
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 39, No. 1, July 2025, pp. 272~282 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v39.i1.pp272-282      272 

 

Journal homepage: http://ijeecs.iaescore.com 

Study on neuromorphic computation and its applications 
 

 

Anjali Chature, A. Raganna, Venkateshappa 
School of Electronics and Communication Engineering, REVA University, Bangalore, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Aug 12, 2024 

Revised Dec 19, 2024 

Accepted Feb 25, 2025 

 

 Neuromorphic computing offers a promising alternative to traditional von 

Neumann architectures, especially for applications that require efficient 

processing in edge environments. The challenge lies in optimizing spiking 
neural networks (SNNs) for these environments to achieve high 

computational efficiency, particularly in event-driven applications. This 

paper investigates the integration of advanced simulation tools, such as 

Simeuro and SuperNeuro, to enhance SNN performance on edge devices. 
Through comprehensive studies of various SNN models, a novel SNN 

design with optimized hardware components is proposed, focusing on 

energy and communication efficiency. The results demonstrate significant 

improvements in computational efficiency and performance, validating the 
potential of neuromorphic architectures for executing event-driven scientific 

applications. The findings suggest that neuromorphic computing can 

transform the way edge devices handle event-driven tasks, offering a 

pathway for future innovations in diverse application domains. 
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1. INTRODUCTION 

Neuromorphic computing (NC) aims to understand and modify the basic features of neuronal 

structures observed in its very nature, to develop a novel system design that is inherently suitable for brain-

inspired computations that defy the traditional von Neumann architecture. NC has gained popularity, 

becoming the preferred design over the von Neumann computer design for tasks like cognitive thinking and 

several similar tasks. The reason for the change is that a neuromorphic microchip consists of interconnected 

artificial neurons and synapses, as shown in Figure 1. These components enable the development of 

biologically-inspired approaches that can efficiently examine theoretically neuroscientific approaches and 

complex machine-learning approaches. When it comes to classical computation, the von Neumann design is 

most often used. Nevertheless, it exhibits significant variations in terms of organizational layout, power 

demands, and computational capacities compared to the functional framework that exists in the individual’s 

brain [1]. Hence, neuromorphic computations have only recently developed as a complement to the von 

Neumann inherent design. 

To establish an instruction system similar to the human brain, neuromorphic computations have 

been implemented in recent years. The NC can acquire knowledge and generate solutions based on these 

calculations to imitate neurological functionalities. The NC draws inspiration from neurons, methods and 

instruction techniques, software, hardware, and additional technologies presented for brain computation [2]. 

Moreover, NC features encompass the integration of memory and processing, the ability to perform multiple 

tasks simultaneously, the presence of stimulus and repetition throughout the system, the ability to handle 

large amounts of data, the use of stochastic calculation and less precision, and the ongoing adaptability 
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usually linked with training. The features of NC also encompass infrequent, impulse-based connections that 

facilitate widespread communication, as seen in spiking neural networks (SNNs). SNNs achieve low power 

consumption by favoring periods of inactivity and enable fast computation by working asynchronously and in 

an event-driven way. 
 

 

 
 

Figure 1. Neuromorphic architecture 

 

 

Furthermore, the swift advancement of technological advances in computers has facilitated the 

progress of deep learning (DL), a field that has achieved major advances in automated driving [3], 

recognizing patterns [4], classification of images [5], and other areas. Nevertheless, the present state of DL 

has slowed the progress of artificial intelligence (AI) because of substantial power usage, prolonged 

retraining duration, and decreased performance [6]. Moreover, biological neural-networks (BNNs), in 

contrast to conventional artificial-neural-networks (ANNs), construct SNNs by communicating using 

intermittent pulses instead of numerical information. In SNNs, neurons only participate once they obtain 

incoming pulses. Consequently, neurons that are not receiving incoming pulses could be switched to a low-

power state, resulting in less power usage and a more streamlined computational process. Figure 2 displays 

one example of how the neurons work in NC. Consequently, SNNs can accomplish significantly lower power 

than ANNs, particularly when utilizing an analog/mixed-signal (AMS) circuitry approach. Furthermore, 

utilizing SNN-based computation presents a superior approach for addressing the limitations of the present 

DL approaches and helps in resolving AI issues. This is mainly because of its nature and operational process 

which closely resembles the structure of the human brain [7]-[9]. 

