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Abstract 
Many engineering optimization problems can be state as function optimization with constrained, 

intelligence optimization algorithm can solve these problems well. Particle Swarm Optimization (PSO) 
algorithm was developed under the inspiration of behavior laws of bird flocks, fish schools and human 
communities. In this paper, aim at the disadvantages of standard Particle Swarm Optimization algorithm 
like being trapped easily into a local optimum, we improves the standard PSO and proposes a new 
algorithm to solve the overcomes of the standard PSO. The new algorithm keeps not only the fast 
convergence speed characteristic of PSO, but effectively improves the capability of global searching as 
well. Experiment results reveal that the proposed algorithm can find better solutions when compared to 
other heuristic methods and is a powerful optimization algorithm for engineering optimization problems. 
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1. Introduction 

Candidate solutions to some problems are not simply deemed correct or incorrect but 
are instead rated in terms of quality and finding the candidate solution with the highest quality is 
known as optimization. Optimization problems arise in many real-world scenarios. Take for 
example the spreading of manure on a cornfield, where depending on the species of grain, the 
soil quality, expected amount of rain, sunshine and so on, we wish to find the amount and 
composition of fertilizer that maximizes the crop, while still being within the bounds imposed by 
environmental law. 

Several challenges arise in optimization. First is the nature of the problem to be 
optimized which may have several local optima the optimizer can get stuck in, the problem may 
be discontinuous, candidate solutions may yield different fitness values when evaluated at 
different times, and there may be constraints as to what candidate solutions are feasible as 
actual solutions to the real-world problem. Furthermore, the large number of candidate solutions 
to an optimization problem makes it intractable to consider all candidate solutions in turn, which 
is the only way to be completely sure that the global optimum has been found. This difficulty 
grows much worse with increasing dimensionality, which is frequently called the curse of 
dimensionality, a name that is attributed to Bellman, see for example [1]. This phenomenon can 
be understood by first considering an n-dimensional binary search-space. Here, adding another 
dimension to the problem means a doubling of the number of candidate solutions. So the 
number of candidate solutions grows exponentially with increasing dimensionality. The same 
principle holds for continuous or real-valued search-spaces, only it is now the volume of the 
search-space that grows exponentially with increasing dimensionality. In either case it is 
therefore of great interest to find optimization methods which not only perform well in few 
dimensions, but do not require an exponential number of fitness evaluations as the 
dimensionality grows. Preferably such optimization methods have a linear relationship between 
the dimensionality of the problem and the number of candidate solutions they must evaluate in 
order to achieve satisfactory results, that is, optimization methods should ideally have linear 
time-complexity O(n) in the dimensionality n of the problem to be optimized. 
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Another challenge in optimization arises from how much or how little is known about the 
problem at hand. For example, if the optimization problem is given by a simple formula then it 
may be possible to derive the inverse of that formula and thus find its optimum. Other families of 
problems have had specialized methods developed to optimize them efficiently. But when 
nothing is known about the optimization problem at hand, then the No Free Lunch (NFL) set of 
theorems by Wolpert and Macready  states that any one optimization method will be as likely as 
any other to find a satisfactory solution [2]. This is especially important in deciding what 
performance goals one should have when designing new optimization methods, and whether 
one should attempt to devise the ultimate optimization method which will adapt to all problems 
and perform well. According to the NFL theorems such an optimization method does not exist 
and the focus of this thesis will therefore be on the opposite: Simple optimization methods that 
perform well for a range of problems of interest. 

Many engineering optimization design problems can be formulated as constrained 
optimization problems. The presence of constraints may significantly affect the optimization 
performances of any optimization algorithms for unconstrained problems. With the increase of 
the research and applications based on evolutionary computation techniques [3], constraint 
handling used in evolutionary computation techniques has been a hot topic in both academic 
and engineering fields [4, 5]. A general constrained optimization problem may be written as 
follows: 

 
max ( )f x                                                      (1) 

 
Subject to: 
 

( ) , 1,2,..., ,

( ) , 1,2,..., .
i i

j j

g x c i n

h x d j m

 

 
                                    (2) 

