 

fatalities are attributable to road traffic incidents. The Department of Public 

Works and Town & Country Planning conducted road surveys to assess and 

strategize maintenance efforts. The manual car survey requires additional 

time and an excessive budget. The automated system of artificial intelligence 

(AI) is widely recognized. This paper presents a model to detect road surface 

conditions utilizing video data. Four versions of convolutional neural 

networks (CNN) were utilized for this work. The model evaluation 

employed the mean average precision (mAP) measure. The video data was 

acquired via a smartphone mounted in a vehicle, comprising 10,984 photos 

for training and 2,198 images for testing. We trained and evaluated four 

versions of CNN architectures named YOLO, utilizing our data and GPU, 

with a specific emphasis on identifying cracks, potholes, and the condition 

of manhole covers. Of the architectures evaluated, YOLO V6 attained the 

greatest mAP score in comparison YOLO V5 to YOLO V8. The testing 

results with batch sizes of 4, 8, 16, and 32 are effective. The batch size of 32 

yields the highest performance, achieving 87.38% mAP. Conduct the 

dropout normalization using rates of 0.25, 0.50, 0.75, and 1. The maximum 

mAP is observed with a dropout rate of 0.25, yielding a mAP of 85.40%. 

The model indicates that the government conducted road surface inspections 

with enhanced efficiency, enabling the planning of road repairs for public 

utility issues, which can lower transportation costs. Additionally, the model 

can be utilized to identify hazardous road conditions and minimize vehicular 

accident rates. 
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1. INTRODUCTION 

The road functions as an avenue capable of propelling an economy ahead. A smooth road surface 

facilitates faster and more efficient travel. Road traffic incidents result in 1.35 million fatalities [1]. 

Undoubtedly, roads are important to sustaining the economy and the livelihoods of individuals. This 

engenders economic and cultural advancement, enhancing numerous facets, including shipping, travel, 

communication, and others within the nation. Nonetheless, if the road surface is deteriorated and dangerous, 

it impedes traffic and endangers the entire transportation system. This problem leads to the loss of both assets 

and life. Moreover, the quality of the road surface is essential for maintaining safe driving, especially during 

https://creativecommons.org/licenses/by-sa/4.0/
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inclement weather. Moist road surfaces reduce tire traction, thereby increasing the likelihood of accidents. 

The condition of the road is crucial in assessing the safety of humans and their belongings [2]. Examples of 

road conditions include cracks, potholes, and manhole covers. Generally, the designated people would 

conduct a manual inspection of the road to evaluate its condition. Nevertheless, developments in technology 

have enabled cameras and sensors mounted on vehicles to gather video footage and crucial data. The 

personnel thereafter conduct a manual verification of the obtained video material. Despite being time-

consuming, this process is crucial for the safety of lives and assets [3]. 

Currently, various methodologies are utilized to evaluate road surface conditions. Video images and 

cameras have been utilized for this purpose. Artificial intelligence (AI) and machine learning (ML) enhance 

road quality detecting systems. The convolutional neural network (CNN) is widely employed in artificial 

intelligence research. CNN is adept at evaluating road conditions using images, signals, and video data. 

Many research projects employ video or sensor data. YOLO, a term for "You Only Look Once," is 

extensively employed for real-time object detection tasks. Currently, many variants of YOLO improve 

performance in terms of mean average precision (mAP). 

Categories of accident factors in road accident data management reports include rider, weather, 

vehicle performance, and road surface conditions. The collision was caused by the manhole cover, a crack, a 

pothole, and a bumper, attributable to the road conditions. The kind of road surface affects vehicle traction. If 

the irregular terrain guarantees safe transit, the wheels can maintain traction. Thailand faces multiple 

challenges resulting from the substandard quality of road surfaces, resulting in the development of potholes 

and cracks over time [4], [5]. The manhole cover is situated on the roadway. This generates an elevation and 

depression on the highway resulting from the ascent and descent of the manhole cover. A multitude of object 

types exists. The manhole cover comprises a small circle and a large rectangle. This confined the model's use 

exclusively to the data collection domain. This work proposes the utilization of a CNN on video data to 

create a classifier capable of identifying road surface quality issues, including potholes, cracks, and manhole 

covers. The results of this research can be utilized in i) assisting government agencies in optimizing road 

surveys and assessing road quality more effectively, thus improving road repair strategies, ii) reducing 

transportation expenses by resolving public utility concerns via the proposed method, iii) incorporating the 

classifier into an application to provide rider alerts upon identifying hazardous road conditions, and  

iv) potentially decreasing car accident rates through the application of this classifier. The framework of this 

endeavor begins with data collection through mobile applications that include video data. The preliminary 

stage entails frame extraction. The picture labeling is operational. The concluding phase involves developing 

the object detection model with CNN. The results are compared with several iterations of YOLO. 