 

 

 
 

Figure 2. Spiking of neural network in neuromorphic computation 
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In recent years, the majority of scientific operations require the computation of large volumes of 

information, necessitating the use of high-performance-computing (HPC) capabilities. Since the amount of 

information produced by scientific applications continues to increase, it is increasingly vital to investigate 

different elements of NC to effectively handle the large amount of input information while using minimal 

power. By employing a non-von Neumann design, neuromorphic hardware can more effectively place 

processing and memory components together, resulting in improved parallelism along with possibly lowering 

the power required for accessing memory. This power reduction is crucial in overcoming the main obstacle in 

improving the processing speed of traditional computers [10]. Various neuromorphic hardware prototypes are 

currently presented so far, encompassing AMS circuitry design [10]. DYNAPs, BrainScales 1, and 

BrainScales 2 are examples of AMS circuitry designs that utilize analog design for constructing synapses and 

neurons [11]. Although analog circuitry systems have reduced power usage and may accommodate different 

biological time constants using device and circuit behavior, still they are restricted by device 

incompatibilities [12]. Furthermore, neuromorphic computers operate based on events and have a built-in 

ability to be easily expanded in size. In addition, when it comes to ML activities, they require considerably 

fewer resources than GPUs and CPUs, while still maintaining the same level of computational speed [13]. 

These attributes make them suitable for event-driven sensing tasks that necessitate immediate analysis of 

signal data with minimal delay [14]. 

NC is expected to have a significant influence on tasks that necessitate minimal weight, size, and 

power (WSaP). Examples of these kinds of tasks encompass autonomous technologies, like self-driving 

automobiles, unmanned aircraft, and self-guiding robots. Additionally, embedded technologies, including 

signal processing, control-circuits, and power electronics, are also included. Furthermore, the internet-of-

things (IoTs), specifically smart automated processes, is another task. Lastly, remote sensing tasks, like 

hyperspectral-imaging and satellite imagery, are also part of this category. Nevertheless, neuromorphic 

computers are well-suited for simulating and modeling computation-based tasks, like neurology and 

epidemiological studies, that are expressed using directed-acyclic-graphs (DAGs). Figure 3 demonstrates the 

execution of various scientific operations using DAGs. In addition, SimEuro [15] and SuperEuro [16] are 

among the simulator tools utilized in recent years by researchers for the simulation of NC. Simeuro is a high-

speed and adaptable system-level simulator designed for simulating SNN approaches utilized in 

neuromorphic acceleration. The simulator utilizes precise information at the scale of individual spikes and 

may be adjusted to meet specific structural limitations, regardless of the type of hardware being used. 

Simeuro offers extensive functionality, encompassing analog computation, cutting-edge memory technology, 

and a comprehensive network-on-chip (NoC). The simulator provides comprehensive simulation outcomes, 

including routing data, power usage, latency, and precision for user-defined SNN designs. Moreover, 

SuperNeuro is a high-speed and adaptable simulator designed for NC. It performs simulations that are either 

heterogeneous or homogeneous, and it also supports GPU acceleration. 

 

 

 
 

Figure 3. Neural network for neuromorphic computation 

 

 

To understand the advantages of NC, this study provides a comprehensive review of NC 

applications and tasks, particularly focusing on their utilization in edge intelligence. It explores the unique 

capabilities and advantages of NC, highlighting its potential to revolutionize event-driven applications.  

By delving into SNN-based approaches, neuromorphic chips, and memristors, the study offers fresh insights 

into how these technologies can enhance computational efficiency. Additionally, the examination of 

probabilistic SNN-based approaches presents a novel perspective on improving computation using 

neuromorphic chips, making this review a valuable resource for understanding cutting-edge advancements in 

NC. The significance of this study is as follows: 
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 Consolidates current knowledge of NC. 

