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 Arrhythmias are irregular heartbeats that can lead to severe health risks, 

including sudden cardiac death, necessitating accurate and timely detection 

for effective treatment. Traditional diagnostic methods such as stress tests, 

resting electrocardiograms (ECGs), and 24-hour Holter monitors are limited 

by their monitoring capacity and often result in delayed diagnoses, 

compromising patient safety. To address these challenges, this paper 

introduces the deep attention neural inference network (DANIN) 

methodology. DANIN integrates one-dimensional ECG signals with two-

dimensional spectral images using multi-modal feature fusion, capturing 

comprehensive cardiac information in both temporal and frequency domains. 

The methodology employs advanced deep attention network-based models 

for superior feature extraction, recognizing intricate patterns and long-range 

dependencies within the data. Additionally, the inclusion of an inference 

model system enhances interpretability and usability, making the model 

highly suitable. Further, DANIN is evaluated considering the MIT-BIH 

dataset, and extensive comparative analysis with state-of-the-art techniques 

demonstrates that DANIN significantly improves accuracy, precision, recall, 

and F1-score, highlighting its potential to revolutionize arrhythmia detection 

and improve patient outcomes. 
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1. INTRODUCTION 

Arrhythmias are a significant class of cardiac diseases that require proper diagnosis. This is because 

arrhythmias raise the possibility of high-risk incidents, such as unexpected cardiac death. An accurate 

diagnosis must be made quickly to treat the changes in the electrocardiogram (ECG) which have proven to be 

difficult to correctly detect using traditional automated approaches for arrhythmia detection. Standard 

diagnostic techniques including stress tests, resting ECGs, and 24-hour Holter monitors are frequently used to 

identify arrhythmias [1]. The limited cardiac recording capacity, which allows about 2,000 heartbeats to be 

recorded during a stress test, still restricts the monitoring capabilities of the tests. The patients must endure 

lengthy wait times for examination results, doctor appointments, and hospital stays, it might take up to four 

months to get test results. The conventional methods that are being proposed involve making appointments 

with medical doctors in person and performing a series of diagnostic tests. The patient’s health may be 

affected by these circumstances since there is a decreased likelihood of early detection. The most common 

method used to diagnose arrhythmias is an ECG recording. To record and analyze the electrical activity of 

the heart, electrodes can be placed on the skin and left there for a predefined period. The electrical activity of 

the heart may be assessed from a variety of angles and orientations using ECGs. As such, they can act as 
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indicators for a range of diseases. The primary responsibility of the ECG leads is to detect and assess 

anomalies in waveforms and rhythms. An ECG is a comprehensive record of the electrical characteristics of a 

heartbeat. Each of the several waveforms that comprise an ECG signal represents a single pulse. Over the 

past several years, there has been a sizable surge in the usage of ECG monitoring technology in the medical 

industry. The observed pattern can be attributed to advancements in enabling technologies, which have 

greatly increased the capabilities of these systems. For these systems to function correctly, several 

technologies must be integrated, including edge computing, mobile computing, and the internet of things. 

These technologies have several other uses in addition to being employed in the diagnosis and treatment of 

health problems. The device satisfies specific mode-related needs, tracks activities, and enhances sports 

performance [2]. Numerous studies have been conducted on various techniques for using deep learning (DL) 

and machine learning (ML) algorithms to classify cardiac arrhythmias also various techniques have been 

developed by ECG analysis researchers to automatically identify heart arrhythmias. These techniques employ 

traditional ML techniques. These methods typically consist of three primary stages: preprocessing the signal, 

extracting features, and recognizing and categorizing patterns. The process of feature extraction has a major 

impact on how well heartbeat categorization works. Among the often-used feature extraction techniques are 

principal component analysis (PCA), wavelet transform (WT), discrete wavelet transforms (DWT), 

independent component analysis (ICA), and other manually developed features. They employed a PCA to 

identify features and decrease the dimensionality of the ECG data. To construct the atrial fibrillation (AF) 

detector, it combines the DWT with morphology to extract features. When combined with this method, the 

implementation of an artificial neural network (ANN) classifier produced positive results. It has been 

demonstrated that WT is effective in interpreting ECG data due to the signals’ inherent non-stationarity.  