 
Where x is a vector residing in a n-dimensional space, ( )f x is a scalar valued objective 

function, ( ) , 1,2,...,i ig x c i n  and ( ) , 1,2,...,j jh x d j m  are constraint functions that need to be 

satisfied. 
Evolutionary computation has found a wide range of applications in various fields of 

science and engineering. Among others, evolutionary algorithms (EA) have been proved to be 
powerful global optimizers. Generally, evolutionary algorithms outperform conventional 
optimization algorithms for problems which are discontinuous, non-differential, multi-modal, 
noisy and not well-defined problems, such as art design, music composition and experimental 
designs. Besides, evolutionary algorithms are also well suitable for multi-criteria problems. 

Particle Swarm Optimization (PSO) algorithm was an intelligent technology first 
presented in 1995 by Eberhart and Kennedy, and it was developed under the inspiration of 
behaviour laws of bird flocks, fish schools and human communities [6]. If we compare PSO with 
Genetic Algorithms (GAs), we may find that they are all manoeuvred on the basis of population 
operated. But PSO doesn't rely on genetic operators like selection operators, crossover 
operators and mutation operators to operate individual, it optimizes the population through 
information exchange among individuals. PSO achieves its optimum solution by starting from a 
group of random solution and then searching repeatedly. Once PSO was presented, it invited 
widespread concerns among scholars in the optimization fields and shortly afterwards it had 
become a studying focus within only several years. A number of scientific achievements had 
emerged in these fields [7-9]. PSO was proved to be a sort of high efficient optimization 
algorithm by numerous research and experiments [10]. PSO is a meta-heuristic as it makes few 
or no assumptions about the problem being optimized and can search very large spaces of 
candidate solutions. However, meta-heuristics such as PSO do not guarantee an optimal 
solution is ever found. More specifically, PSO does not use the gradient of the problem being 
optimized, which means PSO does not require that the optimization problem be differentiable as 
is required by classic optimization methods such as gradient descent and quasi-Newton 
methods. PSO can therefore also be used on optimization problems that are partially irregular, 
noisy, change over time, etc. This paper improves the disadvantages of standard PSO being 
easily trapped into a local optimum and proposed an improved PSO algorithm (IPSO) which 
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proves to be more simply conducted and with more efficient global searching capability, then 
use the new algorithm for engineering optimization problems. 
 
 
2. Particle Swarm Optimization Algorithm 

A basic variant of the PSO algorithm works by having a population (called a swarm) of 
candidate solutions (called particles). These particles are moved around in the search-space 
according to a few simple formulae. The movements of the particles are guided by their own 
best known position in the search-space as well as the entire swarm's best known position. 
When improved positions are being discovered these will then come to guide the movements of 
the swarm. The process is repeated and by doing so it is hoped, but not guaranteed, that a 
satisfactory solution will eventually be discovered. Formally, let : nf R R be the cost function 

which must be minimized. The function takes a candidate solution as argument in the form of a 
vector of real numbers and produces a real number as output which indicates the objective 
function value of the given candidate solution. The gradient of f is not known. The goal is to find 
a solution a for which ( ) ( )f a f b for all b  in the search-space, which would mean a  is the 

global minimum. Maximization can be performed by considering the function h f  instead.  

PSO was presented under the inspiration of bird flock immigration during the course of 
finding food and then be used in the optimization problems. In PSO, each optimization problem 
solution is taken as a bird in the searching space and it is called “particle”. Every particle has a 
fitness value which is determined by target functions and it has also a velocity which determines 
its destination and distance. All particles search in the solution space for their best positions and 
the positions of the best particles in the swarm. PSO is initially a group of random particles 
(random solutions), and then the optimum solutions are found by repeated searching. In every 
iteration, a particle will follow two bests to renew itself: the best position found for a particle 
called pbest; the best position found for the whole swarm called gbest. All particles will 
determine following steps through the best experiences of individuals themselves and their 
companions. 