 Offers a detailed analysis of applications in edge intelligence. 

 Explores the intersection of SNN-based approaches, neuromorphic chips, and memristors. 

 Provides a holistic understanding of leveraging these technologies for faster computation in event-driven 

applications. 

 Crucial insights for researchers and practitioners in various domains, such as event-driven scientific 

applications and circuit designs. 

 Elucidates the functioning of SNNs in different applications and scenarios. 

 Paves the way for future innovations and advancements in NC. 

Further, the manuscript is organized in the following way. In section 2, the literature survey has 

been discussed. In section 3, the findings from the literature survey are discussed. In section 4, the possible 

solutions for the future innovations are discussed. Finally, the conclusion along with future work is discussed. 

 

 

2. LITERATURE SURVEY 

This section provides a comprehensive review of NC applications, particularly focusing on their 

utilization in edge intelligence. Further, it explores the unique capabilities of NC by delving into SNN-based 

approaches, neuromorphic chips, and memristors. Additionally, the examination of probabilistic SNN-based 

approaches is evaluated to provide a novel perspective on improving computation using neuromorphic chips. 

 

2.1.  Neuromorphic computing applications and edge intelligence 

This section discusses the various NC applications, particularly focusing on their utilization in edge 

intelligence. A neuromorphic approach for intelligently handling continuous electro-cardio-gram (ECG) 

signals was introduced by Liang et al. [17]. This approach attempted to create a hardware-driven structure for 

processing signals. They used a new training and labeling approach in combination with delay-based 

reservoir computation to handle data. A complete dynamic structure that simulated the flow of signals within 

neuromorphic hardware in real-time made up this computational approach. Using the MIT-BIH dataset 

alongside the inter-patient structure, this approach achieved 98% accuracy along with 81% sensitivity. Given 

that most processing occurs throughout the analog, this approach allowed for an inferential method with a 

minimal memory requirement of as little as 3.1 MegaByte (MB). A comprehensive analysis of NC’s potential 

uses in socially communicating robots was provided by Aitsam et al. [18]. NC foundational concepts, 

designs, and frameworks were initially presented in their work. Lastly, they highlighted possible areas of 

investigation for neuromorphic robots that were completely integrated and capable of social interaction. 

Based on their findings, NC holds significant potential for developing computationally, mathematically, and 

power-efficient robots with intelligence comparable to that of humans. An analog vector-matrix multiplier 

was demonstrated by Rizzo et al. [19] using a neurological engine along with a single-transistor non-volatile 

analog storage cell, both of which were manufactured using the industry-standard. The primary goal of the 

structure was to make it operate with neural-networks that were trained offline. A matrix of weights stored 

within the configurable currents of the storage cells was analogically multiplied by an array of inputs 

recorded in the course of time-pulses by vector-matrix-multipliers (VMM). The outcome of the presented 

process was transformed to a voltage using small-area charging amplifiers. According to the system-level 

predictions, which were derived from calculations and observations, the throughput was 333.17 Giga-

Operations per-second (GOps/s), the power-efficiency was 122.3 Tera-Operations per-second/Joules 

(TOps/J), and the corresponding size per storage cell was below 2.15 μm2. 

The latest review by Schuman et al. [20] examined the techniques and potential uses of NC and their 

current findings. They reviewed the potential possibilities for subsequent algorithms and usage innovation on 

NC platforms and emphasized the features which made these innovations appealing for future generations of 

computing. For event-based electro-myo-graph (EMG) movement identification, Vitale et al. [21] introduced 

two SNNs and evaluated them on Intel’s experimental neuromorphic processor Loihi. The suggested strategy 

outperformed cutting-edge approaches in the experimental assessment that used an eight-channel EMG 

sensor to distinguish between twelve distinct hand motions. On the widely-used NinaPro DB5 dataset, they 

achieved 74% accuracy, 5.7 ms computation delay for 300 ms EMG tests, and 41 mW power consumption. 