The subsequent sections of this document are structured as follows: i) introduction, ii) related work 

discusses relevant studies; iii) methods, encompassing the proposed framework, data collection, pre-

processing procedures, and details of the CNN; iv) result and discussion, and v) conclusion discusses the 

final observations, and acknowledgments.  
 

 

2. RELATED WORK 

This section discusses multiple relevant research studies concentrated on the detection of abnormal 

objects on the roadway. Related research includes multiple domains, such as road quality assessment, the 

association between road speed and vibrations, and road classification. The study in this domain employs 

many hardware types, primarily categorized into two groups: i) smartphones and ii) accelerometers. The 

gramian angular summation field (GASF) is utilized to convert traffic time-series data into an image format, 

resulting in decreasing the error rate [6]. The study extracted data from single-axis and three-axis 

accelerometers. Machine learning and deep neural networks were utilized. The evaluation of classification 

performance employs many parameter sets. The data collection using an iPhone 6. Three categories of 

vehicles were utilized: i) Ford Focus sedan, ii) Ford Focus hatchback, and iii) Subaru Outback SUV. The 

Vibration Recorder application utilizes accelerometer data and video capture with DJI Osmo. The results 

indicated that utilizing all three axes of the accelerometer provided more precise outcomes compared to 

employing a single axis [7]. Utilized pre-processing techniques to remove noise in data preparation. 

Subsequently, feature extraction was conducted, followed by the promotion of predictive analysis.  

The random forest (RF) and decision tree (DT) algorithms are employed for classification and the 

identification of pavement distress kinds [8]. A machine learning model utilizing a support vector machine 

(SVM) was developed [9]. The condition of the road pavement surface is evaluated by vibration 

measurements. The findings demonstrated 93% accuracy for the RF model, 90% for the DT model, and 96% 

for the SVM model. The U-type deep learning image segmentation model, known as RCNN-UNet, is utilized 

to extract centerlines and identify roadways. The findings indicate a completeness (COM) score of 0.9871,  

a correctness (COR) score of 0.9959, a quality (Q) score of 0.9744, and an F1 score of 0.9876 [10]. The deep 
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residual U-Net is utilized to delineate the road area in an aerial image [11]. Previous studies on road 

condition detection have highlighted the importance of devices for recording and storing video data.  

A variety of devices have been employed for road condition analysis.  

The identification of potholes has been achieved using thermal cameras, as evidenced by the 

research conducted by Bhatia et al. [12]. These cameras, when integrated with a Raspberry Pi, provide a 

collection of data for the identification of potholes and bumps. Smartphones have gained popularity as an 

effective option for road data collecting, due to their high-resolution cameras and accessibility. Video data 

acquired from cellphones has been utilized to identify various road conditions, such as cracked surfaces, 

smooth roads, uneven terrain, potholes, rumble strips, and water [12]. Numerous studies have utilized 

smartphones to collect data for the detection of road conditions. These devices play a crucial role in the 

collection of video data. Researchers and practitioners evaluate road conditions and develop methods for 

monitoring and identifying road surface problems.  

The CNN is a type of bio-inspired neural network specifically engineered to replicate human vision 

and identify objects. CNN is primarily employed for addressing image-related issues. The fundamental 

principle of CNN is the employment of convolutional layers to extract characteristics from images. The 

resultant model is qualified to make precise predictions. CNNs differ from neural networks (NN) by their 

ability to effectively handle complex multiple datasets, especially ones consisting of images. This approach 

efficiently mitigates the issue of data variation, wherein the model encounters difficulties in predicting 

unseen data. CNN surpasses NN in image classification tasks. The essential components of a CNN consist of 

the convolutional layer, pooling layer, and fully connected layer. The fundamental concept of CNN is the 

convolutional layer, which is tasked with feature extraction, including the detection of object edges. CNN 

utilizes complex mathematical methods and the principle of spatial convolution for image processing. Feature 

extraction is executed by filters or kernels, each designed to extract a particular feature of interest. The 

utilization of several filters further enhances the network's capabilities. The convolution process in a CNN 

produces smaller matrices as outputs. Thereafter, the pooling layer extracts significant information and 

improves data processing efficiency. There are two varieties of pooling: i) max pooling, which identifies the 

maximum value within each grid, and ii) average pooling. The fully-connected layer constitutes the 

concluding element of the CNN architecture. It links the output from the pooling and convolution layers. 