By extracting certain characteristics from ECG arrhythmia signals, classification models that can 

distinguish between different types of arrhythmias are developed. support vector machines (SVMs) and 

ANNs are the two techniques for handling categorization problems which have presented a method for the 

automatic classification of ECG data using multiple SVMs. Elhaj et al. [3] employed a hybrid approach 

utilizing two SVMs to detect AF. It is widely accepted that the multilayer perceptron (MLP) is the most often 

used ANN design for categorizing arrhythmias.  

The subject of recognizing arrhythmias has been studied extensively and used with DL with efficient 

results. Because DL performs well in so many different applications-such as photo identification, speech 

recognition, and machine vision-it is incredibly potent. Twelve distinct rhythm patterns were classified using 

a deep neural network (DNN) developed. The DNN accuracy was arbitrated sufficient for this task, to 

classify arrhythmias, which employ a DL methodology. The researchers employed an long short-term 

memory network (LSTM)-a specific type of neural network-to achieve this. Badr et al. [4] described an 

automated technique for categorizing cardiac arrhythmias in a research study. The model employed a 1D 

convolutional neural network (CNN) technique. The authors of the study developed a 2D-CNN model to 

classify arrhythmias. The system uses the whole feature maps of heartbeats that are generated via empirical 

modal decomposition. Previous research employed recurrent neural networks (RNNs) to discriminate 

between abnormal and normal heartbeats.  

It is not obvious how feature extraction and module classification vary in DL systems. Instead, these 

two tasks are integrated into a single, smooth process. The DL algorithms employ large volumes of ECG data 

to automatically identify the crucial elements needed for categorization. Even in cases when operator 

interaction is not required, interpretability remains a significant challenge when using DL approaches. One 

benefit of DL systems is their ability to automatically extract characteristics from unprocessed, raw data. Due 

to its potential to inflict pain on medical staff, this issue is of utmost importance in the field of medical 

applications [5]. Scientists have used a variety of advanced deep-learning algorithms to classify arrhythmias. 

However, there has been little improvement in categorization performance. 

The motivation for this research on arrhythmia detection and classification is driven by the need to 

enhance the accuracy and timeliness of diagnosing these potentially fatal cardiac conditions. Arrhythmias, 

which can lead to sudden cardiac death, pose a significant health risk that necessitates prompt and precise 

identification. Traditional diagnostic methods, including stress tests, resting ECGs, and 24-hour Holter 

monitors, are often limited in their monitoring capacity and can result in delayed diagnoses, thereby 

compromising patient safety. With the advent of advanced ECG monitoring technologies and the integration 

of cutting-edge DL and ML algorithms, there is an unprecedented opportunity to revolutionize arrhythmia 

detection. is research aims to leverage these technological advancements to develop more accurate, efficient, 

and reliable diagnostic tools, ultimately improving early detection and patient outcomes, and reducing the 

burden on healthcare systems. 

− Feature fusion: the deep attention neural inference network (DANIN) methodology introduces a novel 

approach by integrating one-dimensional ECG data with two-dimensional spectral images through multi-

modal feature fusion. This comprehensive analysis in both the temporal and frequency domains enhances 

the accuracy and robustness of arrhythmia detection. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 39, No. 2, August 2025: 1164-1175 

1166 

− Advanced deep attention network-based feature extraction: leveraging the power of deep attention 

network models, DANIN excels in recognizing and extracting complex patterns and long-range 

dependencies in ECG data. This advanced feature extraction capability significantly improves the model’s 

ability to accurately classify various types of arrhythmias. 

− Enhanced interpretability and usability: by incorporating an inference model system, the DANIN 

methodology not only boost diagnostic accuracy but also improves the interpretability of the results. This 

ensures that the models are practical and reliable for clinical use, facilitating better decision-making and 

patient care. 

The paper is organized into 4 sections; the first section gives a brief introduction to arrhythmia the second 

section gives a thorough literature survey. The third section defines the proposed methodology. The fourth 

section determines the performance evaluation where the results are given in the form of graphs and tables. 

 

 

2. RELATED WORK 

ECGs have been classified using DNNs in the recent past. DNNs may directly derive a feature 

extraction function from the raw input data by utilizing the dataset’s probability distribution, this is how these 

approaches are different from traditional ones. Features derived from a DNN model can be more 

comprehensive than features produced manually when a large enough quantity of training data is available. 