According to Patton et al. [22], NC has the potential to have a significant influence in several scientific 

fields, whether it happens shortly or in the far future. They documented the potential benefits and drawbacks 

of NC in various domains. Finally, they addressed on what has to be done in the future to increase the 

adoption and growth of NC. Moreover, tasks/applications of IoT and different aerial platforms necessitate 

extremely high levels of computational power, as demonstrated by the methodology and results of  

Barnell et al. [23]. They accelerated the creation and implementation of an entirely novel method for 

operating ML at edge-network by combining it with the newly launched Loihi 2 processor. As part of this 
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study, SNN was trained using information collected from IoT sensors. Their idea relied on ML to forecast the 

system’s modes using relevant sensory information. By utilizing this complex method, they achieved 97.6% 

accuracy in the classification of IoT sensory data. 

 

2.2.  Spiking neural network based neuromorphic computation 

In this section, we discuss the different SNN based neuromorphic computations. Several training 

approaches and spike-representations for deep SNNs were addressed by Rathi et al. [24]. They also looked at 

non-classification applications, such as movement calculation, sequence learning, recognizing gestures, and 

more other applications. From the findings, the specific characteristics of SNNs included spike-based 

calculations within hardware configurations for power-efficient computation along with elevated activating 

sparsity. They concluded their work by discussing potential future uses and unexplored research directions. 

To take advantage of Intel’s Loihi neuromorphic-chip processing capacity, Sopeña et al. [25] suggest a short-

term wind energy prediction method using SNNs. The suggested method was tested using an experiment 

using actual Irish wind power production information; the results showed a normalized mean-absolute-error 

(MAE) of 2.84% for one-step-ahead wind power predictions. To connect multi-layer SNN systems,  

Dang et al. [26] introduced an artificially intelligent architecture called HeterGenMap. When compared to 

regular mapping, HeterGenMap reduced transmission costs by an average of 11.04% to 26.77%. 

Additionally, compared with the linear method, HeterGenMap reduced communication costs by 3.41% to 

31.34% within link-faulty situations, 7.01% to 41.51% within neuron errors, and 34.21% to 45.56% in multi-

chip architecture. Additionally, hardware verification showed that compared to linear-mapping, 

HeterGenMap substantially decreased the time required for inference by 63.10% to 77.87%. In a recent 

study. 

Chunduri and Perera [27] successfully improved the capabilities of natural-language-processing 

(NLP) by applying and combining the features of SNNs. They then implemented this combined approach on 

neuromorphic hardware. By utilizing an advanced SNN approach on SpiNNaker neuromorphic hardware, 

they suggested a new, effective, and original sentiment assessment approach. They built an ANN approach 

and fed it information from the internet-movie-data-base (IMDB) to train it. To react positively or negatively 

to user inputs, they built a spiking sentiment analysis (SSA) approach utilizing SpiNNaker known as SSA-

SpiNNaker. With only 3,970 joules of power used, the SSA-SpiNNaker approach was able to evaluate about 

10,000 words and accurately anticipate whether the outcome would be negative or positive. Ortiz et al. [28] 

looked into how on-board radio-resource-management (RRM) could benefit from using ML approaches 

inspired by the brain, which are known to be power-efficient. They detailed significant findings from 

experiments using the newly launched Intel Loihi 2 neuromorphic-chip in addition to software simulations. 

They compared the suggested approach performance for various traffic needs using standard convolutional-

neural-networks (CNN) constructed on a Xilinx-Versal VCK5000. In comparison with CNN, SNNs deployed 

on Loihi 2 achieved better accuracy for applicable workloads while consuming over 100 times less power. 

Chen et al. [29], demonstrated the first functional neuromorphic SNN that processed time-to-first-spike 

(TTFS) encoded analog spiking signals with the second-order-leaky-integrate-and-fire (SOLIF) neuron 

model to achieve superior biological plausibility. An 8-kb SRAM macro was used to implement the synapses 

of the neurons to enable analog-computing in memory (ACIM) operation and produced current-type dendrite 

signals of the neurons. A novel low-leakage 8T (LL8T) SRAM cell was proposed for implementing the 

SRAM macro to reduce the read leakage currents on the read bitlines (RBLs) when performing ACIM.  