The convolution layer often produces a three-dimensional volume, whereas a fully-connected layer 

necessitates a one-dimensional vector [13]-[15]. Consequently, the output of the pooling layer is transformed 

into a vector prior to entering the fully-connected layer. Moreover, dropout is a method employed to 

regularize convolutional neural networks and mitigate overfitting concerns. It randomly sets a proportion of 

neuron outputs during training. Ensembles can reduce overfitting by averaging the outputs of several  

models; nonetheless, they are resource-intensive, time-consuming, and involve the management of multiple 

models [3], [15].  

Numerous studies have employed deep learning methodologies to identify abnormal objects in 

videos. A prevalent method involves the use of deep convolutional neural networks (DCNNs) [16] with the 

Google TensorFlow object detection (GTOD) API. The study examined five categories of road conditions:  

i) smooth road, ii) uneven road, iii) pothole, iv) incline, and v) bump. Moreover, the fuzzy algorithm can be 

utilized to determine the speed limit on the highway [1 7 ] . A comparative study was performed comparing 

features derived from three axes and those from a single axis. The research employed SVM, decision trees, 

and neural networks for classification purposes. The image processing pipeline encompassed labeling, 

filtering, and feature extraction. Deep neural networks were utilized to categorize the road conditions. The 

data collection utilized three vehicle types: i) Ford Focus Sedan, ii) Ford Focus Hatchback, and iii) Subaru 

Outback SUV. The video recordings were obtained with an iPhone 6. The primary focus of the road surface 

study was the identification of potholes [7].  
Wiratmoko et al. conducted a study to identify potholes on the roadway. The specific criteria are a 

diameter exceeding 10 centimeters and a depth of at least 5 centimeters. The wrapping and cropping 

techniques are utilized for object detection, and a CNN based on LeNet5 may produce the model. The 

findings indicated an accuracy of 92.8% [12]. In a separate study, a pothole detecting system utilizing a 

mixture of Gaussians (MoG) combined with an SVM model and faster R-CNN. In the MoG model, linear 

SVM and radial basis function SVM (RBF-SVM) were utilized. Nonetheless, the study of the video data 

indicated that the MoG + SVM was inappropriate. Conversely, faster RCNN demonstrated superior 

performance in vehicle recognition at night. A deep belief network (DBN) is utilized to develop the function 

for assessing global road safety performance (SFP). This model can forecast the frequency of accidents 

across diverse locations. The outcome of enhanced performance is a reduction of the maximum error rate to 

23.15% [18]. The refined mask R-CNN (RM R-CNN) utilizes an end-to-end learning approach for the 

acquisition of real-time road pictures. To identify the traffic signs for the comparison of fast R-CNN and 

mask R-CNN [19].  The random forest regressor (RFR), multioutput regressor (MOR), and artificial neural 

network (ANN) can be designed to assess movement at intersections. The analysis of the correlation between 
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volumes and compatible turning movements [20]. The assessment of pavement performance incorporates 

various criteria, including base type, hot mix asphalt concrete (HMAC) layer thickness, base layer thickness, 

traffic load, age, and climatic conditions such as precipitation and temperature. This study employs various 

statistical methodologies, including generalized linear models (GLM), binary logistic regression (BLR), and 

random forest (RF). The long-term pavement performance program (LTPP) excels in data analysis. 

Furthermore, the performance of regression models (GLM and BLR) is assessed in relation to RF by the 

cross-validation method. The findings reveal the importance of design characteristics, such as cutting, 

roughness, and alligator cracking [21].  
Mukesh et al. [21] identified cracks and potholes in the road by comparing Random Forest and 

CNN methodologies. The demonstrated accuracy is 96% [22]. Road detection may identify features from 

several image sources, including satellite imagery. The model can be constructed using ANN, CNN along 

with morphological enhancement and segmentation techniques [23]-[25]. Research has been conducted to 

mitigate shadows through a shadow-invariant feature space [26]. Another form of image utilized for road 

detection is very high resolution (VHR) remote sensing. This image format is suitable for segmentation [27]. 

The aerial image can be utilized to produce a map based on semantic segmentation. An unmanned aerial 

vehicle (UAV) is employed to autonomously create the monitoring road area based on rapid homography, 

utilizing a 2D Bird's eye view (BEV) image to recognize roads, lanes, and driver behavior, yielding favorable 

results [28]-[30]. The recurrent convolutional neural network U-Net (RCNN-UNet) is utilized for road 

detection and centerline extraction [31]. The multi-centered hough forest (MCHF) method can be employed 

for curvilinear detection in images as a replacement to euclidean distance [32]. Regarding color road 

detection, enhancement can be achieved by utilizing illuminant intrinsic images to produce a pixel-level 

confidence map [33]. The detection of line segmentation is accomplished by the probabilistic Hough 

transform, which delineates the road section in aerial images utilizing a histogram [34], [35]. The road 

boundary can be extracted using the s-FCN-loc approach, which operates 30% faster than FCN [36]. An 

autonomous detection system was implemented to identify diverse road conditions, such as potholes, street 

bumps, and driver behaviors, utilizing a combination of long short-term memory (LSTM) neural networks 

and a reservoir computing (RC) model. This approach achieves an accuracy of 0.98 in distinguishing 

between potholes and their absence [37]. 

