
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol. 12, No. 11, November 2014, pp. 7927 ~ 7934
DOI: 10.11591/telkomnika.v12i11.6357 7927

Received July 7, 2014; Revised September 19, 2014; Accepted October 6, 2014

Design and Analysis of Parallel MapReduce based
KNN-join Algorithm for Big Data Classification

Xuesong Yan*, Zhe Wang, Dezhe Zeng, Chengyu Hu, Hao Yao
School of Computer Science, China University of Geosciences, Wuhan, China

*Corresponding author, e-mail: yanxs1999@126.com

Abstract
In data mining applications, multi-label classification is highly required in many modern

applications. Meanwhile, a useful data mining approach is the k-nearest neighbour join, which has high
accuracy but time-consuming process. With recent explosion of big data, conventional serial KNN join
based multi-label classification algorithm needs to spend a lot of time to handle high volumn of data. To
address this problem, we first design a parallel MapReduce based KNN join algorithm for big data
classification. We further implement the algorithm using Hadoop in a cluster with 9 vitual machines.
Experiment results show that our MapReduce based KNN join exhibits much higher performance than the
serial one. Several interesting phenomenon are observed from the experiment results.

Keywords: multi-label classification, KNN join, MapReduce

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Multi-label classification, the exception of single-label classification, is highly required in

many modern applications, such as protein function classification, music categorization and
semantic scene classification. In past decades, multi-label classification have been made a
significant contribution to bioinformatics, especially to protein subcellular localization Error!
Reference source not found.]. To put it simply, multi-label classification Error! Reference source
not found.] is a mining method that assigns a set of labels to an unseen instance. Each instance

in multi-label classification can be identified by a set of labels Y L , 2L . For example, the

famous song named Scorpions can be classified into both ‘rock’ and ‘ballad’. For semantic
scene classification, a photograph can be labeled with more than one genre such as mountains,
lakes and forests in a similar way.

In essence, there are two methods for multi-label classification: (1) Problem
transformation and (2) algorithm adaptation Error! Reference source not found.]. And one
frequently-used method of algorithm adaptation methods is k nearest neighours Error!
Reference source not found.-Error! Reference source not found.] which depends on similarity
searches. The similiarity join has become an important database primitive for supporting
similarity searches and data mining Error! Reference source not found.]. As one operation of
three well-known similiary join, the k-nearest neighbour join (KNN join) retrieves k most similar
pairs and is frequently applied to mumerous applications including knowledge discovery, data
mining, and spatial databases Error! Reference source not found., Error! Reference source not
found.]. Since both the join and KNN search are expensive, especially on large data sets and/or
in multi-dimensions, KNN join is a costly operation. Lots of research, in the literature Error!
Reference source not found.],[Error! Reference source not found.-Error! Reference source not
found.] bave been devoted to impove the performce of KNN join by proposing efficient
algorithms, many of which have been focused on improving algorithm and the centralized,
single-thread setting that is impossible used in a distributed system. With the rapid explosion in
the volume of data in big data era, the multi-label classification using serial KNN join cannot
satisfy our needs already.

P.Malarvizhi et al. Error! Reference source not found.] propose an algorithm of
classifying labels to the documents of the web. In their approach, they use binary classification
of binary classifier based on MapRedcue framework to assign the set of positive label to the

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 11, November 2014: 7927 – 7934

7928

documents of the web. Their method needs numerous reduce functions when each instance in
datasets have masses of labels.

In recent years, MapReduceError! Reference source not found.] has been widely used in
industry and academia. It is regarded as a simple yet powerful parallel and distributed
computing paradigm to explore the cloud computing resources. Meanwhile, MapReduce
architecture has good scalability and fault tolerance mechanisms so that it already becomes the
one of the mostly used parallel and distributed systems. Therefore, we are motivated to
incorporate MapReduce architecture into the design of distributed and parallel KNN algorithm
for big data multi-label classification.

The main contributions of this paper are as follows:
a) We novelly apply the MapReduce concept in the design of distributed and parallel KDD

algorithm for big data classification.
b) We actually implement our algorithm in a cluster with X servers. Extensive performance

evaluations are conducted. Specially, we also analyze the influence of cluster size of
MapReduce on the categorization (performance/accuracy)?Performance evaluation results
also validate the high performance of our algorithm over conventional serial one.

2. KNN join
KNN join, proposed by [Error! Reference source not found.] is an important similary join

operation and it combines each point of one point set with its k nearest neighbours in the other
set. For example, it is the join of the k nearest neighbors(NN) of every point in a dataset R from
a dataset S Error! Reference source not found.]. Each record in R(or S) is represented as a d-
dimension point. For one point in dataset R such as r point, we get knn(r, S) by calculating the
similarity distances which is Euclidean distances d(r, s), between r in R and every record in S in
this paper.