The measurement results showed that their SNN implementation achieved an average inference latency of 

196 ns and an inference accuracy of 81.4%. It consumed 242 μW with a power efficiency of 4.74 

pJ/inference/neuron. 

 

2.3.  Spiking neural network-based approaches using circuit devices and memristors 

This section discusses the SNN-based approaches for circuits and memristors. To determine the 

effect upon SNN achievement, Kim et al. [30] simulated the network using an electronic approach that 

updated its weights non-linearly. When a device satisfies any of the following two circumstances-1. 

Symmetrical long-term-depression (LTD) or long-term-potentiation (LTP) curves and 2. favorable non-linear 

components across both LTD and LTP, the network was able to maintain a high level of accuracy, and SNN 

had outstanding tolerance for device non-linear behavior. They looked at the cause in the context of the 

stability of the weight distribution along with the harmony of the system’s variables. A novel approach for 

recognizing images using memristor-based blaze-blocks (MBBs) was presented by Ran et al. [31]. This 

approach consisted of a memristive-CNN (MCNN) layer, two single-MBBs (SMBBs), four double-MBBs 

(DMBBs), a global-average-pooling (GAP) layer, along with a memristive-fully-connected (MFC) layer. The 

depth-wise-separable CNN (DwCNN) constructed with a significantly shorter memristor-crossbar (MC), was 

primarily used by DMBBs and SMBBs. Batch-normalization (BN) layers were employed to perform 
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backward-propagation to speed up the convergence process. To make the circuit more resilient, a 

semiconductor diode was placed following the rectified-linear-unit (ReLU) layer. This lowered the circuit’s 

final voltage under the memristor’s threshold value. On the CIFAR-10 dataset, tests demonstrated that the 

suggested circuit utilizing memristors accomplished 84.38% accuracy while consuming less power, taking 

less time to calculate, and making better use of computational resources. A framework and method for fault-

tolerant SNN mapping was suggested by Yerima et al. [32] for use in a three-dimensional neuromorphic 

platform called R-NASH-II built on NoC. Neurons were ranked and quickly chosen for fault-tolerant 

mappings using the rank and selection mapping (RSM) approach. The study’s findings demonstrated that 

compared to the prior mapping structure, SNN preserved a mapping accuracy of 100% while experiencing a 

20% spare frequency along with a 40% increase in fault rate. According to a study conducted using Monte 

Carlo simulations, the RSM method exhibited a 43% average improvement in mean-time-to-failure (MTTF) 

compared to the prior mapping approach. In addition, the RSM has an operating capacity of 88% when 

projecting to a 4×4×4 NoC and 67% when projecting to a 6×6×6 NoC. 

By using simulations, Lewden et al. [33] investigated how the primary technical characteristics of 

analog leaky-integrate-and-fire (LIF) and ferroelectric-tunnel-junctions (FTJs) synapses affected the 

neuromorphic computer system’s capacity for training. They were able to use this information to propose 

mitigation strategies and construct rules for constructing an SNN-based intelligent visual sensor for use in 

reward-modulated and unsupervised learning, in addition to to identifying the variables most important 

towards the development of these systems. Specifically, they demonstrated that the negative impact of 

postsynaptic-neurons input-voltage offset can be mitigated by dividing the active crossbar arrays of 

memristors. To improve online reinforcement-learning (RL), Vlasov et al. [34] described a method that 

changed linked weights immediately following processing every contextual state while interaction-with-

environment data was being generated. Using SNNs with spike-timing-dependent-plasticity (STDP) like rule 

sets that utilized memristors was another innovative aspect of the technique. Plasticity functions were 

calculated using empirically constructed and evaluated real-life memristors using a nanocomposite. The 

result established the way for the development of neuromorphic technologies with memristive-synapses to 

operate within a continuous-time surrounding, where an agent-learning method could be implemented.  