Ventricular arrhythmias were identified by training an appropriate feature mapping with a stacked denoising 

autoencoder (SDAE). Then, by adding a SoftMax regression layer to the hidden representation layer, DNNs 

are used [6]. Automatic identification of cardiac arrhythmias has been made possible by the parallel use of 

CNNs, by using CNNs to identify AF. The application of a multiscale fusion of deep convolutional neural 

networks (MS-CNN) has been suggested as a solution to the AF problem [7]. By using filters of various 

sizes, the method makes use of a two-stream convolutional network architecture to extract information at 

numerous scales. Dekimpe and Bol [8], a CNN using the residual network design was created to precisely 

categorize 12 rhythm classes. In the field of arrhythmia classification, CNNs are frequently utilized to 

classify arrhythmias at the beat level. In these kinds of situations, the model’s input data is usually much 

shorter, frequently numbering just in the hundreds of samples [9]. A nine-layer CNN example was created to 

automatically recognize and categorize five distinct kinds of heartbeats. Two more network topologies that 

are often used in the field of ECG classification are the restricted Boltzmann machine (RBM) and the 

autoencoder. A unique approach based on DL is used as a solution to the previously described problem. The 

previous method integrates a SVM with an autoencoder network that uses LSTM architecture to classify 

arrhythmias [10]. According to research, CNN and LSTM may be integrated to automatically classify 

arrhythmias. The classification performance utilizing various recording times for ECG data was also 

investigated in this work. Using an ensemble network model based on DL improved the performance of a 

single network. Three different networks are incorporated into the model’s architecture to recognize and 

gather data. The previously outlined procedure yields an extremely efficient method for data identification 

and gathering. 

According to preliminary research, several algorithms have demonstrated potential in the automated 

categorization of arrhythmias using ECG data. Before these algorithms are successfully applied in real-world 

circumstances, several challenges need to be resolved. It is noteworthy that the features of obtained 

individual ECGs might yield valuable clinical data for automated cardiac arrhythmia identification. However, 

it’s crucial to remember that ECG signals from people with various medical disorders frequently have unique 

temporal and morphological features [11]. Individual differences might cause each person’s ECG signal to 

fluctuate differently over time. Furthermore, even people with the same medical condition could have 

different ECG morphologies. It is essential to remember that different heart diseases might present with 

identical ECG features. One major obstacle is analyzing and extracting characteristics to detect cardiac 

diseases. The distinct characteristics of each patient’s rhythm that may vary from the training set are not 

taken into account by the arrhythmia classification algorithms currently in use. These algorithms make use of 

relatively tiny training datasets. As a result, it’s possible that the existing techniques won’t work as well in 

practical situations. The gathering of a patient’s long-term ECG records is made easier by long-term ECG 

monitoring equipment, which helps to address this problem. With these gadgets, automated categorization 

methods are applied [12]. 

Kiranyaz’s real-time patient-specific ECG classification technique is the only way to classify long-

term ECG recordings of a patient; Zhang proposed a patient-specific ECG classification method using RNN 

to classify ECG beats with different heart rates and capture temporal correlation from ECG signal samples. 

1D CNNs serve as the foundation for this method. A technique for categorizing five typical kinds of 

arrhythmia signals using a one-dimensional CNN (1D-CNN) [13]. A deep two-dimensional CNN was used 

by Jun as a useful method for identifying ECG arrhythmias. In the area of pattern recognition, the 
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aforementioned neural network has demonstrated exceptional performance. Through the use of transfer 

learning from 2D deep CNN features, this method was able to classify ECG disorders. The methodology 

outlined was employed to identify and classify four discrete ECG patterns. In their study, [14] introduced a 

novel technique for carrying out feature extraction across many domains. The proposed approach combines 

WT with kernel-ICA. The data was compressed using PCA. The ICA approach was applied to the ECG data 

to detect features and minimize dimensionality [15]. Selecting specific traits is sometimes based on the 

evaluation of experience. Among the characteristics are higher-order spectra, linear and nonlinear features, 

sparse features, entropy-based features, and statistical features. 