Previous research has introduced multiple methodologies for evaluating road surface conditions. 

Pre-processing processes encompass activities such as labeling, filtering, and feature extraction. Deep 

learning models such as YOLO V2, YOLO V3, and up to YOLO V8 are frequently utilized for this objective. 

Images can be collected utilizing cellphones and video cameras. 

 

 

3. METHODS 

 This section explains the process of this paper. There are four subsections. Subsection 3.1 discusses 

the proposed framework outlines the utilized framework. Subsection 3.2 Data collection specifies the 

methodology for data acquisition. Subsection 3.3. Data preprocessing outlines the preliminary procedures 

before model development. And Subsection 3.4. CNN analyzes the historical evolution of CNN and each 

version of YOLO up to YOLO V8 

 

3.1.  Proposed framework 

This section presents a framework designed for the identification of road surface conditions.  

Figure 1 demonstrates the framework. This enables three stages for evaluating road surface conditions with 

video data. The procedure includes data collection, data pre-processing, and model generation. The 

framework initiates by gathering data and employing a smartphone's camera to record video data. The frame 

extraction involves converting the movie into several pictures. Upon completion of the data collection and 

frame extraction phase, the next stage is data pre-processing. Prior to commencing this phase, data 

augmentation is required. This aims to improve the data quality. Diverse image processing techniques are 

utilized to guarantee the data is formatted correctly for further processing. These mechanisms encompass 

lane detection and object detection. This study concentrates on the vehicular lane and subsequently the lane 

detecting procedure. Subsequent to the enhancement of picture labeling, this phase delineates the object from 

the backdrop, a crucial step for enabling the machine to recognize and differentiate the object. The outcome 

of the labeling operation is an XML file employed to construct the model utilizing the CNN. 

 

3.2.  Data collection 

The data on road condition, particularly about asphalt roads, is utilized to develop the classifier. 

Data collection conducted by smartphones from May 2020 to September 2021 in Phuket and Bangkok, 
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Thailand. A bracket was utilized to hold the smartphone tightly in the vehicle, as seen in Figure 2. An 

application was employed to save and directly upload the collected data to the cloud. 
 

 

 
 

Figure 1. The road surface conditions detection framework 

 

 

 
 

Figure 2.  The setup of equipment 

 

 

Subsequently, frame extraction is executed to obtain images from the video, with each image scaled 

to 1920×1080 pixels. The dataset comprises 10,984 images designated for training and 2,198 images 

allocated for testing. Table 1 presents comprehensive information concerning the videos and the procedure of 

frame extraction. Figure 3 provides an illustration of a custom dataset. 

Table 1 illustrates the frame extraction statistics. A total of 134,176 seconds resulted in the 

extraction of 1,341,760 frames. Among these frames, every three frames will select one frame. Then, 24,276 

contained objects were chosen for generating the object detection model. And the frame extraction code is 

shown in Algorithm 1. The video file is designated as 'videocap', the image count is referred to as 'count', and 

the state of the video read is indicated by the parameter 'success' (lines 2-4). Subsequently, the recorded video 

is analyzed, and the count parameter is executed (lines 7-8). The image is thereafter saved to the directory 

after every three images (lines 9-12), constituting the output. 

 

 

Table 1. The intricacies of video and frame extraction 
Video Time(s) All Frame Frame with object Selected frame 

125 134,176 1,341,760 32,803 24,276 

 

 

3.3. Data preprocessing 

Following data collection using a smartphone application, frame extraction is performed. This 

section addresses data pre-processing, comprising three subsections. Subsubsection 3.3.1 addresses the 

category of data. Next 3.3.2 constitutes a component of the lane detecting procedure. Subsubsection 3.3.3 

delineates the specifics of object labeling, a crucial procedure prior to data input for model generation. 
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Figure 3. A demonstration of a custom dataset 
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Algorithm 1. Frame extraction 
1: Input: 

2:     videocap = The video file 

3:     count   = The image count 

4:     success = The status of the video read 

5: Output: 

6: while success do 

7:     success = videocap.read() 

8:     count   = count + 1 

9:     If count mod 3 = 0 

10:        If success = true 

11:            cv2.imwrite("image path" % count, image, [cv2.IMWRITE_JPEG_QUALITY, 100]) 

12:        end if 

13:    end if 

14: end while 

 

3.3.1. Data categories 

This study identifies three specific objects for inspection by the Department of Highways in 

Thailand. These objects include road damage, classified as structural failure and functional failure. The 

structure failure category encompasses potholes and cracks, whereas manholes are classified under the 

functional failure category. The impacts of functional failure relate to concerns of convenience and safety. 