Peng et al. [35] provided a brief overview of SNN theory before introducing memristor-based techniques for 

SNN hardware integration. They discussed the possibility of using optimized algorithms to make SNN 

hardware platforms more effective and save power. Lastly, they summed up the present issues and concerns 

within this area according to present memristor technologies. 

 

2.4.  Probabilistic spiking neural network 

In this section, different probabilistic SNN approaches are discussed. A probabilistic SNN 

technology was introduced by Hsieh et al. [36] for use in healthcare or deployable learning/classification 

systems. Weights were modified by spike-based calculation in online learning. The weights were stored 

within synaptic memories that persisted over time. With a 1V supply, this neuromorphic-chip core area 

occupied 0.43 mm2 and its consumption was less than 10 μW. Considering an area-under-curve (AUC) of 

0.8, the chip was capable of learning 80 arbitrary sequences. Jang et al. [37] indicated that the development 

of SNN algorithms for training is lagging because of current hardware solutions; the majority of current SNN 

training methods are those developed for biological validity or to convert previously trained ANNs using 

rate-encoding. To improve rate-coded SNNs, Nallathambi et al. [38] suggested probability spike-propagation 

(PSP), which involves controlling spike-propagation based on synaptic-weights interpreted as possibilities. 

The method leads to a decrease in both time and power usage by 2.4-3.69 times the number of spikes that are 

transmitted. A specific SNN acceleration that supported PSP was developed called as probabilistic-spiking 

neural-network-application-processor, or P-SNNAP. PSP led to a 1.39-2× decrease in power and concurrent 

acceleration of 1.16% to 1.62% in comparison with the standard approach of SNN. 

Yamazaki et al. [39] reviewed ANNs, offered precise synapse approaches and offered a thorough 

overview of current spike-based-neuron approaches used in neuroscience studies. In addition, they addressed 

current SNN use cases in the visual analysis and automation areas, revised existing spike-based neural 

architectures to facilitate the development of probabilistic-SNNs, and included extensive instructions 

concerning how to build approaches using these networks. For spiking neurons, Ding et al. [40] developed 

the probability-firing-mechanism (PFM) after optimizing the probability process. The attention-

discrimination-mechanism (ADM) was suggested to mitigate the detrimental effects of probability 

uncertainties; this allowed neurons to react effectively by automatically differentiating the important 

components of the input. To build probabilistic-attention-LIF (PALIF) neurons and Probabilistic-Attention-

SNN (PASNN), they fused PFM, ADM, and LIF neurons. The results show that PASNN worked well in low-

latency situations and achieved better outcomes for accuracy and inference time on neuromorphic and static 

picture datasets such as N-MNIST, CIFAR100, and CIFAR10-DVS. To develop probabilistic SNN,  

Shen et al. [41] suggested using expectation-propagation (EP) variational-inference. Using training 
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information as input, they trained the learning network using a Bayesian approach that aimed to discover 

quantitative estimates for the median distribution based on the weights. Their work on an image classification 

issue demonstrated the capabilities of two EP versions. The initial investigation thus laid the groundwork for 

future technological efforts that could speed up the development of more profound and complicated spiking 

structures for automated vision tasks while also improving their understanding. 
 

 

3. FINDINGS 

The findings from the above literature survey are presented in Table 1. From the above study, it is 

seen that neuromorphic computation is spread across various domains. Despite the critical importance of 

neuromorphic computation, limited research has been conducted on the effective scheduling and execution of 

DAG event-driven scientific applications, particularly those with strong interdependence among tasks. DAGs 

provide a clear and structured framework for executing tasks in a specified order, ensuring that dependencies 

are executed. When tasks have no interdependencies, they can be executed in parallel, optimizing 

computational resources and reducing overall execution time. 
 