 

 

3. PROPOSED METHOD 

The proposed DANIN methodology consists of a detailed account of the procedures and techniques 

employed to collect data and take ECGs. Initially, the process of converting ECG impulses into spectrograms 

is analyzed, and the proposed approach integrates one-dimensional ECG data with the corresponding two-

dimensional spectral images using multimodal feature fusion. Because of this integration, the data is 

collected in both the temporal and frequency domains, which allows a comprehensive understanding of the 

cardiac signals. Additionally, a deep attention network-based feature extraction encoder was specifically 

developed to extract features from one-dimensional ECG data signals and spectrum images. Deep attention 

networks are often employed in several domains, including natural language processing. However, their 

application in ECG signal analysis is novel, particularly when integrated with inference model logic.  

Deep attention networks are an economical means of representing complex patterns and long-range 

connections in ECG data. Furthermore, a more accurate categorization and forecasting of ECG data is carried 

out by examining the combined multi-modal attributes through the utilization of an inference model. The 

integration of the inference model system overcomes a major barrier in applying DL to medical data and 

enhances the accuracy of the model’s predictions. The inference model module enhances the diagnostic 

procedure’s robustness by providing a means to handle the inherent uncertainties and variabilities in ECG 

readings. Figure 1 presents the comprehensive schematic of the model’s frame. 
 

 

 
 

Figure 1. Proposed DANIN architecture 

 

 

3.1.  Efficient signal transformation 

The fundamental module of the windowed Fourier transform (WFT) is to decompose the signal into 

an unlimited number of smaller segments and subsequently perform window processing to each of these 

segments. The windowed small segment signal may be analyzed using the Fourier transform subsequently it 

is considered as a stationary signal. Assume the signal is 𝑧(𝑣), the transformation of the signal is then applied 

as given in (1). 

 

𝑡𝑟𝑎𝑛𝑠𝑧(𝑡𝑖𝑚𝑒, ℎ𝑧) = ∫  
 

 
𝑧(𝛼)𝑗(𝛼 − 𝑣)𝑒−𝑙2𝜋ℎ𝛼𝑑𝛼 (1) 
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Where in ℎ𝑧 is frequency and 𝑗(𝑣) is the window function, for further processing of the Fourier transform on 

the signal for the local time-frequency plane, a limited window function 𝑗(𝑣) is added before the Fourier 

transforms so this function segments the non-stationary signal into unlimited no of segments, within the 

action of the window function 𝑗(𝑣), the Fourier transformation is performed on each segment of the signal 

hence obtaining the local spectrum difference at various times. The frequency associated with each segment 

of the signal determines the action of the window function 𝑗(𝑣), the smaller it is higher its resolution is, the 

time and bandwidth of the window are contradictory and the limit size of the window is arbitrarily very 

small, once after windowing the signal 𝑗(𝑣) the Fourier transform is further connected to time variable. The 

window function is evaluated by the (2). 

 

𝑗(𝑟,𝑠)(𝑣) = 𝑒𝑙𝑟𝑣𝑗(𝑣 − 𝑠), 𝑗(𝑣) ∈ 𝑁2(𝑇) (2) 

 

Here 𝑟 denotes the frequency shift parameter for the window whereas 𝑠 denotes the time shift parameter 

window, by assuming operations like 𝑟 = 𝑜𝑟𝑞  and 𝑠 = 𝑝𝑠𝑞 , this signal transformation is represented by (3). 

Where 𝐸(𝑧) is the coefficient of the WFT transform, from the above equation wherein 𝑝𝑠𝑞 , 𝑜𝑟𝑞(𝑜, 𝑞𝝐B) 

transforms the signal as a segmented series of rectangular equal blocks at equal intervals within the variable 

𝑗𝑜𝑟𝑞
, 𝑝𝑠𝑞  . The equal resolution of the signal mapped by 𝑁2(𝑇)- 𝑁2(𝑇2) for the time-frequency plane is an 

essential feature of the WFT transform. 

 

𝐸𝑜,𝑝(𝑧) = {𝑗𝑜,𝑝, 𝑧} = {𝑗𝑜𝑟𝑞
, 𝑝𝑠𝑞 , 𝑧} (3) 

 

3.2.  Deep attention network-based feature extraction 

In this section, the analysis of the structure of the feature extraction module is carried out. Deep 

attention network designs are the basis of this technique for recognizing and extracting crucial information 

from spectral images and ECG signals. This bimodal approach utilizes the deep attention network’s ability to 

distinguish complex patterns and distant connections from the input, interpreting it as particularly valuable 

for decoding the complex structures observed in spectral images and ECG data. The deep attention network 

model has achieved significant use due to its effectiveness in handling sequential data since its initial 

development for natural language processing applications. Deep attention network-based models surpass 

computer vision tasks such as classification, detection, and segmentation, as well as addressing challenges in 

natural language processing.  