Figure 4 illustrates an example of these things. Figure 4(a) depicts a crack, Figure 4(b) illustrates a pothole, 

and Figure 4(c) showcases a manhole cover. An example of a custom object is illustrated in Figure 5. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 4. An illustration of the three objects (a) an example of a crack (b) an example of a pothole, and  

(c) an example of a manhole 

 

 

3.3.2. Lane detection 

Following the collection of video data, including three object types, the frame extraction process 

commences. The frame extraction technique involves converting a video collection into several images. 

Improvements were implemented in the lane detection procedure, particularly focusing on identifying lanes 

for vehicular driving. The lane detecting phase is essential, including a sequence of actions. Initially, Canny 

Edge detection is implemented, succeeded by area segmentation, and ultimately, the application of the Hough 

Transform. Figure 6 illustrates the results, while Algorithm 2 displays the lane detecting code.  

Algorithm 2 elevates the image collection to the parameter 'frame' (line 2). Subsequently, implement 

a Canny method to identify edges within an image. The segmentation is executed to produce the pixel region 

in an image. Utilize the Hough transform to identify the shape (lines 4-6). The final step involves calculating 

the line and seeing the output (lines 7-10). 
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Algorithm 2. Lane detection 
1: Input: 

2: frame = The collection of read image files 

3: Output: 

4: canny    = do_canny(frame) 

5: segment  = do_segment(canny) 

6: hough    = HoughLinesP(segment, 2, minLineLoth = 100, maxLineGap = 50) 

7: lines    = calculate_lines(frame, hough) 

8: line_visualize = visualize_lines(frame, lines) 

9: output   = addWeighted(frame, 0.9, line_visualize, 1, 1) 

10:print output 

 

Subsequent to the acquisition of video data, the videos were analyzed to extract discrete pictures. 

The initial dimensions of these photos were 1920×1080 pixels. For the purposes of our investigation, we 

resized the photos to 1280×720 pixels. To eliminate unwanted environmental components, we excised 360 

pixels from the top and 320 pixels from both the left and right sides of the photos. Figure 7 depicts the 

original image along with the specified crop region. The designated area of the image, marked by the red 

rectangle, was utilized for subsequent analysis and processing in this study. 

 

 

 
 

Figure 5. A demonstration of a custom object 
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Figure 6. The example of lane detection 

 

 

 
 

Figure 7. The image area 

 

 

3.3.3. Object labelling  

The frame extraction procedure was enhanced following the collection of the video data. The 

subsequent phase entails object labeling, executed with LabelMe, LabelImg, and Laberu in this study. These 

tools exhibit varying usage methodologies, with Laberu being notably user-friendly and able to support many 

users concurrently. The labeling findings from Laberu are recorded in .xml format, which can be immediately 

employed in later stages. For instance, Figures 8 to 10 illustrate the annotated instances of the three objects. 

The data for this investigation is gathered utilizing smartphones mounted on the car's windshield. 

Thus, the data collection is confined to the region right ahead of the vehicle. This research primarily focuses 

on objects situated four meters from the vehicle. The items are designated with rectangles that must conform 

to the frame. In the context of adjacent frames, the rectangles ought to intersect as little as feasible. 

As illustrated in Figures 8-10, each object has multiple different characteristics. A manhole cover 

can possess both circular and rectangular forms. Table 2 summarizes the object labeling results, revealing a 

total of 17,391 photos of cracks, 14,606 images of manholes, and 3,573 images of potholes in sequential 

sequence. 
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Figure 8. Illustration of a labeled crack 

 
 

 
 

Figure 9. Illustration of a labeled pothole  

 
 

 
 

Figure 10. Illustration of a labeled manhole  

 
 

Table 2. The count of object labeling 
Crack Pothole Manhole 

17,391 3,573 14,606 

 

 

3.4.  Convolutional neural network 

The convolutional neural network (CNN) originated in the 1980s, invented by Yann LeCun. The 

first architecture is LeNet, which was utilized for digital recognition jobs. The architecture comprises 

convolutional layers, pooling layers, and a fully linked layer. The subsequent architectures are AlexNet, 

ImageNet, VGGNet, GoogleNet, and ResNet, in that order. In object detection, the CNN can identify and 

locate several things inside an image, a task that is more complex than classification tasks. YOLO, an 

acronym for "You Only Look Once," is a widely utilized object identification technique developed by Joseph 

Redmon [38]. This can efficiently detect many items. YOLO performs this by utilizing a complex grid 

framework in each layer. The technique involves partitioning the image into a narrow window of size N*N 

and employing an algorithm to anticipate the object. These procedures utilize deep learning. YOLO V2 (or 

YOLO9000) was created to improve on YOLO V1, which identified objects in real-time. Darknet19 serves 

as the foundation for YOLO V2 [39].  