 

Table 1. Findings 
Reference Domain Advantages Limitations 

[17] ECG signal processing Hardware-based signal processing, reduced 

memory size, high accuracy (98%) 

Limited to ECG signals, 81% sensitivity 

[18] Socially interactive robotics Human-like intelligence, speed, energy 

efficiency 

Early stage, potential integration 

challenges 

[19] Analog neural networks High throughput (333.17 GOps/s), energy 

efficiency (122.3 TOps/J), small area 

Focused on offline training 

[20] Neuromorphic algorithms 

and applications 

Future development opportunities, attractive 

characteristics for computing 

General review, no specific applications 

[21] EMG gesture recognition High accuracy (74%), low power consumption 

(41mW), fast processing (5.7ms) 

Limited to EMG gesture recognition 

[22] Various scientific areas Immediate and high societal impact, 

identification of opportunities and hurdles 

Technological barriers need addressing 

[23] IoT and airborne platforms High classification accuracy (97.6%), scalable 

technical approach, edge computing 

Limited to specific IoT and airborne 

applications 

[24] Various (gesture recognition, 

motion estimation) 

High activation sparsity, energy-efficient 

processing 

Focused on motion estimation 

[25] Wind power forecasting Low error rate (2.84%), plausible neuromorphic 

device development for the wind energy sector 

Specific to wind power forecasting 

[26] SNN system mapping Improved communication cost, reduced 

inference time 

Limited to SNN system mapping 

[27] Sentiment analysis High accuracy (100%), low energy 

consumption 

Limited to sentiment analysis using IMDB 

dataset 

[28] SatCom operations High accuracy, significant power reduction 

(100× compared to CNN) 

Specific to SatCom operations 

[29] Analog computing in 

memory 

High biological plausibility, low latency, 

energy efficiency 

Limited to TTFS-encoded analog spiking 

signals 

[30] SNN simulation Tolerance for device non-linearity and high 

accuracy maintained 

Simulation-based, real-world 

implementation challenges 

[31] Image recognition High accuracy (84.38%), reduced power 

consumption, smaller circuit implementation 

Specific to the CIFAR-10 dataset, 

memristor-based implementation 

[32] Fault-tolerant SNN mapping High mapping efficiency, increased MTTF, 

operational availability 

Specific to 3D NoC-based neuromorphic 

systems 

[33] Smart vision sensors Critical parameter determination, mitigation 

solutions 

Simulation-based, specific to unsupervised 

or reward-modulated learning 

[34] Online reinforcement 

learning 

Real-time agent learning, successful Cart-Pole 

benchmark task 

An early step towards real-time 

implementation 

[35] SNN hardware 

implementation 

Efficient, energy-saving SNN hardware 

systems, algorithm optimization 

Existing technology limitations and 

challenges discussed 

[36] Portable/Biomedical 

applications 

Low power consumption (<10μW), compact 

chip area, online learning capability 

Limited to learning and classification 

[37] SNN training algorithms Probabilistic spike propagation, reduced time 

and energy consumption 

Existing training algorithms lag behind 

hardware implementations 

[38] SNN Accelerator Energy reduction (1.39–2×), speedups  

(1.16–1.62×) 

Specific to probabilistic spike propagation 

[39] Biological neurons and 

SNNs 

Comprehensive review, and guidance on 

training spike-based neuron models 

General review 

[40] Probabilistic SNNs Competitive performance in low-latency 

scenarios, effective PFM and ADM integration 

Limited to static image and neuromorphic 

datasets 

[41] Variational inference for 

SNNs 

Large training sets handling, increased 

interpretability, accelerated training 

A preliminary study requires further 

validation for deeper and more complex 

networks 
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Additionally, DAG tasks can be scaled to handle large and complex scientific computations, making 

them suitable for high-performance computing environments. However, the interdependencies among tasks 

in a DAG can make scheduling highly complex, necessitating effective scheduling algorithms to optimize 

resource utilization and minimize execution time while respecting all dependencies. Allocating appropriate 

resources for tasks with strong interdependencies can also be challenging, as misallocation can lead to 

inefficiencies and increased execution times. Ensuring fault tolerance in DAG workflows is particularly 

difficult when tasks are interdependent since a failure in one task can propagate and affect multiple 

subsequent tasks. There is a paucity of research specifically focused on optimizing DAG workflows with 

strong interdependencies, with most existing studies addressing more straightforward or less interdependent 

workflows, leaving a gap in knowledge for more complex scenarios. The current state of research on DAG 

tasks with strong interdependencies using SNNs highlights the need for more advanced and targeted studies. 
 