For particle id, its velocity and its position renewal formula are as follows: 
 

'
1 2()( ) ()( )id id idb id gdb idV V rand P X rand P X                    (3) 

 
' '
id id idX X V                                  (4) 

 
In here:    is called inertia weight, it is a proportion factor that is concerned with former 

velocity, 0 1  ,  1 and 2 are constants and are called accelerating factors, normally 

1 2 2   ; ()rand are random numbers, id represents the position of particle id ; idV

represents the velocity of particle id ; idbP , gdbP represent separately the best position particle id

has found and the position of the best particles in the whole swarm. 
In formula (3), the first part represents the former velocity of the particle, it enables the 

particle to possess expanding tendency in the searching space and thus makes the algorithm 
be more capable in global searching; the second part is called cognition part, it represents the 
process of absorbing individual experience knowledge on the part of  the particle; the third part 
is called social part, it represents the process of learning from the experiences of other particles 
on the part of certain particle, and it also shows the information sharing and social cooperation 
among particles. 

 The flow of PSO can briefly describe as following: First, to initialize a group of particles, 
e.g. to give randomly each particle an initial position iX and an initial velocity iV , and then to 

calculate its fitness value f. In every iteration, evaluated a particle's fitness value by analyzing 
the velocity and positions of renewed particles in formula (3) and (4). When a particle finds a 
better position than previously, it will mark this coordinate into vector P1, the vector difference 
between P1 and the present position of the particle will randomly be added to next velocity 
vector, so that the following renewed particles will search around this point, it's also called in 
formula (3) cognition component. The weight difference of the present position of the particle 
swarm and the best position of the swarm gdbP will also be added to velocity vector for adjusting 
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the next population velocity. This is also called in formula (3) social component. These two 
adjustments will enable particles to search around two bests. 

The most obvious advantage of PSO is that the convergence speed of the swarm is 
very high, scholars like Clerc [11] has presented proof on its convergence. Here a fatal 
weakness may result from this characteristic. With constant increase of iterations, the velocity of 
particles will gradually diminish and reach zero in the end. At this time, the whole swarm will be 
converged at one point in the solution space, if gbest particles haven't found gbest, the whole 
swarm will be trapped into a local optimum; and the capacity of swarm jump out of a local 
optimum is rather weak. 

 
 

3. Improved PSO Algorithm 
In the standard PSO algorithm, the convergence speed of particles is fast, but the 

adjustments of cognition component and social component make particles search around gdbP  

and idbP . According to velocity and position renewal formula, once the best individual in the 

swarm is trapped into a local optimum, the information sharing mechanism in PSO will attract 
other particles to approach this local optimum gradually, and in the end the whole swarm will be 
converged at this position. But according to velocity and position renewal formula (3), once the 
whole swarm is trapped into a local optimum, its cognition component and social component will 
become zero in the end; still, because 0 1   and with the number of iteration increase, the 
velocity of particles will become zero in the end, thus the whole swarm is hard to jump out of the 
local optimum and has no way to achieve the global optimum. Here a fatal weakness may result 
from this characteristic. With constant increase of iterations, the velocity of particles will 
gradually diminish and reach zero in the end. At this time, the whole swarm will be converged at 
one point in the solution space, if gbest particles haven't found gbest, the whole swarm will be 
trapped into a local optimum; and the capacity of swarm jump out of a local optimum is rather 
weak. In order to get through this disadvantage, in this paper we presents a new algorithm 
based on PSO. 

 
3.1. Information Sharing Mechanism 

In order to avoid being trapped into a local optimum, the new algorithm adopts a new 
information sharing mechanism. We all know that when a particle is searching in the solution 
space, it doesn't know the exact position of the optimum solution. But we can not only record 
the best positions an individual particle and the whole swarm have experienced, we can also 
record the worst positions an individual particle and the whole swarm have experienced, thus 
we may make individual particles move in the direction of evading the worst positions an 
individual particle and the whole flock have experienced, this will surely enlarge the global 
searching space of particles and enable them to avoid being trapped into a local optimum too 
early, in the same time, it will improve the possibility of finding gbest in the searching space. In 
the new strategy, the particle velocity and position renewal formula are as follows: 
 

'
1 2()( ) ()( )id id id idw id gdwV V rand X P rand X P                     (5) 

 
' '
id id idX X V            (6) 

 
In here: idwP , gdwP  represent the worst position particle id has found and the worst 

positions of the whole swarm has found. 
 