Figure 1 illustrates the structure of the typical deep attention network, which consists of a group of 

encoders and a group of decoders. The self-attention mechanism is the most essential component in both the 

encoder and decoder. The deep attention network model utilizes the self-attention approach to accurately 

detect global relationships across different regions. Deep attention network surpasses CNN and RNN in 

addressing sequence problems due to the same underlying cause. The self-attention mechanism, which is the 

main mechanism of the model, allows it to prioritize different parts of the input data. This enables the model 

to reduce the impact of less significant characteristics and concentrate on the significant ones. The deep 

attention network architecture is adapted for suitable analysis, enabling us to analyze both two-dimensional 

spectral images and one-dimensional ECG data. The model consists of two parallel branches, each 

specialized for processing a distinct data modality. The next, step in this process is calculating data for both 

ECG signals and the corresponding spectral images in the feature extraction model based on deep attention 

networks. This process concludes with the integration of characteristics. The objective of this process is to 

extract and merge the most essential data from both modalities for further analysis using a series of computer 

phases. 

For the ECG signal analysis, the deep attention network processes the input signal 𝑈 consisting of 𝑃 

data points resulting in a sequence of feature vectors 𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑃]. Each 𝑧𝑘 is a feature denoted by a 

time step, the computation is denoted at the deep attention network layer for the ECG branch is denoted by 

the self-attention mechanism defined as shown in (4). The self-attention mechanism evaluates the attention 

scores at various positions of the input sequence to focus on the interdependencies irrespective of the position 

as follows in (4). Here 𝑆, 𝑀  𝑎𝑛𝑑 𝑋 is the query, key, and value matrices derived through the input, and 𝑓𝑚 is 

the key dimension evaluated as given in (5). 
 

𝐴(𝑆, 𝑀, 𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑆𝑀𝑉

√𝑓𝑚
) 𝑋 (4) 

 

𝑆 = 𝑌𝑠 ∗ 𝑟  

𝑀 = 𝑌𝑚 ∗ 𝑟 (5) 
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𝑋 = 𝑌𝑥 ∗ 𝑟  
 

𝑌𝑠 , 𝑌𝑚, 𝑌𝑥 are weight matrices randomly initialized at the initial of the network training, their value is 

adjusted as the backpropagation network and r is given as the input to the self-attention layer. Enhanced 

attention mechanism (EAM) is the extension of the attention mechanism that uses multiple parallel attention 

to enhance the model’s ability that extract the data features. Each head captures the varied attention focus at a 

similar time aspect the EAM has certain similarities that capture various features irrespective of way. The 

specific implementation here is a similar mechanism for several sets of weight matrices. The evaluation is as 

shown in (6). After this, the output for each position goes through a feed-forward network applied at the 

individual position, through the position-wise feed-forward network as given in (7). 
 

ℎ𝑘=𝐴(𝑆𝑌𝑠
𝑘 , 𝑀𝑌𝑚

𝑘 , 𝑋𝑌𝑥
𝑘)  

𝜉(𝑆, 𝑀, 𝑋)=𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … … . . , ℎ𝑒𝑎𝑑𝑗)𝑌𝑞 (6) 
 

𝜗(𝑍)=𝑚𝑎𝑥(0, 𝑧𝑌1+𝑑1)𝑌2 + 𝑑2 (7) 
 

This applies to each element of the sequence that ensures that the model captures the local context 

within each point of the signal. However, for the spectral image analysis the input spectral image K is 

denoted by the sequence of vectors as 𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑂] wherein each 𝑎𝑙 correlates to a processed region of 

the image. The vectors are processed by the deep attention networks relevant to ECG signal analysis, through 

self-attention and feed-forward networks as spatial and frequency-domain features. Upon receiving the 

feature representation 𝐻𝐸𝐶𝐺  and 𝐻𝑠𝑝𝑒𝑐 , the next phase is to integrate these features within an integrated 

representation that captures the insights through both time-domain and frequency-domain data. This 

integration is shown below in (8). Algorithm 1 shows the DANIN algorithm. 
 

