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Abstract 
In data mining applications, multi-label classification is highly required in many modern 

applications. Meanwhile, a useful data mining approach is the k-nearest neighbour join, which has high 
accuracy but time-consuming process. With recent explosion of big data, conventional serial KNN join 
based multi-label classification algorithm needs to spend a lot of time to handle high volumn of data. To 
address this problem, we first design a parallel MapReduce based KNN join algorithm for big data 
classification. We further implement the algorithm using Hadoop in a cluster with 9 vitual machines. 
Experiment results show that our MapReduce based KNN join exhibits much higher performance than the 
serial one. Several interesting phenomenon are observed from the experiment results.  
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1. Introduction 
Multi-label classification, the exception of single-label classification, is highly required in 

many modern applications, such as protein function classification, music categorization and 
semantic scene classification. In past decades, multi-label classification have been made a 
significant contribution to bioinformatics, especially to protein subcellular localization Error! 
Reference source not found.]. To put it simply, multi-label classification Error! Reference source 
not found.] is a mining method that assigns a set of labels to an unseen instance. Each instance 

in multi-label classification can be identified by a set of labels Y L  , 2L   . For example, the 

famous song named Scorpions can be classified into both ‘rock’ and ‘ballad’. For semantic 
scene classification, a photograph can be labeled with more than one genre such as mountains, 
lakes and forests in a similar way. 

In essence, there are two methods for multi-label classification: (1) Problem 
transformation  and (2) algorithm adaptation Error! Reference source not found.]. And one 
frequently-used method of algorithm adaptation methods is k nearest neighours Error! 
Reference source not found.-Error! Reference source not found.] which depends on similarity 
searches. The similiarity join has become an important database primitive for supporting 
similarity searches and data mining Error! Reference source not found.]. As one operation of 
three well-known similiary join, the k-nearest neighbour join (KNN join) retrieves k most similar 
pairs and is frequently applied to mumerous applications including knowledge discovery, data 
mining, and spatial databases Error! Reference source not found., Error! Reference source not 
found.].  Since both the join and KNN search are expensive, especially on large data sets and/or 
in multi-dimensions, KNN join is a costly operation. Lots of research, in the literature Error! 
Reference source not found.],[Error! Reference source not found.-Error! Reference source not 
found.] bave been devoted to impove the performce of KNN join by proposing efficient 
algorithms, many of which  have been focused on improving algorithm and the centralized, 
single-thread setting that is impossible used in a distributed system. With the rapid explosion in 
the volume of data in big data era, the multi-label classification using serial KNN join cannot 
satisfy our needs already. 

P.Malarvizhi et al. Error! Reference source not found.] propose an algorithm of 
classifying labels to the documents of the web. In their approach, they use binary classification 
of binary classifier based on MapRedcue framework to assign the set of positive label to the 
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documents of the web. Their method needs numerous reduce functions when each instance in 
datasets have masses of labels. 

In recent years, MapReduceError! Reference source not found.] has been widely used in 
industry and academia. It is regarded as a simple yet powerful parallel and distributed 
computing paradigm to explore the cloud computing resources. Meanwhile, MapReduce 
architecture has good scalability and fault tolerance mechanisms so that it already becomes the 
one of the mostly used parallel and distributed systems. Therefore, we are motivated to 
incorporate MapReduce architecture into the design of distributed and parallel KNN algorithm 
for big data multi-label classification.   

The main contributions of this paper are as follows: 
a) We novelly apply the MapReduce concept in  the design of distributed and parallel KDD 

algorithm for big data classification. 
b) We actually implement our algorithm in a cluster with X servers. Extensive performance 

evaluations are conducted. Specially, we also analyze the influence of cluster size of 
MapReduce on the categorization (performance/accuracy)?Performance evaluation results 
also validate the high performance of our algorithm over conventional serial one. 
 
 

2. KNN join 
KNN join, proposed by [Error! Reference source not found.]  is an important similary join 

operation and it combines each point of one point set with its k nearest neighbours in the other 
set. For example, it is the join of the k nearest neighbors(NN)  of every point in a dataset R from 
a dataset S Error! Reference source not found.]. Each record in R(or S) is represented as a d-
dimension point. For one point in dataset R such as r point, we get knn(r, S) by calculating the 
similarity distances which is Euclidean distances d(r, s), between r in R and every record in S in 
this paper. 

KNN join algorithm is as follows: 
 

   ( , ) , ,knnJ R S r knn r S for all r R 
    

(1) 

 
From the above, we can depicte the KNN similarity join in figure 1. When 3 points in 

dataset R  want to find two neighbours in dataset S,  KNN join algorithm returns 6 results.  
 
 

 
 

Figure 1. KNN Join Operations 
 
 

3. MapReduce Cluster 
Implemented  by Hadoop,  Google’s MapReduce Error! Reference source not 

found.Error! Reference source not found.], is a programming model that can be created on a  
humble hardware condition and serves for processing large data sets in a massively parallel 
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manner. It can divides a task into some jobs and automatically parallelize and schedule jobs in a 
distributed system.  