3.2. Elite Selection Strategy 
In standard PSO algorithm, the next flying direction of each particle is nearly definite, it 

can fly to the best individual and the best individuals for the whole swarm. From the above 
conclusion we may easily to know it will be the danger for being trapped into a local optimum. In 
order to decrease the possibility of being trapped into the local optimum, the improved PSO 
introduces elite selection strategy. Traditional genetic algorithm is usually complete the selection 
operation based on the individual's fitness value, in the mechanism of elite selection, the 
population of the front generation mixed with the new population which generate through 
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genetic operations, in the mixed population select the optimum individuals according to a certain 
probability. The specific procedure is as follows:  

Step 1: Using crossover and mutation operations for population P1 which size is N then 
generating the next generation of sub-populations P2; 

Step 2: The current population P1 and the next generation of sub-populations P2 mixed 
together form a temporary population; 

Step 3: Temporary population according to fitness values in descending order, to retain 
the best N individuals to form new populations P1. 

The characteristic of this strategy is mainly in the following aspects. First is robust, 
because of using this selection strategy, even when the genetic operations to produce more 
inferior individuals, as the results of the majority of individual residues of the original population, 
does not cause lower the fitness value of the individual. The second is in genetic diversity 
maintaining, the operation of large populations, you can better maintain the genetic diversity of 
the population evolution process. Third is in the sorting method, it is good to overcome 
proportional to adapt to the calculation of scale. This process of this strategy in improve PSO 
like this: To set particle number in the swarm as m, father population and son population add up 
to 2m. To select randomly q pairs from m; as to each individual particle i, if the fitness value of i 
is smaller than its opponents, we will win out and then add one to its mark, and finally select 
those particles which have the maximum mark value into the next generation. The experiment 
result shows that this strategy greatly reduces the possibility of being trapped into a local 
optimum when solving certain functions. 

 
 

4. Constrained Engineering Optimization Problems 
In this section, we will carry out numerical simulation based on some well-known 

constrained engineering optimization design problems to investigate the performances of the 
proposed IPSO. The selected problems have been well studied before as benchmarks by 
various approaches, which is useful to show the validity and effectiveness of the proposed 
algorithm. For each testing problem, the parameters of the IPSO are set as follows: the number 
of particle is 100, c1=c2=2.0 and the number of iteration is 500. 

 
4.1. Tension/Compression String Problem 

This problem is described by Arora [12], Coello and Montes [13] and Belegundu [14]. It 

consists of minimizing the weight ( ( )f x ) of a tension/compression string subject to constraints 
on shear stress, surge frequency and minimum deflection as shown in Figure 1. The design 
variables are the mean coil diameter 1( )D x ; the wire diameter 2( )d x and the number of active 

coils 3( )N x . The problem can be stated as: 

Minimize: 
 

2
3 2 1( ) ( 2 )f x x x x                                            (7) 

 
Subject to: 

 
3
2 3

1 4
1
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2 3 4 2
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3 2

2 3

1 2
4

( ) 1 0,
71785

4 1
( ) 1 0,

12566( ) 5108

140.45
( ) 1 0,

( ) 1 0.
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g x

x
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g x

x x x x

x
g x

x x

x x
g x

  


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

  


  

         (8) 

 
This problem has been solved by Belegundu using eight different mathematical 

optimization techniques [14], Arora also solved this problem using a numerical optimization 
technique called constraint correction at constant cost [12], Additionally, Coello solved this 
problem using GA-based method [15] and a feasibility-based tournament selection scheme [13], 
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He solved this problem using co-evolutionary particle swarm optimization method [3]. In this 
paper, the IPSO is run 50 times independently. Table 1 presents the best solution of this 
problem obtained using the IPSO algorithm and compares the IPSO results with solutions 
reported by other researchers. It is obvious from the Table 1 that the result obtained using IPSO 
algorithm is better than those reported previously in the literature. 
 