KNN join algorithm is as follows:

 (,) , ,knnJ R S r knn r S for all r R

(1)

From the above, we can depicte the KNN similarity join in figure 1. When 3 points in

dataset R want to find two neighbours in dataset S, KNN join algorithm returns 6 results.

Figure 1. KNN Join Operations

3. MapReduce Cluster
Implemented by Hadoop, Google’s MapReduce Error! Reference source not

found.Error! Reference source not found.], is a programming model that can be created on a
humble hardware condition and serves for processing large data sets in a massively parallel

TELKOMNIKA ISSN: 2302-4046

Design and Analysis of Parallel MapReduce based KNN-join Algorithm for Big… (Xuesong Yan)

7929

manner. It can divides a task into some jobs and automatically parallelize and schedule jobs in a
distributed system.

Figure 2 shows the data flow diagram of MapReduce. Firstly, MapReduce splits
datasets into hundreds of thousands of small datasets. Secondly, one node which is a common
computer generally processes one small dataset and products intermediate data. Finally, a
large number of nodes merges the intermediate data and then products the final output data.

In the process of computing, the computation inputs a set of input key/value pairs and
produces a set of output key/value pairs. Then the map function processes the input data and
generates a series of intermediate data. The reduce function regards the above intermediate
data as input data and produces the final output data.

Figure 2. Data Flow Diagram of MapReduce

During the above process, it can be seen that two essential functions, i.e. map function
and reduce function, are involved. Under such framework, developers shall design their own
map function and reduce function based on according to the task requirement.

A MapReduce cluster consists of a master machine called master node and several
slave machines called data nodes. The master node allocates map tasks and reduce tasks to
data nodes and monitors their operations. A file in a MapReduce cluster is usually stored in a
distri-buted file system(DFS) which splits a file into equal sized chunks. The splits are then
distributed and replicated to all machines in the cluster. To execute a MapReduce job, users
can decide the number of map tasks m and reduce tasks r. In most instances, m is the same as
the nu-mber of splits for the given input file(s). After master node assigned map and reduce
tasks to data nodes, the input and output of map and reduce functions are as follows:

map <k1,value1> -> <k2,value2>
reduce <k2,list(v2)> -> list(v2)

A combine function can be invoked between map function and reduce function to ease

network congestion caused by the repetitions of the intermediate keys k2 produced by map
functions Error! Reference source not found.]. The combine function plays a similar but optional
role with reduce function. It likes:

combine <k2, list(v2)> ->list<k2, v2>

3. KNN Join Based on MapReduce
3.1. Data Normalization

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 11, November 2014: 7927 – 7934

7930

We change the format of input datasets in order to get desired training files and testing
files. In each dataset, we alter each old record expressed as <att1,att2,att3…,label1,label2…>
to new record described as <id, att1, att2, att3,… label1, label2,…>.

3.2. Design of Parallel KNN Join

In KNN join, the most time-consuming step is the calculation of distance between
instances in dataset R and instances in dataset S. Each instance in two files includes one id.
Files exist in HDFS and are processed as <key, value> pairs which represent each record in the
files Error! Reference source not found.]. Our parallel algorithm are divided into two phases.

Phase- I: Phase- I stores R*S instances and completes total distance calculations.
Figure 3 shows flow diagram of Phase- I. First of all, we split all files and spread them across all
mappers. Each split is sent to a Mapper in the form of <key, value> where key is the offset in
bytes of this record to the start point of the data file and value is the content of this record. We
mark the testing file(the training file) in file id =0 (=1) and partition the input files into multiple
groups. An input record randomly generates a partition id named group id as the output key of
map function and the output value is a string with the content of each record and relevant file id.

A list of intermediate <key1, value1> with the same key are sent to the same Reducer.
Key1 is unique group Id and value1 is value lists obtained from map function. For value list with
same Key1, values with file id = 0 (id = 1) are put into bucket R (bucket S), according to file id.
The distance between R and S is then calculated asError! Reference source not found.] . So for
the output <key2, value2> pairs, key2 is null and value2 is a text containing a record’s id from
the testing file, i.e. id1 and id2, and the distance between these two records.

Figure 3. Flow Diagram of Phase- I

The pseudocode of Phase- I is summarized in Algorithm1.

Algorithm 1.
Map input:<offset, original record>
Map output:<key1, value1>, where key’ is group Id and value’ is a combination with origial
record and file Id
1. Assgin each input record a group Id and a file Id
2. Take group Id as key1
3. Take the combination of original record and fileId as value1

TELKOMNIKA ISSN: 2302-4046

Design and Analysis of Parallel MapReduce based KNN-join Algorithm for Big… (Xuesong Yan)

7931

4. End
Reduce input:< key1, value1>
Reduce output:<key2, value2>, where key2 is null and value2 is a combination with id1, id2
and distance.
1. Dis = ComputDist(training record, testing record)
2. Take null as key’
3. Take the combination of id1,id2 and distance as value’
4. End

Phase-II: After Phase- I, we get an intermediate file. For the input <key, value> pairs of

map function, key is the offset and value is the content of the record in the intermediate file.
Then we set id1 as the output’s key, and value is the combination of id2 and distance.