Figure 2 shows the data flow diagram of MapReduce. Firstly, MapReduce splits 
datasets into hundreds of thousands of small datasets. Secondly, one node which is a common 
computer generally processes one small dataset and products intermediate data. Finally, a 
large number of nodes merges the intermediate data and then products the final output data. 

In the process of computing, the computation inputs a set of input key/value pairs and 
produces a set of output key/value pairs. Then the map function processes the input data and 
generates a series of intermediate data. The reduce function regards the above intermediate 
data as input data and produces the final output data. 

 
 

 
 

Figure  2. Data Flow Diagram of MapReduce 
 
 

During the above process, it can be seen that two essential functions, i.e. map function 
and reduce function, are involved. Under such framework, developers shall design their own 
map function and reduce function based on according to the task requirement. 

A MapReduce cluster consists of a master machine called master node and several 
slave machines called data nodes. The master node allocates map tasks and reduce tasks to 
data nodes and monitors their operations. A file in a MapReduce cluster is usually stored in a 
distri-buted file system( DFS) which splits a file into equal sized chunks. The splits are then 
distributed and replicated to all machines in the cluster. To execute a MapReduce job, users 
can decide the number of map tasks m and reduce tasks r. In most instances, m is the same as 
the nu-mber of splits for the given input file(s). After master node assigned map and reduce 
tasks to data nodes, the input and output of map and reduce functions are as follows: 

 
map           <k1,value1>     -> <k2,value2> 
reduce  <k2,list(v2)>     -> list(v2) 
 
A combine function can be invoked between map function and reduce function to ease 

network congestion caused by the repetitions of the intermediate keys k2 produced by map 
functions Error! Reference source not found.]. The combine function plays a similar but optional 
role with reduce function. It likes:  

 
combine     <k2, list(v2)>     ->list<k2, v2> 

 
 
3. KNN Join Based on MapReduce 
3.1. Data Normalization 
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We change the format of input datasets in order to get desired training files and testing 
files. In each dataset, we alter each old record expressed as <att1,att2,att3…,label1,label2…> 
to new record described as <id, att1, att2, att3,… label1, label2,…>. 

 
3.2. Design of Parallel KNN Join 

In KNN join, the most time-consuming step is the calculation of distance between 
instances in dataset R and instances in dataset S. Each instance in two files includes one id. 
Files exist in HDFS and are processed as <key, value> pairs which represent each record in the 
files Error! Reference source not found.]. Our parallel algorithm are divided into two phases.  

Phase- I: Phase- I stores R*S instances and completes total distance calculations. 
Figure 3 shows flow diagram of Phase- I. First of all, we split all files and spread  them across all 
mappers. Each split is sent to a Mapper in the form of <key, value> where key is the offset in 
bytes of this record to the start point of the data file and value is the content of this record. We 
mark the testing file(the training file) in file id =0 (=1) and partition the input files into multiple 
groups. An input record randomly generates a partition id named group id as the output key of 
map function and the output value is a string with the content of each record and relevant file id. 

A list of intermediate <key1, value1> with the same key are sent to the same Reducer.  
Key1 is unique group Id and value1 is  value lists obtained from map function. For value list with 
same Key1, values with file id = 0 (id = 1) are put into bucket R (bucket S), according to file id. 
The distance between R and S is then calculated asError! Reference source not found.] . So for 
the output <key2, value2> pairs, key2 is null and value2 is a text containing a record’s id from 
the testing file, i.e. id1 and id2, and the distance between these two records.   

 
 

 
 

Figure 3. Flow Diagram of Phase- I 
 
 

The pseudocode of Phase- I is summarized in Algorithm1. 
 

Algorithm 1.  
Map input:<offset, original record> 
Map output:<key1, value1>, where key’ is group Id and value’ is a combination with origial  
record and file Id 
1. Assgin each input record a group Id and a file Id 
2. Take group Id as key1 
3. Take the combination of original record and fileId as value1 
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4. End 
Reduce input:< key1,  value1> 
Reduce output:<key2, value2>, where key2 is null and value2 is a combination with id1, id2 
and distance. 
1. Dis = ComputDist(training  record, testing record) 
2. Take null as key’ 
3. Take the combination of id1,id2 and distance as value’ 
4. End 

 
Phase-II: After Phase- I, we get an intermediate file. For the input <key, value> pairs of 

map function, key is the offset and value is the content of the record in the intermediate file. 
Then we set id1 as the output’s key, and value is the combination of id2 and distance. 

In reduce function, we get k nearest neighbors of each testing record, the file id of which 
is 0, based on distances.   

The pseudocode of Phase-II is summarized in Algorithm2. 
 