𝐻ℎ𝑢𝑠𝑒𝑑 = 𝜔(𝐻𝐸𝐶𝐺 + 𝐻1) (8) 
 

Algorithm 1. Proposed DANIN algorithm 
Input Input: 𝐸𝐶𝐺 𝑠𝑖𝑔𝑛𝑎𝑙𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐹 = {(𝑧𝑘 , 𝑎𝑘)}𝑘=1

𝑃  , here 𝑧𝑘 is the 𝑘 − 𝑡ℎ ECG signal along with the 
relevant label; 

Step 1 For each signal 𝑧𝑘 in the dataset 𝐹 do 

Step 2    Normalize ECG signals  𝑧𝑘 , through the min-max normalization 

Step 3     Use WFT to get spectral images; 

Step 4 End for 

Step 5 For each normalized 𝑧𝑘 , 𝑛𝑜𝑟𝑚 in the dataset 𝐹 do 
Step 6     Use the Deep Attention Network-based model for feature extraction through 

𝑧𝑘 , 𝑛𝑜𝑟𝑚 

Step 7     Use the Deep Attention network-based model for feature extraction from spectral 

images; 

Step 8 End for 

Step 9  Features extracted are 𝐻𝐸𝐶𝐺 , 𝐻1; 

Step 10 For the set of features extracted the 𝐻𝐸𝐶𝐺  𝑎𝑛𝑑 𝐻1 do 

Step 11       Integrated features through integration accordingly as to eq (11) 

Step 12       Get integrated features as 𝐻ℎ𝑢𝑠𝑒𝑑 

Step 13        Use adaptive input encoding (AIE) to get 𝐻ℎ𝑢𝑠𝑒𝑑 according to eq 13 

Step 14         Use output extraction (OE) to get 𝑎𝑘 according to eq 13 

Step 15       End for 

Step 16  For each step output 𝑎𝑘 do 

Step 17       Predict the class of the ECG signal 

Step 18 End for 

Step 19 Return predicted variables as {𝑎𝑘}𝑘=1
𝑃  

output Predicted variables 𝑎𝑘 for each ECG signal 

 
 

4. PERFORMANCE EVALUATION 

The performance evaluation is carried out with the existing state-of-art techniques and the proposed 

model using metrics such as accuracy (ACC), precision (PRE), recall (RE), and F1-score. The baseline 

methods for comparison include random forest (RF), logistic regression (LR), K-means clustering, Gaussian 

Naive Bayes, K-nearest neighbors (KNNs), SVM, decision trees (DT), CNN, RNN, CNN+RNN, ES, and 

DANIN. The evaluation aims to compare the performance of these models to determine the most effective 

methods in terms of these metrics. The results are shown in the form of graphs and tables. 
 

4.1.  Results 

Figure 2 depicts the ACC of various ML and DL models. The models include RF, LR, K-means 

clustering, Gaussian Naive Bayes, KNNs, SVM, DT, CNN, RNN, CNN+RNN, ES, and DANIN. The chart 
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reveals that the DANIN and ES models exhibit the highest accuracy, closely followed by CNN+RNN, RNN, 

and CNN models, all of which surpass the 95% mark. DT and SVM show moderately high accuracy, above 

80%. In contrast, KNNs, Gaussian Naive Bayes, and K-means clustering perform below 80%, with LR and 

RF having the lowest accuracies, around 70%. This analysis indicates a clear advantage of DL models, 

particularly those that combine CNN and RNN, over traditional ML approaches in terms of accuracy. 

 

 

 
 

Figure 2. Accuracy comparison of existing state-of-art techniques with DANIN 

 

 

Figure 3 illustrates the precision (PRE) of various ML and DL models, including DANIN, ES, 

CNN+RNN, RNN, CNN, DT, SVM, KNNs, Gaussian Naive Bayes, K-means clustering, and LR. The 

DANIN and ES models again top the chart with the highest precision values, indicating their superior 

performance in correctly identifying positive instances. The CNN+RNN, RNN, and CNN models also 

demonstrate high precision, reflecting their effectiveness in minimizing false positives. DT and SVM exhibit 

moderately high precision, falling just below the top-tier models. KNNs, Gaussian Naive Bayes, and  

K-means clustering show lower precision, indicating a higher rate of false positives compared to the top-

performing models. LR, while slightly better than K-means clustering, still lags behind the other methods. 