YOLO V3 has developed from various architectures, including ResNet and feature-pyramid network 

(FPN). The feature extraction technique in YOLO V3 utilizes Darknet53, a deep neural network comprising 

53 layers. Initially, Darknet53 was trained using the Imagenet dataset. The 106 layers and features were 
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integrated into the YOLO V3 architecture. This method can enhance model performance in detecting 

complex features and improve detection efficacy. The FPN and U-Net architectures exhibit similarities. 

These are utilized for the prediction of several variables across various boxes, which is time-intensive. The 

data can transition from bigger to smaller scales and, alternately, function effectively in high semantic 

content inside high-resolution data [40]. Following the development of YOLO V3, the latest iteration is 

YOLO V4. YOLO V4 is derived on YOLO V3. 

The architecture of YOLO V4 comprises a head section that delineates the bounding box and 

forecasts the object classes. The foundation of YOLO V4 is CSPDarknet53, which serves as the primary 

layer for feature extraction. The neck component incorporates spatial pyramid pooling (SPP) and Path 

aggregation network (PAN) modules. This component utilizes pooled geographic data and computes features 

across various scales and tiers of the network to enhance model performance. YOLO V4 has enhanced 

efficiency in GPU processing utilization. This renders the process time-consuming while enhancing accuracy, 

which is the benefit of YOLO V4. The model employs parallel computations to execute suitable tasks for 

object detection [41]. The YOLO V4 method demonstrates the performance of small item detection, 

suitability for big inputs, and the incorporation of additional layers. The model can detect objects of various 

sizes due to the numerous characteristics of YOLO V4. 

YOLO V5 is a CNN architecture derived from YOLO V3 and implemented in PyTorch. This 

version modified the input sizes, depth, and width of the network. YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x represent distinct variants within this architecture. The primary benefit of YOLO V5 is its rapid 

image detection and operational efficiency. The image is segmented into multiple small grids, with each grid 

cell undergoing analysis. The foundation of YOLO V5 is CSPDarknet, functioning as a feature extractor. The 

neck component is PSNet, which is tasked with feature fusion. The network's head use YOLO to manage 

object outcomes. The output comprises class, score, location, and size data. A deep learning model often 

comprises multiple components: input, backbone, back, neck, head, and output. The backbone executes 

feature extraction, yielding a feature map. The neck portion is utilized in scenarios necessitating intricate 

feature extraction. The head produces the final output. 

YOLO V6, created by the Meituan Vision AI Department in China and launched in 2022, enhances 

the original YOLO architecture, which is a single-stage YOLO algorithm. This iteration of YOLO was 

explicitly developed to tackle actual challenges in industrial applications. The EfficientRep functions as the 

backbone of the model. The Rep-PAN Neck enhances hardware performance, leading to enhanced overall 

efficacy. The model's backbone and neck are constructed based on the RepVGG architecture, which serves as 

its foundation [42]. Furthermore, a decoupled head is utilized, which streamlines the design of the head 

section for enhanced implementation ease. YOLO V6 surpasses YOLO V5 in accuracy and speed.  

YOLO V7, created by the YOLOR team, is an advancement of YOLO V4. This iteration of YOLO 

exists in multiple variants, including YOLOv7, YOLOv7-tiny, and YOLOv7-W6, each presenting unique 

attributes and features [43]. YOLO V7's design integrates the Extended Efficient Layer Aggregation Network 

(E-ELAN) and utilizes Model Scaling for concatenation-based models. Additionally, YOLO V7 employs the 

Freebies feature, commonly referred to as bat-of-freebies. The anchor box configuration in YOLO V7 has 

been revised to include nine anchor boxes. This modification allows the model to proficiently identify items 

of varying forms and sizes. These modifications substantially enhance the speed and accuracy attained by 

YOLO V7 [44].  