Algorithm 2. 
Map input:<offset, record> 
Map output:<key1, value1>pairs, where key1 is id1 and value1 is a combination with id2 and 
distance 
1. Take id1 as key1 
2. Take the combination with id2 and distance as value1 
3. End 
Reduce input:< key1, value1>  
Reduce output:<key2, value2>pairs, where key2 is id1 and value2 is the label set  
1. For each key1, find its k nearest neighours 
2. Determine the label set according to  voting mechanism 
3. Take id1 as key2 
4. Take the label set as value2 
5. End 
 
 
4. Results and Analysis 
4.1. Cloud Environment and Datasets 

We actually implement our algorithm in Clustertech Cloud Business Platform (CCBP) 
with 9 vitual machines(VM), each of which contains 4*2.00GHz Dual-Core and 4GB RAM. Each 
VM runs  Ubuntu 12.10 (64-bit) with hadoop-0.21.0. One VM serves as the master node and the 
other VMs act as slave nodes. We provide each slave with 100GB hard drive space and 20GB 
root space and allocates 5.3GB to DFS.   

We utilize 4 common multi-label datasest in our experiments, including CAL500, 
emotions, yeast, scene, as shown in Table 1.  

 
 

Table 1. 4 Multi-label Datasets 
dataset att_number label_number 
CAL500 68 174 
emotions 72 6 

yeast 103 14 
scene 294 6 

 
 

Table 2. Average Accuracy Rate of Parallel KNN Join and Serial KNN Separately for Four 
Datasets 

Average accuracy rate Parallel KNN join Serial KNN join 
emotions 72.66% 72.68% 
CAL500 80.33% 80. 28% 
scene 88.23% 87.46% 
yeast 75.54% 75.53% 
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4.2. Performance Evaluation 

We conduct experiments to evaluate parallel KNN in cluster of different size. For each 
dataset, 10 experiments are performanced for each cluster size and the average accuracy and 
time spent are calculated, as shown in Table 2 and Tabel 3 respectively. From Table 2, we can 
clearly see that the average accuracy rate of our parallel algorithm is almost as high as serial 
KNN join, which means that our algorithm is feasible and efficient.  

From Table 3, we can see that the average time spent shows as a decreasing function 
of the cluter size. For example, for emotions, it takes 58.891s, 55.021s and 48.135s for 2 
slaves, 4 slaves and 6 slaves, respectively. In order to facilitate analysis, we represented results 
in Figure 4.  

Figure 4 plots average running times of 4 multi-label datasets versus different clusters 
of 2 slaves, 4 slaves, 6 slaves, 8 slaves respectively. Unit of measure is seconds. With the 
growth of slaves, the average running times of yeast and emotions linearly decrease. However, 
for CAL-500 and scene, Curve has the rising trend slightly sometimes, the reason of which is 
that the time saved by computing is less than the time increased by data communication of 
cluster. So the cluster of appropriate size makes scene.  

 
 

Table 3. Average Running Times that Four Datasets Spent in 4 Clusters of 2 Slaves, 4 Slaves, 
6 Slaves, 8 Slaves Respectively 

 2 slaves 4 slaves 6 slaves 8 slaves 
emotions 58.891s 55.021s 48.135s 46.346s 
CAL500 56.318s 48.809s 49.616s 52.242s 
scene 133.977s 122.001s 183.749s 123.17s 
yeast 123.687s 118.746s 114.17s 108.115s 

 
 

 
 

Figure 4. Average Running Times of 4 Multi-label Datasets versus Different Clusters of 2 slaves, 
4 slaves, 6 slaves, 8 slaves respectively. 
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Figure 5. Running Time of phase1 and phase2 versus 4 datasets in cluster of 2 slaves 
 
 

 
 

Figure 6. Running Time of phase1 and phase2 versus 4datasets in cluster of 4 slaves 
 
 

 
 

Figure 7. Running Time of phase1 and phase2 versus 4datasets in cluster of 2 slaves 
 
 

 
 

Figure 8. Running Time of phase1 and phase2 versus 4datasets in cluster of 2 slaves 
 
 

To clearly show the time spent in the two essential phases in our MapReduce based 
KNN algorithm, we further investigate the time spent in Phase-I and Phase-II, respectively. 
Figure 5,6,7,8 show running time of Phase-I and Phase-II versus 4 datasets in cluster of 2 
slaves, 4 slaves, 6 slaves and 8 slaves, respectively. We can see that show that Phase-I is the 
most time consuming phase and it decreases with the increase of cluster size. For example, for 
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dataset scene, when there are 2 slaves, 174.045s (78.4% of the total time) is spent on Phase-I 
and it decreases to 96.484s when the cluster size becomes 4. 
 
4. Conclusion 

In KNN join, the most time-consuming step is the calculation of distance between 
instances. With the increase of data, serial program cannot meet our requirements on the 
timeliness. In this paper, we design and implement a parallel KNN join using MapReduce for big 
data  multi-label classification.  From results above, we can see that the average accuracy of 
our parallel algorithm is almost as high as  conventional serial KNN join and the average time 
spent shows as a decre-asing function of the cluter size. Therefore, our method is proved to be 
an efficient and feasible solution to multi-label classification dealing with big data.  
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