 
 

Figure 1. Tension/compression String Problem 
 
  

Table 1. Comparison of the Best Solution for Tension/compression String Problem 
Design 

variables 
IPSO 

Belegundu 
(1982) 

Arora 
(1989) 

Coello 
(2000) 

Coello 
(2002) 

He (2007) 

1( )x d
 0.051154 0.050000 0.053396 0.051480 0.051989 0.051728 

2 ( )x D
 0.349871 0.315900 0.399180 0.351661 0.363965 0.357644 

3( )x N
 12.076432 14.250000 9.185400 11.632201 10.890522 11.244543 

1( )g x
 0.000000 -0.000014 0.000019 -0.002080 -0.000013 -0.000845 

2 ( )g x
 

-
0.000007 

-0.003782 -0.000018 -0.000110 -0.000021 -1.2600e-05 

3( )g x
 

-
4.027840 

-3.938302 -4.123832 -4.026318 -4.061338 -4.051300 

4 ( )g x
 

-
0.736572 

-0.756067 -0.698283 -4.026318 -0.722698 -0.727090 

( )f x  0.0126706 0.0128334 0.0127303 0.0127048 0.0126810 0.0126747 

 
 
4.2. Pressure Vessel Problem 

A cylindrical vessel is capped at both ends by hemispherical heads as shown in Figure 
2. The objective is to minimize the total cost, including the cost of material, forming and welding. 
There are four design variables: sT (thickness of the shell, 1x ), hT (thickness of the head, 2x ), R  

(inner radius, 3x ) and L  (length of cylindrical section of the vessel, not including the head, 4x ). 

sT  and hT  are integer multiples of 0.0625 inch, witch are the available thickness of rolled steel 

plates, and R and L  are continuous.  
Using the same notation given by Coello [16], the problem can be stated as follows: 
Minimize: 

 
2 2

1 3 4 2 3 1 4 1 3( ) 0.6224 1.7781 3.1661 19.84f x x x x x x x x x x                          (9) 

 
Subject to: 

 
1 1 3

2 2 3

2 3
3 3 4 3

4 4

( ) 0.0193 0,

( ) 0.00954 0,

4
( ) 1,296,000 0,

3
( ) 240 0.

g x x x

g x x x

g x x x x

g x x

 

   
   

    

  

                                           (10) 

 
This problem has been solved before by Sandgren using a branch and bound technique 

[17], by Kannan and Kramer using an augmented Lagrangian Multiplier approach [18], by Deb 
and Gene using Genetic Adaptive Search [19], by Coello using GA-based co-evolution model 
[15] and a feasibility-based tournament selection sheme [13], and by He using co-evolutionary 
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particle swarm optimization method [3]. In this paper, the IPSO is run 50 times independently. 
The comparisons of results are shown in Table 2. The results obtained using the IPSO 
algorithm, were better optimized than any other earlier solutions reported in the literature. 

 

 
 

Figure 2. Pressure Vessel Problem 
 
 

Table 2. Comparison of the Best Solution for Pressure Vessel Problem 
Design 

variables 
IPSO 

Sandgren 
(1988) 

Kannan 
(1994) 

Deb 
(1997) 

Coello 
(2000) 

Coello 
(2002) 

He 
(2007) 

1( )sx T
 0.812500 1.125000 1.125000 0.937500 0.812500 0.812500 0.812500 

2 ( )hx T
 0.437500 0.625000 0.625000 0.500000 0.437500 0.437500 0.437500 

3( )x R
 38.860100 47.700000 58.29100 48.329000 40.323900 42.097398 42.091266 

4 ( )x L
 221.365000 117.701000 43.690000 112.679000 200.000000 176.654050 176.746500 

1( )g x
 -0.000000 -0.204390 0.000016 -0.004750 -0.034324 -0.000020 -0.000139 

2 ( )g x
 -0.004300 -0.169942 -0.068904 -0.038941 -0.052847 -0.035891 -0.035949 

3( )g x
 -0.000000 54.226012 -21.220104 

-
3652.876838 

-27.105845 -27.886075 
-

116.382700 

4 ( )g x
 -18.63500 

-
122.299000 

-
196.310000 

-127.321000 -40.000000 -63.345953 -63.253500 

( )f x  5850.3800 8129.1036 7198.0428 6410.3811 6288.7445 6059.9463 6061.0777 

 
 