This analysis highlights the superior precision of DL models, particularly the combined CNN+RNN 

approach, compared to traditional ML models. 

 

 

 
 

Figure 3. Precision comparison of existing state-of-art techniques with DANIN  
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Figure 4 presents the (RE) of various ML and DL models, including DANIN, ES, CNN+RNN, 

RNN, CNN, DT, SVM, KNNs, Gaussian Naive Bayes, K-means clustering, LR, and RF. The DANIN and ES 

models exhibit the highest recall values, both at 100, indicating their exceptional performance in identifying 

all relevant instances (true positives). The CNN+RNN model follows closely with a recall value of 93.76, 

demonstrating its effectiveness in minimizing false negatives. RNN and CNN models also show high recall 

values, at 87.25 and 88.12 respectively, showcasing their ability to identify a large portion of relevant 

instances. DT and SVM show moderately high recall values, at 87.55 and 86.28 respectively, indicating a 

good balance between true positives and false negatives. In contrast, KNNs (78.22), Gaussian Naive Bayes 

(79.44), and K-means clustering (70.33) exhibit lower recall values, reflecting a higher rate of false negatives 

compared to the top-performing models. LR and RF perform similarly, with recall values of 91.08 and 84.85 

respectively, slightly below those of the better-performing models. This analysis underscores the superior 

recall of DL models, particularly the combined CNN+RNN approach, compared to traditional ML models, 

indicating their robustness in identifying relevant instances. 
 

 

 
 

Figure 4. Recall comparison of existing state-of-art techniques with DANIN 

 

 

Figure 5 shows the F1-score of various ML and DL models, including DANIN, ES, CNN+RNN, 

RNN, CNN, DT, SVM, KNNs, Gaussian Naive Bayes, K-means clustering, LR, and RF. The DANIN and ES 

models achieve the highest F1-scores, both at 100, indicating their balanced performance in terms of 

precision and recall. The CNN+RNN model follows closely with an F1-score of 94.25, demonstrating its 

effective handling of both true positives and minimizing false positives and negatives. RNN and CNN 

models also perform well with F1-scores of 90.56 and 89.46, respectively, showcasing their robust 

performance. DT and SVM exhibit moderately high F1-scores, at 85.81, and recall. In contrast, KNNs 

(78.86), Gaussian Naive Bayes (74.95), and K-means clustering (76.57) show lower F1-scores, indicating 

less balanced performance compared to the top-performing models. LR and RF have the lowest F1-scores, at 

78.65 and 74.72, respectively, indicating their lower overall performance. This analysis highlights the 

superior F1-scores of DL models, particularly the combined CNN+RNN approach, compared to traditional 

ML models. 

Table 2 presents a tabular comparison of various models across multiple metrics, including recall 

(RE) and precision (PRE) for different classes (N, S, V, F). Figure 6 illustrates the performance of various 

models across multiple metrics, including recall (RE) and precision (PRE) for different classes (N, S, V, F). 

The models compared are MRFO-SVM, fused transformer, DNN-ensemble, light transformer, WaveINet-

Db6, WaveINet-Sym4, MAHA, ISFnet-14, ECGTransForm, ES, and DANIN. DANIN and ES models 

consistently achieve high values across all metrics, indicating their robust performance with near-perfect 

recall and precision values. ECGTransForm and MAHA also demonstrate strong performance, particularly in 

recall and precision for most classes, positioning them among the top models. In contrast, ISFnet-14 exhibits 

a significant drop in some metrics, particularly in recall (N) and precision (N), suggesting a higher rate of 
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false negatives and less accurate positive predictions for this class. Light transformer and fused transformer 

maintain balanced performance across most metrics, though not as high as the top-performing DANIN and 

ES models. WaveINet-Db6 and WaveINet-Sym4 show varying results, with notable drops in certain metrics, 

reflecting less consistency. DNN ensemble displays lower performance, especially in recall (V) and precision 

(V), indicating challenges in correctly identifying and classifying relevant instances in these classes. Overall, 

the chart highlights the superior and consistent performance of DANIN and ES models across all metrics, 

while other models show varying degrees of effectiveness, with some excelling in specific areas but not 

across the board. 