 

4. POSSIBLE SOLUTIONS 

To solve the problems of this study and to analyze the usage of NC in executing DAG event-driven 

scientific applications in edge devices, several advanced simulation tools and methodologies must be employed. 

The integration of Simeuro and SuperNeuro simulators offers a comprehensive approach to address these 

objectives by leveraging their unique capabilities and features. Simeuro provides detailed spike-level 

simulations, crucial for accurately modeling and understanding the behavior of SNNs in neuromorphic 

accelerators. Its ability to configure architectural constraints independently of the underlying hardware 

implementation allows for flexibility in simulating various neuromorphic architectures. Additionally, Simeuro 

supports analog computing and RRAM, simulating advanced neuromorphic systems that mimic biological 

neurons and synapses, and its detailed simulation of NoC allows for precise analysis of communication within 

the neuromorphic system, providing insights into routing statistics, energy consumption, delay, and accuracy. 

Also, SuperNeuro can complement by supporting both homogeneous and heterogeneous simulations, making it 

versatile for various NC scenarios. Its GPU acceleration significantly speeds up simulations, enabling the study 

of more complex models and larger datasets in a reasonable time frame. 

Using these simulators, simulation can be conducted for the execution of DAG tasks or DAG 

applications on edge devices, focusing on how NC can enhance the performance and efficiency of these 

workflows. This involves configuring various SNN architectures and analyzing their performance in terms of 

processing speed, energy efficiency, and accuracy. Enhanced SNN models can be developed and simulated to 

facilitate event-driven communication, with Simeuro’s spike-level detail and SuperNeuro’s heterogeneous 

simulation capabilities being crucial in designing and testing these models. This includes optimizing 

communication protocols and neural network parameters for efficient event-driven processing. Furthermore, 

simulation tools could utilized to design and optimize switching devices and electronic circuits designed for 

dynamic requirements of SNNs, focusing on reducing energy consumption and improving the speed and 

reliability of neuromorphic circuits by simulating different configurations and material properties (e.g., RRAM). 

Probabilistic studies on the developed neuron models using Simeuro and SuperNeuro can assess their 

performance across different DAG event-driven scientific applications, analyzing how uncertainties in input 

data and model parameters affect the overall performance of the NC systems. The following parameters can be 

optimized during the simulation and development process: energy consumption, processing speed, accuracy, 

communication efficiency, and resource utilization for achieving better results using optimized SNNs. 
 
 

5. CONCLUSION 

The exploration of NC for DAG tasks on edge devices presents promising avenues for enhancing 

computational efficiency and performance. Through the integration of advanced simulation tools like 

Simeuro and SuperNeuro, this work has outlined a comprehensive approach to studying and optimizing 

neuromorphic systems. This review provides critical insights into the behavior of SNNs, offering detailed 

analyses of architecture configurations, energy consumption, communication efficiency, and overall system 

performance. This work’s main focus is understanding how an enhanced SNN model can be developed and 

how optimization can be done on hardware components such as switching devices and electronic circuits 

which underscores the potential of NC to revolutionize event-driven applications. By leveraging spike-level 

simulations and GPU acceleration, this work has demonstrated the capability to handle complex event-driven 

applications with improved speed and accuracy. Moving forward, continued research and development in NC 

will be essential to further unlock its capabilities across diverse applications, from neuroscience to 

autonomous systems and beyond. The insights gained from this study pave the way for future innovations, 

guiding the design of more efficient and adaptive computing architectures that align more closely with the 

complexities of biological neural networks. In summary, the integration of NC into event-driven applications 
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represents a transformative approach, offering unprecedented opportunities to address computational 

challenges while advancing the frontiers of AI and edge computing. 
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