In 2023, the Ultralytics team, recognized for YOLO V5, significantly improved YOLO V3, 

resulting in YOLO V8. This modern model improves performance and adaptability, allowing it to manage 

many tasks, including classification, detection, pose estimation, segmentation, and tracking. YOLO V8 is 

applicable in various fields and can be employed in numerous applications. YOLO V8 utilizes the C2f 

module, similar to YOLO V5. The incorporation of advanced characteristics and contextual information in 

this module designates it as an essential element of the system, augmenting precision. Feature fusion is 

utilized to amalgamate features from many layers, facilitating a more thorough depiction. In the head section, 

YOLO V8 employs either anchor-based or anchor-free techniques to forecast bounding boxes and class 

probabilities. The model utilizes complete intersection over union (CIoU) and distribution focal loss (DFL) 

loss functions to measure the differences between predicted and actual values, facilitating training and 

optimization operations [43].  

The object detection procedure involves both predicted and ground truth data. The correctness of a 

bounding box is determined by the intersection over union (IoU) metric. The precision and recall metrics are 

assessed using IoU. Object detection use the mean average precision (mAP) metric for evaluation 

measurement. The precision is computed by adjusting the threshold value until the optimal result is attained. 

When the model threshold yields several precision values, the mAP provides a singular score that reflects the 

model's overall performance. Figure 11 illustrates the predicted and ground truth bounding boxes, with the 

IoU represented by the yellow bounding box and the area indicated by the orange arrow. 
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Figure 11. An example of a prediction and ground truth bounding box. The ground truth box is represented  

in blue, while the prediction bounding box is depicted in red 

 

 

The mAP calculation is obtained from the evaluation of model prediction scores. The scores are 

subsequently converted into class labels, and a confusion matrix is generated, consisting of true positives 

(TP), false positives (FP), true negatives (TN), and false negatives (FN). Precision and recall are then 

calculated. Subsequently, the actual values are employed to calculate the area under the curve for average 

precision (AP). The mAP is ultimately computed utilizing (1). 

 

 𝑚𝐴𝑃  =  
1

𝑁
  ∑ 𝐴𝑃𝑖

𝑁
𝑖=1   

 

mAP incorporates FP and FN alongside precision and recall, rendering it an appropriate indicator 

for performance evaluation in this investigation. 

 

 

4. RESULT AND DISCUSSION 

We performed a comparative analysis of object detection models developed with conventional CNN 

architectures. Specifically, evaluated the efficacy of YOLO V3, YOLO V4, YOLO V5, YOLO V6, YOLO 

V7, and YOLO V8 in identifying road conditions. The aim was to determine the classification and location of 

objects inside the images. The evaluation criteria for model comparison were speed and mAP (mean Average 

Precision) over four different thresholds. They utilized a computer equipped with an Intel(R) Core(TM) i5-

9300H CPU operating at 2.40 GHz and 12 GB of RAM to do the research. The software stack comprised 

Miniconda3 and Python 3.6. Typically, during model training, the issue of overfitting reduces the model's 

performance. Numerous strategies exist to address the overfitting issue, including augmentation, dropout, 

weight decay, and batch normalization, among others. The methodologies employed to replicate the model in 

this study are dropout regularization and Batch normalization. This study proposes three experiments. The 

YOLO version is presented in subsection 4.1. Batch normalization is addressed in subsection 4.2. Dropout 

regularization is illustrated in subsection 4.3. 

 

4.1.  YOLO version  

Among the evaluated models, greater performance was indicated. Comprehensive information about 

the image dataset, including size and other related information, is addressed in subsubection 3.3.1. The 

experimental configuration utilized original images derived from videos, which were then resized. The 

images utilized for testing possessed a resolution of 1280x720 pixels. The outcomes of YOLO V5 to YOLO 

V8 with a batch size of 8 and 100 epochs indicate that the mAP for the models was 74.50%, 86.19%, 

61.30%, and 73.82%, respectively. Table 3 indicates that the highest mAP value is 86.19% for YOLO V6. 

YOLO V5 exhibits a mAP value of 74.50%, YOLO V8 has a mAP value of 73.82%, and YOLO V7 

demonstrates a mAP value of 61.30%. The mAP and loss values for each of the 10 epochs are illustrated in 

Figures 12 and 13. 

The mAP values of YOLO V5 and YOLO V8 are similar. YOLO V6 has superior performance, 

whereas YOLO V7 ranks below other YOLO versions. The loss graph indicates that YOLO V5 and YOLO 

V7 are identical. YOLO V8 represents the top of the graph, followed sequentially by YOLO V6, YOLO V5, 

and YOLO V7. Figure 14 illustrates the successful detection of three objects in the video. 