 

 

 
 

Figure 5. F1-score comparison of existing state-of-art techniques with DANIN 

 

 

Table 2. Comparison table 
Methods RE 

(N) 
PRE 
(N) 

RE 
(S) 

PRE 
(S) 

RE 
(V) 

PRE 
(V) 

RE 
(F) 

PRE 
(F) 

Average 
RE 

Average 
PRE 

Average F1-
score 

MRFO-SVM [16] 98.8 98.7 98 99.3 98.2 96.4 96 97.8 97.8 97.6 97.7 97.7 

Fused 
transformer [17] 

99.2 99.2 94.8 91.4 69.3 87.4 86.5 87.7 92.6 90.1 90.1 90.1 

DNN-ensemble 

[18] 

93.1 98.1 83.1 90.9 49.4 80.2 49.4 76.4 68.7 86.4 78 78 

Light transformer 

[19] 

99.8 99.7 91.5 94.4 83 93.8 91.4 91.4 91.4 93.8 94.8 93.6 

WaveINet-Db6 
[20] 

92 95.3 74.6 64.8 64.8 64.8 64.8 64.8 74.1 64.8 61.3 61.3 

WaveINet-Sym4 

[21] 

91.4 97.7 91.4 65.7 49.3 25.6 64.8 77.3 63.8 66.6 69.4 69.4 

MAHA [22] 99.5 91.9 99.4 85 84.9 90.1 91.8 91.8 93.9 89.7 89.7 93.2 

ISFnet-14 [23] 63.5 63.8 96.1 91.8 99.4 98.6 85.4 83.1 86.1 84.3 84.2 84.2 

ECGTransForm 
[24] 

99.7 97.8 99.7 89.2 93.8 86.5 96.6 93.6 97.6 91.8 93.3 95 

ES [25] 99.8 99.7 97.5 97.7 91.7 95.7 100 96.8 97.5 95.2 96.4 96.4 

DANIN (PS) 99.9 99.8 98.4 98.87 93.43 96.76 100 97.86 98.76 96.76 97.86 97.87 

 

 

Figure 7 presents an average comparison of various models based on three metrics: average recall 

(RE), average precision (PRE), and average F1-score. The models compared include MRFO-SVM, fused 

transformer, DNN-ensemble, light transformer, WaveINet-Db6, WaveINet-Sym4, MAHA, ISFnet-14, 

ECGTransForm, ES, and DANIN. From the chart, it is evident that the DANIN and ES models exhibit 

superior performance across all three metrics, with values close to or reaching 100, indicating their excellent 

balance between recall, precision, and overall effectiveness. ECGTransForm and MAHA also perform well, 

showing high average values across all metrics, placing them among the top performers.  
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Figure 6. N, S, V, F comparison of existing state-of-the-art techniques with DANIN 

 

 

Light transformer and fused transformer demonstrate balanced performance, with average values 

consistently high, although slightly lower than the top models DANIN and ES. WaveINet-Db6 and 

WaveINet-Sym4 show more variability, with significant drops in some metrics, reflecting less consistent 

performance. DNN-ensemble and ISFnet-14 have noticeably lower average values, particularly in the recall, 

indicating challenges in identifying all relevant instances. This lower performance impacts their overall  

F1-score, suggesting a need for improvement in these models. Overall, the chart highlights the exceptional 

and consistent performance of DANIN and ES models across all metrics. Other models like ECGTransForm 

and MAHA also show strong performance, while some models like DNN-ensemble and ISFnet-14 require 

further optimization to improve their average recall and precision. 

 

 

 
 

Figure 7. Average comparison of existing state-of-art techniques with DANIN 

 

 

5. CONCLUSION 

In conclusion, the DANIN methodology significantly enhances the accuracy and timeliness of 

arrhythmia detection by integrating one-dimensional ECG signals with two-dimensional spectral images. 

This innovative approach leverages deep attention network-based models for superior feature extraction and 

incorporates an inference model system for improved interpretability and clinical usability. Comparative 

analysis with traditional and state-of-the-art methods demonstrates that DANIN achieves higher performance 
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metrics, including accuracy, precision, recall, and F1-score. This methodology effectively addresses the 

limitations of existing diagnostic tools, offering a reliable solution for early and accurate arrhythmia 

detection, ultimately improving patient outcomes and reducing healthcare problems. 
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