4.3. Welded Beam Problem 

The welded beam structure, shown in Figure 3, is a practical design problem that has 
been often used as a benchmark for testing different optimization methods. The objective is to 
find the minimum fabricating cost of the welded beam subject to constraints on shear stress ( ) , 
bending stress ( ) , buckling load ( )cP , end deflection ( ) , and side constraint. There are four 

design variables: 1( )h x ; 2( )l x ; 3( )t x  and 4( )b x .  

 

 
 

Figure 3. Welded Beam Problem 
 
 

The mathematical formulation of the objective function ( )f x , which is the total fabricating 
cost mainly comprised of the set-up, welding labor, and material costs, is as follows: 

Minimize: 
 

2
1 2 3 4 2( ) 1.10471 0.04811 (14.0 )f x x x x x x                    (11) 
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Subject to: 
 

1

2

3 1 4

2
4 1 3 4 2

5 1

6

7

( ) ( ) 13000 0,

( ) ( ) 30000 0,

( ) 0,

( ) 0.10471 0.04811 (14.0 ) 5.0 0,

( ) 0.125 0,

( ) ( ) 0.25 0,

( ) 6000 ( ) 0,c

g x x

g x x

g x x x

g x x x x x

g x x

g x x

g x P x






  
  
  

    

  

  
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          (12) 

 
Where: 

 

' 2 ' '' '' 22

'

1 2

''
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2
21 32

2
21 32

1 2

2
4 3

4
3 4

3
3 3 4

( ) ( ) 2 ( ) ,
2

6000
,

2

,
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2
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4 2

2 2 ( ) ,
12 2

504000
( ) ,

2 .1952
( ) ,

( ) 64746.022(1 0.0282346 ) .c

x
x

R

x x

M R

J
x

M

x xx
R

x xx
J x x

x
x x

x
x x

P x x x x
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






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



 


 

      
   





 

                            (13) 

 
The approaches applied to this problem include geometric programming [20], genetic 

algorithm with binary representation and traditional penalty function [21], a GA-based co-
evolution model [15] and a feasibility-based tournament selection scheme inspired by the multi-
objective optimization techniques [13], and co-evolutionary particle swarm optimization method 
[3]. In this paper, the IPSO is run 50 times independently. The comparisons of results are shown 
in Table 3. The results obtained using the IPSO algorithm, were better optimized than any other 
earlier solutions reported in the literature. 
 
 

Table 3. Comparison of the Best Solution for Welded Beam Problem 
Design 

variables 
IPSO 

Ragsdell 
(1976) 

Deb (1991) 
Coello 
(2000) 

Coello 
(2002) 

He (2007) 

1( )x h
 0.205730 0.245500 0.248900 0.208800 0.205986 0.202369 

2 ( )x l
 3.470490 6.196000 6.173000 3.420500 3.471328 3.544214 

3( )x t
 9.036620 8.273000 8.178900 8.997500 9.020224 9.048210 

4 ( )x b
 0.205730 0.245500 0.253300 0.210000 0.206480 0.205723 

( )f x  1.724800 2.385937 2.433116 -1.748309 1.728226 1.728024 

 
 

5. Conclusion 
This paper introduce a new algorithm based on the standard PSO algorithm, for the 

standard PSO algorithm the new algorithm has done two improvements: 1) By introducing a 
new information sharing mechanism, make particles moved on the contrary direction of the 
worst individual positions and the worst whole swarm positions, thus enlarge global searching 
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space and reduce the possibility of particles to be trapped into a local optimum; 2) By 
introducing elite selection strategy, decreased the possibility of being trapped into a local 
optimum. Compared with the standard PSO algorithm, the new algorithm enlarges the 
searching space and the complexity is not high. Experiment results based on some well-known 
constrained engineering optimization problems and comparisons with previously reported 
results demonstrate the effectiveness, efficiency and robustness of the IPSO. 
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