In reduce function, we get k nearest neighbors of each testing record, the file id of which
is 0, based on distances.

The pseudocode of Phase-II is summarized in Algorithm2.

Algorithm 2.
Map input:<offset, record>
Map output:<key1, value1>pairs, where key1 is id1 and value1 is a combination with id2 and
distance
1. Take id1 as key1
2. Take the combination with id2 and distance as value1
3. End
Reduce input:< key1, value1>
Reduce output:<key2, value2>pairs, where key2 is id1 and value2 is the label set
1. For each key1, find its k nearest neighours
2. Determine the label set according to voting mechanism
3. Take id1 as key2
4. Take the label set as value2
5. End

4. Results and Analysis
4.1. Cloud Environment and Datasets

We actually implement our algorithm in Clustertech Cloud Business Platform (CCBP)
with 9 vitual machines(VM), each of which contains 4*2.00GHz Dual-Core and 4GB RAM. Each
VM runs Ubuntu 12.10 (64-bit) with hadoop-0.21.0. One VM serves as the master node and the
other VMs act as slave nodes. We provide each slave with 100GB hard drive space and 20GB
root space and allocates 5.3GB to DFS.

We utilize 4 common multi-label datasest in our experiments, including CAL500,
emotions, yeast, scene, as shown in Table 1.

Table 1. 4 Multi-label Datasets
dataset att_number label_number
CAL500 68 174
emotions 72 6

yeast 103 14
scene 294 6

Table 2. Average Accuracy Rate of Parallel KNN Join and Serial KNN Separately for Four
Datasets

Average accuracy rate Parallel KNN join Serial KNN join
emotions 72.66% 72.68%
CAL500 80.33% 80. 28%
scene 88.23% 87.46%
yeast 75.54% 75.53%

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 11, November 2014: 7927 – 7934

7932

4.2. Performance Evaluation

We conduct experiments to evaluate parallel KNN in cluster of different size. For each
dataset, 10 experiments are performanced for each cluster size and the average accuracy and
time spent are calculated, as shown in Table 2 and Tabel 3 respectively. From Table 2, we can
clearly see that the average accuracy rate of our parallel algorithm is almost as high as serial
KNN join, which means that our algorithm is feasible and efficient.

From Table 3, we can see that the average time spent shows as a decreasing function
of the cluter size. For example, for emotions, it takes 58.891s, 55.021s and 48.135s for 2
slaves, 4 slaves and 6 slaves, respectively. In order to facilitate analysis, we represented results
in Figure 4.

Figure 4 plots average running times of 4 multi-label datasets versus different clusters
of 2 slaves, 4 slaves, 6 slaves, 8 slaves respectively. Unit of measure is seconds. With the
growth of slaves, the average running times of yeast and emotions linearly decrease. However,
for CAL-500 and scene, Curve has the rising trend slightly sometimes, the reason of which is
that the time saved by computing is less than the time increased by data communication of
cluster. So the cluster of appropriate size makes scene.

Table 3. Average Running Times that Four Datasets Spent in 4 Clusters of 2 Slaves, 4 Slaves,
6 Slaves, 8 Slaves Respectively

 2 slaves 4 slaves 6 slaves 8 slaves
emotions 58.891s 55.021s 48.135s 46.346s
CAL500 56.318s 48.809s 49.616s 52.242s
scene 133.977s 122.001s 183.749s 123.17s
yeast 123.687s 118.746s 114.17s 108.115s

Figure 4. Average Running Times of 4 Multi-label Datasets versus Different Clusters of 2 slaves,
4 slaves, 6 slaves, 8 slaves respectively.

0

50

100

150

200

2 slaves 4 slaves 6 slaves 8 slaves

ru
n

tim
e(

s) emotions

CAL500

scene

yeast

0

50

100

150

200

emotions CAL500 scene yeast

ru
n

tim
e(

s)

2 slaves

phase2

phase1

TELKOMNIKA ISSN: 2302-4046

Design and Analysis of Parallel MapReduce based KNN-join Algorithm for Big… (Xuesong Yan)

7933

Figure 5. Running Time of phase1 and phase2 versus 4 datasets in cluster of 2 slaves

Figure 6. Running Time of phase1 and phase2 versus 4datasets in cluster of 4 slaves

Figure 7. Running Time of phase1 and phase2 versus 4datasets in cluster of 2 slaves

Figure 8. Running Time of phase1 and phase2 versus 4datasets in cluster of 2 slaves