(1) 
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Table 3. The result of three objects detection 
Architecture mAP (%) Loss 

YOLO V5 74.50 0.0463 
YOLO V6 86.19 0.6113 

YOLO V7 61.30 0.0241 

YOLO V8 73.82 1.0036 

 

 

 
 

Figure 12.  mAP value obtained during training with each YOLO version 

 

 

 
 

Figure 13. Loss value obtained during training with each YOLO version 

 

 

4.2.  Batch normalization  

Batch normalization is a method employed to enhance the efficacy of models in deep learning tasks. 

This method could reduce the issue of overfitting. In this task, modify the batch to include four values. The 

image dimensions are 480x480, processed with YOLO V6 over 100 epochs. The outcome is presented in 

Table 4. Three objects identified by the YOLO V6 model with a batch size of 32 achieved a mAP of 87.38%, 

the highest recorded value. The subsequent batch has mAP values of 86.98%, 86.19%, and 82.70% for 16, 8, 

and 4, respectively. Batch 16 exhibits a loss value of 0.6075, which is lower than the loss value of 0.6091 for 

batch 32. Figure 15 illustrates the graph of the mAP value during training with YOLO V6 and different batch 

sizes. Figure 16 illustrates the graph of loss values during training with YOLO V6 at various batch sizes. 
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As illustrated in Figure 15, the various batches exhibit similar results. YOLO V6 batch 4 displays a 

decreased performance (shown by the blue line) compared to the other three lines. Batch 32 exhibits the 

greatest mAP value. Batch 4 exhibits the highest loss value (blue line). Additionally, the other three lines are 

likely as illustrated in Figure 16. Subsection 7.3 discusses the implementation of dropout regularization in 

YOLO V6 with a batch size of 32. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 14. YOLO V6 successfully detects three objects in a new video; (a) crack detected, (b) pothole 

detected, and (c) manhole and crack detected 
 

 

Table 4. The result of batch normalization on YOLO V6 
Batch size Loss mAP (%) 

4 0.6254 82.70 

8 0.6113 86.19 
16 0.6075 86.98 

32 0.6091 87.38 

 

 

 
 

Figure 15. mAP value obtained during training with YOLO V6 with different batch size 
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Figure 16. Loss value obtained during training with YOLO V6 with different batch size 
 

 

4.3.  Dropout regularization 

Dropout regularization functions within the model by randomly deactivating some nodes during the 

training phase. This technology is time-consuming, saves resources, and requires no maintenance. This 

model was built using YOLO V6 with a batch size of 32, 100 epochs, and an image resolution of 480×480. 

Table 5 presents the experimental results with dropout rates of 0.25, 0.50, 0.75, and 1.00. 

Table 5 presents similar experimental results for dropout rates of 0.25, 0.50, and 0.75. The mAP 

values are 85.40% at a dropout of 0.25, 85.73% at a dropout of 0.50, and 85.15% with a dropout of 0.75. For 

dropout, 1.00 exhibits the lowest mAP value of 39.24%. The loss values for dropout rates of 1.00, 0.75, 0.50, 

and 0.25 are 0.6159, 0.6146, 0.6127, and 0.6114, respectively. Figure 17 illustrates a graph displaying the 

mAP value during training with YOLO V6 and different dropout rates. Figure 18 illustrates a graph showing 

the loss value during training with YOLO V6 and different dropouts. 
 

 

Table 5. The result of Dropout Regularization on YOLO V6 
Dropout Loss mAP (%) 

0.25 0.6114 85.40 

0.50 0.6127 85.73 
0.75 0.6146 85.15 

1.00 0.6159 39.24 

 

 

 
 

Figure 17. mAP value obtained during training with YOLO V6 with different dropout 
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The result illustrates the varying mAP value in dropout 1 (red line). The performance of dropout 

rates 0.25, 0.50, and 0.75 is similar. Figure 18 illustrates a loss graph containing four lines representing 

various dropout. Dropout 0.25 has a lower loss value compared to dropout rates of 0.50, 0.75, and 1.00. 

 

 

 
 

Figure 18. Loss value obtained during training with YOLO V6 with different dropout 

 

 

5. CONCLUSION 

The paper presents a comparison for detecting cracks, potholes, and manhole covers with video data 

collected via smartphones. This study presents various prior studies, the methodology, details of CNN, 

evaluation, and the experiments conducted. The experimental object detection comparison indicates that 

YOLO V8 is compared with YOLO V5, but YOLO V6 exhibits the highest mAP. Subsequently, compare the 

hyperparameters of YOLO V6, specifically emphasizing batch size and dropout. The performance of the 

proposed method improves the mAP. In conclusion, the paper presents a comparison of four different 

versions of YOLO, including details on batch size and dropout parameters. Acknowledgements reveal the 

supporters of this project. 
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