To clearly show the time spent in the two essential phases in our MapReduce based
KNN algorithm, we further investigate the time spent in Phase-I and Phase-II, respectively.
Figure 5,6,7,8 show running time of Phase-I and Phase-II versus 4 datasets in cluster of 2
slaves, 4 slaves, 6 slaves and 8 slaves, respectively. We can see that show that Phase-I is the
most time consuming phase and it decreases with the increase of cluster size. For example, for

0

50

100

150

emotions CAL500 scene yeast

ru
n

tim
e(

s)

4 slaves

phase2

phase1

0

50

100

150

emotions CAL500 scene yeast

ru
n

tim
e(

s)

6 slaves

phase2

phase1

0

20

40

60

80

100

120

140

160

emotions CAL500 scene yeast

ru
n

tim
e(

s)

8 slaves

phase2

phase1

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 11, November 2014: 7927 – 7934

7934

dataset scene, when there are 2 slaves, 174.045s (78.4% of the total time) is spent on Phase-I
and it decreases to 96.484s when the cluster size becomes 4.

4. Conclusion

In KNN join, the most time-consuming step is the calculation of distance between
instances. With the increase of data, serial program cannot meet our requirements on the
timeliness. In this paper, we design and implement a parallel KNN join using MapReduce for big
data multi-label classification. From results above, we can see that the average accuracy of
our parallel algorithm is almost as high as conventional serial KNN join and the average time
spent shows as a decre-asing function of the cluter size. Therefore, our method is proved to be
an efficient and feasible solution to multi-label classification dealing with big data.

Acknowledgements

This paper is supported by Natural Science Foundation of China. (No.61272470 and
No.61203307), the Provincial Natural Science Foundation of Hubei (No. 2012FFB04101) and
the Fundamental Research Founds for National University, China University of Geosciences
(Wuhan).

References
[1] Wan S, Mak MW, Kung SY. Adaptive thresholding for multi-label SVM classification with application to

protein subcellular localization prediction. Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE. 2013: 3547-3551.

[2] Tsoumakas G, Katakis I. Multi-label classification: An overview. International Journal of Data
Warehousing and Mining (IJDWM). 2007; 3(3): 1-13.

[3] Zhang ML, Zhou ZH. ML-KNN: A lazy learning approach to multi-label learning. Pattern recognition.
2007; 40(7): 2038-2048.

[4] Zhang ML, Zhou ZH. A k-nearest neighbor based algorithm for multi-label classification [C] //Granular
Computing. IEEE International Conference on. IEEE, 2005; 2: 718-721.

[5] Böhm C, Krebs F. The k-nearest neighbour join: Turbo charging the KDD process. Knowledge and
Information Systems. 2004; 6(6): 728-749.

[6] Kavraki LE, Plaku E. Distributed Computation of the knn Graph for Large High-Dimensio- nal Point
Sets.

[7] Xia C, Lu H, Ooi B C, et al. Gorder: an efficient method for KNN join processing. Proceedings of the
Thirtieth international conference on Very large data bases-Volume 30. VLDB Endowment, 2004: 756-
767.

[8] Yao B, Li F, Kumar P. K nearest neighbor queries and knn-joins in large relational databases (almost)
for free. Data Engineering (ICDE), 2010 IEEE 26th International Conference on. IEEE. 2010: 4-15.

[9] Malarvizhi P, Pujeri RV. Multilabel Classification of Documents with Mapreduce. International Journal
of Engineering & Technology (0975-4024). 2013; 5(2).

[10] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Communications of
the ACM. 2008; 51(1): 107-113.

[11] Zhang C, Li F, Jestes J. Efficient parallel kNN joins for large data in MapReduce. Proceedings of the
15th International Conference on Extending Database Technology. ACM. 2012: 38-49.

[12] Ranger C, Raghuraman R, Penmetsa A, Bradski G, Kozyrakis C. Evaluating MapReduce for Multi-
core and Multiprocessor Systems. Proc. of 13th Int.Sympo- sium on High-Performance Computer
Architecture (HPCA). Phoenix, AZ. 2007.

[13] Lämmel R. Google’s MapReduce programming model Revisited. Science of computer programming,
2008; 70(1): 1-30.

[14] Zhao W, Ma H, He Q. Parallel k-means clustering based on mapreduce. Cloud Computing. Springer
Berlin Heidelberg. 2009: 674-679.

[15] Liang Q, Wang Z, Fan Y, et al. Multi-label Classification based on Particle Swarm Algorithm. Mobile
Ad-hoc and Sensor Networks (MSN). IEEE Ninth International Conference on. IEEE, 2013: 421-424.

[16] Fayed HA, Atiya AF. A Novel Template Reduction Approach for the-Nearest Neighbor Method. Neural
Networks, IEEE Transactions on. 2009; 20(5): 890-896.

